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MOTIVATION

WAY OUT?

In particular, a two-derivative interaction with gravity (minimal coupling) does 
exist, contrary to covariant approaches (by the Aragone-Deser argument).

Light-cone deformation procedure results into additional local 
 cubic vertices compared to manifestly covariant approaches.

[Bengtsson’14]

[Bengtsson, Bengtsson, Brink’83; Bengtsson, Bengtsson, Linden’87]

HIGHER SPIN INTERACTIONS IN FLAT SPACE: NO-GO RESULTS
[Weinberg’64; Aragone, Deser’79; Berends, Burgers, van Dam’85; …]



MOTIVATION

FURTHER ANALYSIS

Deformation procedure was partially solved at the order g^2

Satisfy Weinberg’s equivalence principle (coupling is universal)

This fixes all coupling constants in cubic vertices in terms 
of a single one

Agree with a “flat limit” of cubic vertices found from AdS/CFT

(nothing of this can be seen in covariant approaches)

[Metsaev’91]

[Bekaert, Erdmenger, Ponomarev, Sleight’15; Skvortsov’16]
[Taronna, Sleight’16]



MOTIVATION

GOAL

This couple of points suggest that  
a consistent higher spin theory may exist in flat space 

Revisit higher-spin interactions in flat space focusing on 
methods that do not require manifest Lorentz covariance 

(Lorentz tensors).

PRIMARY TOOL

Light-cone deformation procedure



MANIFEST LORENTZ INVARIANCE

UIR’s of Poincare groupFREE THEORIES

Generators are deformed non-linearly. Consistency 
requirement: still generate the Poincare algebraINTERACTIONS

All Poincare symmetry is manifest
Introduces extra d. o. f. 
Massless fields = gauge invariance 
Fewer local interactions

LORENTZ TENSORS DIRECT ANALYSIS

Manual control of Poincare symmetry

Only physical d. o. f.

More local interactions



CHIRAL HIGHER-SPIN 
THEORY FROM LIGHT-

CONE



BASICS OF LIGHT-CONE

Fundamentally define a theory in the light-cone gaugeALTERNATIVELY

Light-cone time
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⇢... = 0and are algebraic consequences

This allows to eliminate all unphysical degrees of freedom



BASICS OF LIGHT-CONE: FREE THEORY

The action
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Higher-spin fields look like scalars
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Difference: only in spin part of angular momentum

Noether charges generate associated transformation via the commutator



BASICS OF LIGHT-CONE: INTERACTIONS

Deform dynamical generators

D : H ⌘ P�, J ⌘ Jx�, J̄ ⌘ J x̄�

Remaining are not deformed, called kinematical K



BASICS OF LIGHT-CONE: INTERACTIONS

H = H2 +
X
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Deformation

Kinematical constraints (solved only once)

(q? ⌘ {q, q̄, q+}, � ⌘ q+)

+ Fix transverse momentum dependence

P̄ij ⌘ q̄i�j � q̄j�i, Pij ⌘ qi�j � qj�i

+ Impose some homogeneity conditions on h



BASICS OF LIGHT-CONE: INTERACTIONS

Dynamical constraints (main difficulty)

[H, J ] = 0 ) [H2, Jn] + [H3, Jn�1] + · · ·+ [Hn�1, J3] + [Hn, J2] = 0

Reminiscent of the Noether procedure



CUBIC INTERACTIONS
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where C are arbitrary coupling constants
[Bengtsson, Bengtsson, Brink’83; Bengtsson, Bengtsson, Linden’87; Metsaev’91]

Individual helicities can be negative. These vertices violate bounds on the number 
of derivatives in covariant approaches. In particular 

N(@) = |�1 + �2 + �3|

{s1, s2, s3} = {s, s, 2}, {�1,�2,�3} = {s,�s, 2} ) N(@) = 2

Light-cone allows to couple minimally higher spins to gravity!

SOLUTION

DERIVATIVES

[H2, J3] + [H3, J2] = 0



QUARTIC ORDER ANALYSIS

One can adjust: C�1�2�3 , C̄�1�2�3 , h�1...�4
4 , j�1...�4

4 .

only [H3,J3] has a non-vanishing contribution 
to the q-independent part of the equation. 
So, this part of [H3,J3] should vanish 
separately.

A KEY OBSERVATION

[Metsaev’91]

[H2, J2] + [H3, J3] + [H4, J2] = 0



CHIRAL HIGHER-SPIN THEORY

[H3, J3]|q=0 = 0

Receives contributions only from antiholomorphic vertices
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[Metsaev’91]

Moreover, if we have only antiholomorphic vertices, the remaining 
terms in the consistency condition are zero, hence the consistency 
condition is satisfied (to all orders). 
This leads us to a chiral higher spin theory.

SOLUTION



CHIRAL HIGHER-SPIN THEORY
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1) Consistent to all orders in coupling constant 
2) Contains lower derivative couplings, absent in covariant approaches. 

In particular, minimal coupling to gravity 
3) Obeys generalised Weinberg’s equivalence principle: coupling to 

gravity is universal. 
4) Has vanishing four-point amplitude. Expected to hold for n-points. 
5) Avoids no-go’s (in somewhat degenerate manner).

[Ponomarev, Skvortsov’16]

COMPLETE ACTION



UNIVERSAL PROPERTIES 
OF HOLOMORPHIC 

THEORIES



LIGHT-CONE AND SYMMETRIES

g^2 consistency conditions define a Lie algebra

LIGHT-CONE DEFORMATION PROCEDURE?

NOETHER PROCEDURE

Different story: gauge symmetry is completely fixed!

Option: promote vertices to the covariant form and find the algebra 
[Sleight, Taronna’16]

(via deformation of an Abelian algebra of a free theory)

Is there any algebraic structure relevant to the light-cone theory 
irrespectively of any extensions?



(ANTI)HOLOMORPHIC CUBIC THEORIES

CLASS OF THEORIES
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+ subsectors of parity-invariant theories

+ consistent on their own



LIE ALGEBRA

Define the inner product

Raising/lowering indices = swaps ingoing and outgoing particles
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OBSERVATION
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EXAMPLES: SELF-DUAL YANG MILLS

g
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Gives: loop extension of the internal Lie algebra
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EXAMPLES: SELF-DUAL GRAVITY
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beta dependence can be removed by rescaling polarisation vectors

[Monteiro, O’Connell’11]

Gives: affine extension of area-preserving diffeomorphisms SDi↵(R2)⌦ C1(R2)
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EXAMPLES: CHIRAL HIGHER-SPIN THEORY
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CHIRAL HIGHER-SPIN ALGEBRA

[T�1 , T�2 ] = T�1+�2�2 + T�1+�2�4 + · · ·+ T�1+�2�1038 + . . .

Properties

Higher spin algebra in AdS
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CONTEXT: COLOUR-KINEMATICS DUALITY

Yang-Mills amplitudes can be written in a cubic form
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nscs
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cs + ct + cu = 0, ns + nt + nu = 0

Signals existence of some kinematic Lie algebra

For self-dual Yang-Mills was identified as an algebra of area-preserving diffeos
[Monteiro, O’Connell’11]

[Bern, Carrasco, Johansson’08]



CONTEXT: SELF-DUAL YANG-MILLS
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Can be rewritten as

@�Aa|x � @xAa|� + gfa
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Go even further: undoing the light-cone gauge

F�x|a = 0

F+x̄|a = 0

F+�|a + F x̄x|a = 0

Reveals connection to self-duality conditions

F a = i ⇤ F a



SELF-DUALITY AND CONSEQUENCES

INFINITE HIDDEN SYMMETRIES & INTEGRABILITY

Directly:
Relating to Riemann-Hilbert problem:

[Chau, Ge, Wu, Sinha, Dolan, Crane …]

[Ueno, Nakamura, …]

Via twistors: [Penrose, Atiyah, Hitchin, Singer, Ward, …]

su(N)⌦ C[�,��1
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�1
x

+
, x
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x̄]SDYM:

SDi↵(R2)⌦ C[�,��1]SDGR:
[Plebanski, Boyer, Takasaki,…]



SELF-DUALITY AND CONSEQUENCES

RELATION TO 2D SIGMA MODELS

SDGR
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[Park’90; Husain’94]

Directly extends to all other (anti)holomorphic theories

SDGR

CHS

SDi↵(R2)⌦ C[�,��1]

gHS ⌦ C[�,��1]

INTEGRABILITY & HIDDEN SYMMETRIES



CONJECTURE

Cubic (anti)holomorphic theories 

Jacobi identity[H, J ] = 0 ,

Essentially proven: it is understood how to solve both sides systematically
[Ponomarev, Skvortsov’16]

General (anti)holomorphic theories

[H, J ] = 0 , L1 relations

Knowing RHS one can solve for H. What about underlying 2D structure?

More direct arguments? Extension to theories with higher vertices?



SUMMARY

GENERAL

• massive fields 

• AdS 

• other dimensions

Lorentz tensors may be constraining



SUMMARY

• There is a chiral higher spin theory, consistent to all orders. Avoids no-go’s! 

• It features extra local lower-derivative interactions, e.g. minimal coupling to 

gravity 

• Generalised equivalence principle holds 

• We found a simple way to derive the formula of Metsaev. 

• “Agreement” with AdS/CFT 

• Vanishing 4-point function

ON THE CHIRAL THEORY



SUMMARY

• All cubic (anti)holomorphic theories are SDYM theories 

• Extend colour-kinematics duality to higher spins (in this sector) 

• Integrability & infinite symmetries carry over to all (anti)holomorphic theories 

• Conjecture: Lorentz invariance = L infinity relations 

• Possibly will allow to find all theories of this class

UNIVERSAL PROPERTIES OF (ANTI)HOLOMORPHIC THEORIES


