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State vector in Hilbert space + Pincare sym.

Maxwell eq. is Lorentz inv.

‘1915 EinsteinFields => Casimir of Poincare alg

Spin & Mass

QFT = Quantum Mechanics + Special Relativity



QFT = Quantum Mechanics + Special Relativity

State vector in Hilbert space + Pincare sym.

‘1915 Einstein

Maxwell eq. is conformal inv.

‘1915 Bateman, Cunningham

CFT can be defined via sym properties 
of the correlation functions ! 

CFT = Quantum Mechanics + Conformal sym.

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

∂µϵν + ∂νϵµ = f(x)gµν (1.9)

〈
O1(x1) · · · On(xn)

〉
(1.10)

f(x) =
2

d
∂µϵ

µ (1.11)

(d− 1)∂2f = 0 (1.12)

Conf(R) ∼= Diff(R) (1.13)

conf(R) = C∞(R) (1.14)

Pµ = −i∂µ (1.15)

D = −ixµ∂µ (1.16)

Lµν = i(xµxν − xνxµ) (1.17)

Kµ = −i(2xµx
ν∂ν − x2∂µ) (1.18)

1

Fields => Casimir of Poincare alg

Spin & Mass

Operators => Casimir of conf alg

Spin & Scaling dimension
anomalous dimension, 
critical dimension etc.

No need Lagrangian !



CQM = Quantum Mechanics + Conformal Symmetry of  Time∈ (1.37)

SL(2,R) (1.38)

PSL(2,R)/±I (1.39)

G = D (1.40)

t →t′ = eτ t (1.41)

u = 0, v = 1, w = 0 (1.42)

∆ > 0 (1.43)

τ = log
t

t0
(1.44)

t = eτ t0 (1.45)

δt′ = γ∆t =
∆t√
1− v2

c2

(1.46)

dτ = dt

√√√√1− 2

c2
GMi

r2i
− v2

c2
− 2

c2
GMi

r2i

1

1− 2
c2

GMi

r2i

v2∥
c2

(1.47)

G = K (1.48)

t → t′ =
t

1− τ t
(1.49)

u = 0, v = 0, w = 1 (1.50)

∆ = 0 (1.51)

τ =
1

t0
− 1

t
(1.52)

t =
t0

1− τ t0
(1.53)

δt = τ t20 (1.54)

∆t′ =
∆t

(1− t1τ)(1− t2τ)
(1.55)

τ t1 ≪ 1, τ t2 ! 1 ∼ ∆t(1 + τ t2) (1.56)
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Q. What can we learn CQM from correlation function ?

State vector in Hilbert space +

∈ (1.41)

SL(2,R) (1.42)

PSL(2,R) = SL(2,R)/±I (1.43)

G = D (1.44)

t →t′ = eτ t (1.45)

u = 0, v = 1, w = 0 (1.46)

∆ > 0 (1.47)

τ = log
t

t0
(1.48)

t = eτ t0 (1.49)

δt = τ t0 (1.50)

δt′ = γ∆t =
∆t√
1− v2

c2

(1.51)

dτ = dt

√√√√1− 2

c2
GMi

r2i
− v2

c2
− 2

c2
GMi

r2i

1

1− 2
c2

GMi

r2i

v2∥
c2

(1.52)

⟨O∆1(t1) · · · O∆n(tn)⟩ (1.53)

G = K (1.54)

t → t′ =
t

1− τ t
(1.55)

u = 0, v = 0, w = 1 (1.56)

∆ = 0 (1.57)

τ =
1

t0
− 1

t
(1.58)

t =
t0

1− τ t0
(1.59)

δt = τ t20 (1.60)

3

w/o Lagrangian description

Operators => Casimir of conf alg

Scaling dimension

Hamiltonian ≠ dilatation
in CQM

Energy & Scaling dimension !
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III. Non-Lagrangian Approach for CQM

i C-function in CQM

ii No-Go thm in CQM
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Main Results
i. C-function in CQM

⟨p′,±j|Jµ|p,±j⟩ = 0 (1.106)

⟨p′,±j|T µν |p,±j⟩ (1.107)

j >
1

2
(1.108)

j > 1 (1.109)

|p,±j⟩ → e±iθj|p,±j⟩ (1.110)

|p′,±j⟩ → e∓iθj|p′,±j⟩ (1.111)

e±2iθj⟨p′,±j|Jµ|p,±j⟩ (1.112)

e±2iθj⟨p′,±j|T µν |p,±j⟩ (1.113)

R(θ)µρ⟨p
′,±j|Jρ|p,±j⟩ (1.114)

R(θ)µρR(θ)νσ⟨p
′,±j|T ρσ|p,±j⟩ (1.115)

R(θ)µρ ⇒ eiθ, e−iθ (1.116)

H|E⟩ = E|E⟩ (1.117)

φE(x) =
√
xJ√

g+ 1
4

(√
2Ex

)
(1.118)

φ0(x) =

√
2

Γ(2r0)
e−

x2

2 x
1
2+
√

g+ 1
4 (1.119)

φn(x) =

√
Γ(n+ 1)

2Γ(n+ 2r0)
x− 1

2x2r0e−
x2

2 L2r0−1
n (x2) (1.120)

c =

∫

S2k

⟨T µ
µ⟩ (1.121)
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cf.

−1

2
≤ d+∆ ≤ 1

2
(0.1)

0 ≥ δQ > 0 (0.2)

1

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d+∆ ≤ 1

2
(0.2)

0 ≥ δQ > 0 (0.3)

1

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d ≤ 1

2
(0.2)

−1

2
≤ d+∆ ≤ 1

2
(0.3)

0 ≥ δQ > 0 (0.4)

1

II. No-Go theorem in CQM

−d+

∆

∆ = −d+
1− δQ

2
.

−1 ≤

≤ 1 (5.20)

≤
1

2

−

1

2
,

, ∆ = −2d

x > 0 should be taken seriously to pro-

≤ ∆ = −2d+ 1.

Figure 2: The bound on (d,∆) in conformal quantum mechanics. In the orange region

the primary operators with the dimension ∆ and the vacuum states with the dimension

d are allowed and the red line characterizes the charged physical states coupled to the

gauge operators of δQ. Without the favored condition (5.19) for the unitary evolution

of the states, the green region is also allowed.
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Bounds on dimensions 
of reference state

Bounds on dimensions 
of physical state

Bounds on dimensions 
of gauge operator

the bra ⟨O∆| produce the same charge q ∈ R, this should vanish. On the other hand,

using the commutation relations (2.16) and (5.24)-(5.27), we find

[K,Q]H = 2iδQQD − δ2QQ + δQQ. (5.31)

Plugging this into (5.30) we get

qδQ (δQ − 1 + 2(d+∆)) = 0. (5.32)

For the global charge operator with δQ = 0 the above condition holds and there is no

constraint on the primary operator. However, for the gauge operator with δQ > 0 the

scaling dimension of the charged primary operator is determined by

d+∆ =
1− δQ

2
. (5.33)

The resulting constrained scaling dimension is illustrated in Figure 2. The red line

characterizes the gauge operator. Within the regions (5.23) and (5.19), there exists a

bound on the scaling dimension of the gauge operator

0 < δQ ≤ 2. (5.34)

This admits the presence of the gauge operators with δQ = 1, which would realize

massless spin s = 1 gauge fields involving photon and gluon, coupled to the physical

states with d+∆ = 0, i.e. free fermions. Also it is compatible with the gauge operators

with δQ = 2, which would show up as massless spin s = 2 fields involving graviton,

coupled to the physical states with d + ∆ = −1
2 , i.e. free bosonic scalars. On the

other hand, the bosonic auxiliary field with d + ∆ = 1
2 may not couple to the gauge

operators.

6 Discussion

In this work we have studied conformal quantum mechanics with the vacuum state

and the primary operators. We have shown that a matrix element of the dilatation

operator between two energy eigenstates may define a conformal quantum mechanical

counterpart of a c-function, which we call a D-function. Its monotonic decrease from

the UV to the IR along the flow supports the universal irreversibility of the RG flow

in higher dimensional field theories. At the fixed point of the flow it becomes a

crucial parameter d, that is the scaling dimension of the vacuum, which specifies the

theory, analogous to the central charge in two-dimensional conformal field theories. In

addition, we have found new no-go theorems which impose constraints and bounds on

scaling dimensions of the primary operator, the vacuum and the gauge operators.
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(unitarity)

(positivity)



I. Conformal Symmetry 
of Time



Conformal Symmetry

Conformal Transf = Invertible coordinate map that leaves metric invariant up to scale

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ = xµ + aµ (1.6)

(1.7)

1

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ = xµ + aµ (1.6)

(1.7)

1

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ = xµ + aµ (1.6)

(1.7)

1

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

1

1. Translation

2. Dilatation

4. SCT

3. Rotation

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

∂µϵν + ∂νϵµ = f(x)gµν (1.9)

f(x) =
2

d
∂µϵ

µ (1.10)

(d− 1)∂2f = 0 (1.11)

Conf(R) ∼= Diff(R) (1.12)

conf(R) = C∞(R) (1.13)

Pµ = −i∂µ (1.14)

D = −ixµ∂µ (1.15)

Lµν = i(xµxν − xνxµ) (1.16)

Kµ = −i(2xµx
ν∂ν − x2∂µ) (1.17)

1

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

∂µϵν + ∂νϵµ = f(x)gµν (1.9)

f(x) =
2

d
∂µϵ

µ (1.10)

(d− 1)∂2f = 0 (1.11)

Conf(R) ∼= Diff(R) (1.12)

conf(R) = C∞(R) (1.13)

Pµ = −i∂µ (1.14)

D = −ixµ∂µ (1.15)

Lµν = i(xµxν − xνxµ) (1.16)

Kµ = −i(2xµx
ν∂ν − x2∂µ) (1.17)

1

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

∂µϵν + ∂νϵµ = f(x)gµν (1.9)

f(x) =
2

d
∂µϵ

µ (1.10)

(d− 1)∂2f = 0 (1.11)

Conf(R) ∼= Diff(R) (1.12)

conf(R) = C∞(R) (1.13)

Pµ = −i∂µ (1.14)

D = −ixµ∂µ (1.15)

Lµν = i(xµxν − xνxµ) (1.16)

Kµ = −i(2xµx
ν∂ν − x2∂µ) (1.17)

1

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

∂µϵν + ∂νϵµ = f(x)gµν (1.9)

f(x) =
2

d
∂µϵ

µ (1.10)

(d− 1)∂2f = 0 (1.11)

Conf(R) ∼= Diff(R) (1.12)

conf(R) = C∞(R) (1.13)

Pµ = −i∂µ (1.14)

D = −ixµ∂µ (1.15)

Lµν = i(xµxν − xνxµ) (1.16)

Kµ = −i(2xµx
ν∂ν − x2∂µ) (1.17)

1

finite transf. infinitesimal transf.

Extension of Poincare sym.



Locally preserving angle 
between 2 distinct points 



1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

1

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

1

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

f(x) =
2

d
∂µϵ

µ (1.9)

(d− 1)∂2f = 0 (1.10)

1

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

f(x) =
2

d
∂µϵ

µ (1.9)

(d− 1)∂2f = 0 (1.10)

1

Conformal Transformation of Time

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

∂µϵν + ∂νϵµ = f(x)gµν (1.9)

f(x) =
2

d
∂µϵ

µ (1.10)

(d− 1)∂2f = 0 (1.11)

Conf(R) ∼= Diff(R) (1.12)

conf(R) = C∞(R) (1.13)

1

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

∂µϵν + ∂νϵµ = f(x)gµν (1.9)

f(x) =
2

d
∂µϵ

µ (1.10)

(d− 1)∂2f = 0 (1.11)

Conf(R) ∼= Diff(R) (1.12)

conf(R) = C∞(R) (1.13)

1

d=1

no constraint

1

x! x0 (1.1)

gµ⌫(x)! g0µ⌫(x
0
) = ⌦(x)g(x) (1.2)

x
0µ

= xµ
+ aµ

(1.3)

x
0µ

= ↵xµ
(1.4)

x
0µ

= Mµ
⌫x

⌫
(1.5)

x
0µ

=

xµ � bµx2

1� 2 · x + b2x2
(1.6)

xµ ! xµ
+ ✏µ

(1.7)

gµ⌫ ! gµ⌫ � (@µ✏⌫ + @⌫✏µ) (1.8)

@µ✏⌫ + @⌫✏µ = f(x)gµ⌫ (1.9)

D
O1(x1) · · · On(xn)

E
(1.10)

f(x) =

2

d
@µ✏

µ
(1.11)

(d� 1)@2f = 0 (1.12)

Conf(R)

⇠
=

Di↵(R) (1.13)

conf(R) = C1
(R) (1.14)

Pµ = �i@µ (1.15)

D = �ixµ@µ (1.16)

Lµ⌫ = i(xµx⌫ � x⌫xµ) (1.17)

Kµ = �i(2xµx
⌫@⌫ � x2@µ) (1.18)

1

solve

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

∂µϵν + ∂νϵµ = f(x)gµν (1.9)

〈
O1(x1) · · · On(xn)

〉
(1.10)

f(x) =
2

d
∂µϵ

µ (1.11)

2∂µ∂νϵρ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf (1.12)

(d− 1)∂2f = 0 (1.13)

2∂2ϵµ = (2− d)∂µf (1.14)

(2− d)∂µ∂νf = ηµν∂
2f (1.15)

(1.16)

Conf(R) ∼= Diff(R) (1.17)

conf(R) = C∞(R) (1.18)

Pµ = −i∂µ (1.19)

D = −ixµ∂µ (1.20)

Lµν = i(xµxν − xνxµ) (1.21)

Kµ = −i(2xµx
ν∂ν − x2∂µ) (1.22)

1

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

∂µϵν + ∂νϵµ = f(x)gµν (1.9)

〈
O1(x1) · · · On(xn)

〉
(1.10)

f(x) =
2

d
∂µϵ

µ (1.11)

2∂µ∂νϵρ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf (1.12)

(d− 1)∂2f = 0 (1.13)

2∂2ϵµ = (2− d)∂µf (1.14)
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• Definition through metric tensor & absence of angle 
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Infinitesimal transf.

1. Translation

2. Dilatation

4. SCT
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Using the commutation relation (2.1.22), we can show that

[H,D] = iH, (2.1.23)

[K,D] = �iK, (2.1.24)

[H,K] = 2iD (2.1.25)

and

i[H, x(t)] = ẋ(t), (2.1.26)

i[D, x(t)] = tẋ(t)� 1

2
x(t), (2.1.27)

i[K, x(t)] = t2ẋ(t)� tx(t). (2.1.28)

If we express the time independent part of D and K as

D
0

:= �1

4
(xp+ px) , (2.1.29)

K
0

:=
1

2
x2, (2.1.30)

then the equations (2.1.26), (2.1.27) and (2.1.28) are rewritten as

i[H, x(t)] = ẋ(t), (2.1.31)

i[D
0

, x(t)] = �1

2
x(t), (2.1.32)

i[K
0

, x(t)] = 0. (2.1.33)

These equations are regarded as the Heisenberg equations. The equation (2.1.31) is

familiar for general quantum mechanical systems and yields the variation of the oper-

ator with respect to time while the equation (2.1.32) gives rise to the scale dimension

of the operator.

Note that the explicit time dependence of D and K can be absorbed into the

similarity transformations

D = eitHD
0

e�itH , K = eitHK
0

e�itH (2.1.34)

So we will use the time independent parts as the explicit expressions for D and K and

drop o↵ the subscripts.

Defining

T
0

=
1

2

✓

K

a
+ aH

◆

, (2.1.35)

T
1

= D, (2.1.36)

T
2

=
1

2

✓

K

a
� aH

◆

(2.1.37)
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H = i
∂

∂t
(1.19)

D = it
∂

∂t
(1.20)

K = it2
∂

∂t
(1.21)

dτ =
dt

u+ vt+ wt2
(1.22)

G|Ψ⟩ = i
∂

∂τ
|Ψ⟩ (1.23)

τ =

∫
dτ =

∫ t

t0

dt′

u+ vt′ + wt′2
+ τ0 (1.24)

xµ → x′
µ = xµ + aµ (1.25)

xµ → x′
µ = Mµ

νx
ν (1.26)

|Ψ⟩ (1.27)

conf(R) := so(1, 2) ∼= sl(2,R) ∼= sp(2) (1.28)

G = H (1.29)

t → t′ = t+ τ (1.30)

u = 1, v = 0, w = 0 (1.31)

∆ = 0 (1.32)

τ = t− t0 (1.33)

t = τ + t0 (1.34)

(1.35)

i! ∂

∂t
|Ψ⟩ = H|Ψ⟩ (1.36)

2

where a is a constant with dimension of length, we find from (2.1.23)-(2.1.25) the

explicit representation of the so(1, 2) algebra

[Ti, Tj] = i✏ijkT
k (2.1.38)

where ✏ijk is a three-index anti-symmetric tensor with ✏
012

= 1 and gij = diag(1,�1,�1).

If we introduce

L
0

=
1

2

✓

K

a
+ aH

◆

= T
0

, (2.1.39)

L± =
1

2

✓

K

a
� aH ± 2iD

◆

= T
2

± iT
1

, (2.1.40)

then we get the explicit representation of the sl(2,R) algebra in the Virasoro form

[Ln, Lm] = (m� n)Lm+n (2.1.41)

with m,n = 0,±. Note that

H =
1

a



L
0

� 1

2
(L

+

+ L�)

�

, (2.1.42)

D =
1

2i
(L

+

� L�) , (2.1.43)

K = a



L
0

+
1

2
(L

+

+ L�)

�

. (2.1.44)

Recall that in the representation theory the Casimir invariants play an important

role since their eigenvalues may characterize the representations. The one-dimensional

conformal group SL(2,R) is of rank one and therefore possesses one independent

second-order Casimir invariant. The second-order Casimir operator C
2

of the sl(2,R)
algebra is given by

C
2

= T 2

0

� T 2

1

� T 2

2

= L
0

(L
0

� 1)� L
+

L�

=
1

2
(HK +KH)�D2

=
g2

4
� 3

16
. (2.1.45)

2.2 Spectrum

It is known that the quantum formalism based on the Hamiltonian H is awkward to

describe the conformal quantum mechanics. The spectrum of H is continuous due to

20
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H,D,K (H is the Hamiltonian) which obey the algebra

[H,D] = iH, [K,D] = −iK

[H,K] = 2iD (2.1.3) de197613

These operators leave the action invariant and are hence constants of the motion; as a consequence, the
problem of motion becomes purely group-theoretical and the problem is exactly soluble, both classically
and quantum mechanically.

It is to be noted that any combination

G = uH + vD + wK (2.1.4) de197613b

of the three fundamental operators is a constant of the motion, not in the sense that it commutes with
H (see Eqs. (

de197613
2.1.3)) but in the more genral sense

∂G

∂t
+ i[H,G] = 0. (2.1.5) de197614

Equation (
de197614
2.1.5) expresses the fact that the transformation generated by G leaves the action (but not

the Lagrangian) invariant. This means that any of the operators G can be employed to study the time
evolution of the state vector. Although the use of any of these operators is, in principle, on the same
footing, there are strong differences on the practical side. Indeed only some of our conformal group
operators have normalizable eigenvectors and can therefore be safely used.

In order to understand this classification of operators, we refer to the isomorphism of the conformal
gorup with the O(2, 1) group of non-compact rotations []. If we define

R =
1
2
(
1
a
K + aH)

S =
1
2
(
1
a
K − aH), (2.1.6) de197615

where a is any constant with dimension of length, we have from Eqs. (
de197613
2.1.3) the explicit O(2, 1) algebra:

[D,R] = iS

[S,R] = −iD

[S,D] = −iR. (2.1.7) de197616

We note that R is the generator of a compact rotation, whereas S and D correspond to hyperbolic
non-compact transformations. We shall see that the general operator G corresponds to compact trans-
formation if the determinant

∆ = v2 − 4uw > 0. (2.1.8) de197616b

It will be shown that only compact operators of the kind of R can be safely used to solve the problem
of motion. Their eigenstates are normalizable and their spectrum is discrete. It will also be seen that
only these compact operators lead to time evolution laws which are acceptable in the full −∞ < t < +∞
interval.

At this point a natural question is where the Hamiltonian stands in this classification. From Eqs.
(
de197615
2.1.6) one sees that H stands at the border between R and S and it can be obtained from either of

them in the limit a → ∞. In the framework of our conformal invariant theory, the spectrum of H is
continuous and from below and its lowest eigenstate is not normalizable. This circumstance is, of course,
a reflection in our elementary framework of the well-known infra-red problem.

=> is the new Hamiltonian of new time 

New time

1

x → x′ (1.1)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.2)

x
′µ = xµ + aµ (1.3)

x
′µ = αxµ (1.4)

x
′µ = Mµ

νx
ν (1.5)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.6)

xµ → xµ + ϵµ (1.7)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.8)

∂µϵν + ∂νϵµ = f(x)gµν (1.9)

f(x) =
2

d
∂µϵ

µ (1.10)

(d− 1)∂2f = 0 (1.11)

Conf(R) ∼= Diff(R) (1.12)

conf(R) = C∞(R) (1.13)

Pµ = −i∂µ (1.14)

D = −ixµ∂µ (1.15)

Lµν = i(xµxν − xνxµ) (1.16)

Kµ = −i(2xµx
ν∂ν − x2∂µ) (1.17)

dτ =
dt

u+ vt+ wt2
(1.18)

G|Ψ⟩ = i
∂

∂τ
|Ψ⟩ (1.19)

1

Schrodinger Equation

H = i
∂

∂t
(1.19)

D = it
∂

∂t
(1.20)

K = it2
∂

∂t
(1.21)

dτ =
dt

u+ vt+ wt2
(1.22)

G|Ψ⟩ = i
∂

∂τ
|Ψ⟩ (1.23)

τ =

∫
dτ =

∫ t

t0

dt′

u+ vt′ + wt′2
+ τ0 (1.24)

xµ → x′
µ = xµ + aµ (1.25)

xµ → x′
µ = Mµ

νx
ν (1.26)

t → t′ = t+ τ (1.27)

(1.28)

|Ψ⟩ (1.29)

t →t′ = eτ t (1.30)

t → t′ =
t

1− τ t
(1.31)

2

G = D (1.36)

t →t′ = eτ t (1.37)

u = 0, v = 1, w = 0 (1.38)

∆ > 0 (1.39)

τ = log
t

t0
(1.40)

t = eτ t0 (1.41)

δt′ = γ∆t =
∆t√
1− v2

c2

(1.42)

dτ = dt

√√√√1− 2

c2
GMi

r2i
− v2

c2
− 2

c2
GMi

r2i

1

1− 2
c2

GMi

r2i

v2∥
c2

(1.43)

G = K (1.44)

t → t′ =
t

1− τ t
(1.45)

u = 0, v = 0, w = 1 (1.46)

∆ = 0 (1.47)

τ =
1

t0
− 1

t
(1.48)

t =
t0

1− τ t0
(1.49)

δt = τ t20 (1.50)

∆t′ =
∆t

(1− t1τ)(1− t2τ)
(1.51)

τ t1 ≪ 1, τ t2 ! 1 ∼ ∆t(1 + τ t2) (1.52)

t → t′ = f(t) (1.53)

df(t)

dt
=

1

(ct+ d)2
> 0 (1.54)

t1 < t2 ⇒ t′1 < t′2 (1.55)

T : t → −t (1.56)
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dτ =
dt

u+ vt+ wt2
(1.21)

G|Ψ⟩ = i
∂

∂τ
|Ψ⟩ (1.22)

τ =

∫
dτ =

∫ t

t0

dt′

u+ vt′ + wt′2
+ τ0 (1.23)

2

Then we find the action of G on the operator and on the state given by

dq(⌧)

d⌧
= i[G, q(⌧)], (2.2.7)

G| (⌧)i = i
d

d⌧
| (⌧)i (2.2.8)

as required. Although the operator G may describe the evolution in the new time ⌧ , it

is not yet complete to justify the passing to the new description. We need to examine

whether the new Hamiltonian and the new coordinates cover the whole evolution in

time from t = �1 to +1. From (2.2.5) we can express the new time parameter as

⌧ =

Z t

t0

dt0

u+ vt0 + wt02
+ ⌧

0

. (2.2.9)

This integral depends on the zeros of the denominater and the result is classified by

the discriminant

� = v2 � 4uw. (2.2.10)

We find
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◆
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�
�

2

2wt+v
� 2

v

�

for � = 0

(2.2.11)

where we normalize as ⌧
0

= 0. For � > 0, the parameter ⌧ cannot sweep the whole

time region �1  t  1. This unpleasant feature is associated with the fact that

the corresponding operators are non-compact and their spectrums are physically un-

acceptable. The dilatation operator D belongs to this class. When � < 0, ⌧ can be

defined over the whole time interval �1  t  1. The corresponding operators in

this case generate a compact rotation and their spectrums have physically satisfactory

characteristics. In the case of � = 0, the whole time interval �1  t  1 can be

described over �1  ⌧  1, however, there exists one singular point in ⌧ at t = � v
2w
.

This is the case for the Hamiltonian H and the conformal boost operator K. These

three cases are illustrated in Figure 2.1.

In terms of the new set of coordinates (2.2.5) and (2.2.6), we can rewrite the action
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3 different classes of new time
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Difference between CQM & CFT

I. Time symmetry taken seriously 
(H ≠ D, energy & dimension, no Wick rotation, no radial quantization)

II. Hilbert space rather than Fock space
(zero point energy,  ground state ≠ vacuum)

III. AdS2/CFT1 correspondence 
(one-dimensional disconnected bdy,  AdS2 factor in BH)

’11 Chamon et al’08 Sen



II. Lagrangian CQM



‘76 de Alfaro Fubini Furlan

Chapter 2

Superconformal Mechanics

2.1 Conformal mechanics

2.1.1 1976 de Alfaro, Fubini, Furlan
deAlfaro:1976je

[10]

The properties of a field theory in one over-all time dimension, invariant under the full
conformal group, are studied in detail. A compact operator, which is not the Hamiltonian,
is diagonalized and used to solve the problem of motion, providing a discrete spectrum
and normalizable eigenstates. The role of the physical parameters present in the model is
discussed, mainly in connection with a semiclassical approximation.

Introduction Most quantum field theories, which are at present being used, contain only dimensionless
coupling constants so that dilatation invariance is only broken by mass terms. This has led to much
attention to limits in which such mass terms also tend to zero, either in terms of massless field theories
or as special asymptotic limits of Feynman diagrams.

A special feature of massless field theories is that they exhibit an invariance group which is larger
than Poincaré and which also contains the dilatation D and the conformal operator Kµ [].

The simplest massless dilatation invariant Lagrangian for a scalar field φ has the general form

L =
1
2
∂µφ∂µφ − gφ

2d
d−2 (2.1.1) de197611

where d is the total number of space-time dimensions.
A general study of the Lagrangian (

de197611
2.1.1) for any value of the dimension number d has been carried

out by means of a semi-classical approximation [].
It is, however, important to fix our attention to the simplest, but far from trivial, example d = 1

which corresponds to a single physical operator Q(t) depending only upon time. In this case an exact
solution is available and many of the general features can be precisely tested.

The one-dimensional Lagrangian is

L =
1
2

(
Q̇2 − g

Q2

)
(2.1.2) de197612

and represents the prototype of several singular wave equations leading to anomalous dimensions [].
In this paper we shall investigate the consequences of the invariance of a system described by the

Lagrangian (
de197612
2.1.2) under the full conformal group. In this case we have to deal with three generators,
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2.2. N = 2 SUPERCONFORMAL MECHANICS 37

by DFF
deAlfaro:1976je
[10].

The results in quantum mechanics are interesting in their own right, we will also try to suggest what
interpretation should be given in a field theoretic context. The structure of the paper is the following:
in Section 2 we describe the conformal supersymmetric structure of the quantum mechanical model. In
Section 3 we discuss the N = 1 in the presence of an internal quantum number and in particular the
case D = 2 in which a larger group of supersymmetry is present. Under both circumstances, the original
supersymmetry of the model is spontaneously broken. We will describe how the resulting local structure
may also have a new supersymmetric interpretation.

Quantum Mechanical Conformal Supersymmetry In this section, we wish to discuss the fusion
of conformal invariance and supersymmetry as it occurs in quantum mechanics. Conformal quantum
mechanics has been studied in great detail from the point of interest of this work by DFF []. We next
review the essential features of the model. The Lagrangian describing the system is:

L =
1
2

(
ẋ2 − g

x2

)
(2.2.26) 84hf21

where g is the dimensionless coupling constant. The action of this system is invariant under the conformal
group O(2, 1) which is spanned by three generators, H the Hamiltonian, D the dilatation generator and
K the conformal generator. These generators form together the algebra

[H,D] = iH; [K,D] = −iK; [H,K] = 2iD. (2.2.27) 84hf22

The Hamiltonian describes the motion of particle in a repulsive potential and is given by

H =
1
2
(p2 +

g

x2
). (2.2.28) 84hf23

The Hamiltonian can be diagonalized exactly. The eigenspectrum includes all E > 0 values for each of
which there exists a plane wave normalizable state. The spectrum does not have an endpoint or ground
state as the state E = 0 is not even plane wave normalizable. We do not know of a principle which
requires that a system always needs to have a ground state. However, our understanding of field theory
was greatly enhanced by studying the symmetry properties of the vacuum and excitations around it.
It is possible to add a new rule [] that would enable the choice of a ground state, that rule, however,
results in the breakdown of translational invariance in the time t direction. The rule chosen by DFF []
was to notice that the quantum evolution of the system can be controlled by a compact operator. Such
an operator would have normalizable eigenstates in general, and a ground state in particular. Using the
three symmetry operators, the compact operator can be chosen from any linear combination, G, of the
generators

G = uH + vD + wK (2.2.29) 84hf24

as long as

∆ = v2 − 4uw < 0. (2.2.30) 84hf25

Any such choice would break translational and scale invariance. DFF have found it convenient to define

G = R =
1
2

(
1
a
K + aH

)
(2.2.31) 84hf26
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• The spectrum is bounded below

• For E>0, there exists a plane wave normalizable state
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Figure 2.2: The potentials for the original Hamiltonian H and the new Hamiltonian

L
0

. The red line is the potential for H and the blue one is for L
0

.
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up to the total ⌧ derivative. Note that the dot denotes ⌧ derivative in (2.2.12). The

new Lagrangian L⌧ leads to the new Hamiltonian
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� L⌧

=
1

2

✓

q̇2 +
g2

q2
� �

4
q2
◆

(2.2.13)

with

G(x(t), ẋ(t)) = H⌧ (q(⌧, )q̇(⌧)). (2.2.14)

Note that L
0

= T
0

is the compact generator satisfying � = �1 < 0. Qualitatively

one can see that the potential energy of this new Hamiltonian L
0

acquires the minimum

and assymptotes to infinity (Figure 2.2). The new time coordinate ⌧ and variable q(⌧)
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Change time and Hamiltonian

T (z)T (w) ∼
c
2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
(1.76)

⟨T (z)T (w)⟩ =
c
2

(z − w)4
(1.77)

⟨T (z1)T (z2)T (z3)⟩ =
c

(z1 − z2)2(z2 − z3)2(z3 − z1)2
(1.78)

T (z) = Tzz(x) (1.79)

⟨TOO⟩ (1.80)

⟨TTO⟩ (1.81)

⟨V V V ⟩ (1.82)

⟨TV V ⟩ (1.83)

⟨TTT ⟩ (1.84)

⟨Tµν(x)Tσρ(x)Tαβ(x3)⟩ (1.85)

=
Jµν,µ′ν′Jσρ,σ′ρ′tµ′ν′σ′ρ′αβ(X12)

xd
12x

d
23x

d
31

(1.86)

tµνρσαβ(X) (1.87)

tµνσραβ(X) = tσρµναβ(X) (1.88)

Jµν,µ′ν′(X)tµ′ν′σραβ(X) = tαβµνσρ(X) (1.89)

(1.90)

(1.91)

tµνσαβ(X) = ah5
µνσαβ + bh4

αβµνσρ(X̂) + b′(h4
µνσραβ(X̂) + h4

σρµναβ(X̂)) (1.92)

+ ch3
µνσρh

1
αβ(X̂) + c′(h3

σραβh
1
µν(X̂) + h3

µναβh
1
σρ(X̂)) (1.93)

+ eh2
µνσρ(X̂)h1

αβ(X̂) + e′(h2
σραβh

1
µν(X̂) + h2

µναβ(X̂)h1
σρ(X̂)) (1.94)

+ fh1
µν(X̂)h1

σρ(X̂)h1
αβ(X̂) (1.95)

τ = tan−1 t− tan−1 t0 (1.96)

5

DFF’s proposal

where a is a constant with dimension of length, we find from (2.1.23)-(2.1.25) the

explicit representation of the so(1, 2) algebra

[Ti, Tj] = i✏ijkT
k (2.1.38)

where ✏ijk is a three-index anti-symmetric tensor with ✏
012

= 1 and gij = diag(1,�1,�1).
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then we get the explicit representation of the sl(2,R) algebra in the Virasoro form
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Recall that in the representation theory the Casimir invariants play an important

role since their eigenvalues may characterize the representations. The one-dimensional

conformal group SL(2,R) is of rank one and therefore possesses one independent

second-order Casimir invariant. The second-order Casimir operator C
2

of the sl(2,R)
algebra is given by

C
2

= T 2

0

� T 2

1

� T 2

2

= L
0

(L
0

� 1)� L
+

L�

=
1

2
(HK +KH)�D2

=
g2

4
� 3

16
. (2.1.45)

2.2 Spectrum

It is known that the quantum formalism based on the Hamiltonian H is awkward to

describe the conformal quantum mechanics. The spectrum of H is continuous due to

20

T (z)T (w) ∼
c
2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
(1.82)

⟨T (z)T (w)⟩ =
c
2

(z − w)4
(1.83)

⟨T (z1)T (z2)T (z3)⟩ =
c

(z1 − z2)2(z2 − z3)2(z3 − z1)2
(1.84)

T (z) = Tzz(x) (1.85)

⟨TOO⟩ (1.86)

⟨TTO⟩ (1.87)

⟨V V V ⟩ (1.88)

⟨TV V ⟩ (1.89)

⟨TTT ⟩ (1.90)

⟨Tµν(x)Tσρ(x)Tαβ(x3)⟩ (1.91)

=
Jµν,µ′ν′Jσρ,σ′ρ′tµ′ν′σ′ρ′αβ(X12)

xd
12x

d
23x

d
31

(1.92)

tµνρσαβ(X) (1.93)

tµνσραβ(X) = tσρµναβ(X) (1.94)

Jµν,µ′ν′(X)tµ′ν′σραβ(X) = tαβµνσρ(X) (1.95)

(1.96)

(1.97)

tµνσαβ(X) = ah5
µνσαβ + bh4

αβµνσρ(X̂) + b′(h4
µνσραβ(X̂) + h4

σρµναβ(X̂)) (1.98)

+ ch3
µνσρh

1
αβ(X̂) + c′(h3

σραβh
1
µν(X̂) + h3

µναβh
1
σρ(X̂)) (1.99)

+ eh2
µνσρ(X̂)h1

αβ(X̂) + e′(h2
σραβh

1
µν(X̂) + h2

µναβ(X̂)h1
σρ(X̂)) (1.100)

+ fh1
µν(X̂)h1

σρ(X̂)h1
αβ(X̂) (1.101)

G = L0 =
1

2
(H +K) ∝ p2 +

g

x2
+ x2 (1.102)

τ = tan−1 t− tan−1 t0 (1.103)

H (1.104)

t (1.105)

5

T (z)T (w) ∼
c
2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
(1.82)

⟨T (z)T (w)⟩ =
c
2

(z − w)4
(1.83)

⟨T (z1)T (z2)T (z3)⟩ =
c

(z1 − z2)2(z2 − z3)2(z3 − z1)2
(1.84)

T (z) = Tzz(x) (1.85)

⟨TOO⟩ (1.86)

⟨TTO⟩ (1.87)

⟨V V V ⟩ (1.88)

⟨TV V ⟩ (1.89)

⟨TTT ⟩ (1.90)

⟨Tµν(x)Tσρ(x)Tαβ(x3)⟩ (1.91)

=
Jµν,µ′ν′Jσρ,σ′ρ′tµ′ν′σ′ρ′αβ(X12)

xd
12x

d
23x

d
31

(1.92)

tµνρσαβ(X) (1.93)

tµνσραβ(X) = tσρµναβ(X) (1.94)

Jµν,µ′ν′(X)tµ′ν′σραβ(X) = tαβµνσρ(X) (1.95)

(1.96)

(1.97)

tµνσαβ(X) = ah5
µνσαβ + bh4

αβµνσρ(X̂) + b′(h4
µνσραβ(X̂) + h4

σρµναβ(X̂)) (1.98)

+ ch3
µνσρh

1
αβ(X̂) + c′(h3

σραβh
1
µν(X̂) + h3

µναβh
1
σρ(X̂)) (1.99)

+ eh2
µνσρ(X̂)h1

αβ(X̂) + e′(h2
σραβh

1
µν(X̂) + h2

µναβ(X̂)h1
σρ(X̂)) (1.100)

+ fh1
µν(X̂)h1

σρ(X̂)h1
αβ(X̂) (1.101)

G = L0 =
1

2
(H +K) ∝ p2 +

g

x2
+ x2 (1.102)

τ = tan−1 t− tan−1 t0 (1.103)

H (1.104)

t (1.105)

5

where a is a constant with dimension of length, we find from (2.1.23)-(2.1.25) the

explicit representation of the so(1, 2) algebra

[Ti, Tj] = i✏ijkT
k (2.1.38)

where ✏ijk is a three-index anti-symmetric tensor with ✏
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= 1 and gij = diag(1,�1,�1).
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Recall that in the representation theory the Casimir invariants play an important
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2.2 Spectrum

It is known that the quantum formalism based on the Hamiltonian H is awkward to

describe the conformal quantum mechanics. The spectrum of H is continuous due to
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Using the above solution (2.3.11) one finds 2-point function [54]
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Now we want to consider the E space. The eigenstate |Ei is defined by

H|Ei = E|Ei (2.3.16)
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Now we want to consider the E space. The eigenstate |Ei is defined by

H|Ei = E|Ei (2.3.16)
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According to the additional term �⇡g, the result is slightly modified from a simple

harmonic oscillator. This corresponds to the fact that the L
0

-ground state of the

DFF-model is raised by the increase of the coupling constant g as in (2.2.28). As seen

form Figure 2.5, the volume of the phase space with “the energy” below L
0

decrease

with increase in the coupling constant g and the deformation parameter a. Therefore

qualitatively g keeps a particle away from the origin whereas a sucks it into the origin.

These features are in accord with the behavior of the wavefunction  
0

(x) of the ground

state given in (2.2.37) (see also Figure 2.4).

In quantum mechanics the L
0

-spectrum is the discrete value given in (2.2.26). By

summing over the spectrum one obtains the partition function
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2.3 Time evolution

So far the DFF-model (2.1.2) has been studied in the x space, i.e. the stationary

problem at t = 0. Now let us consider the state |ti which is characterized by the time

t. Let us define the time-dependent function
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on which the action of the Hamiltonian is realized with the time derivative
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The expression (2.3.12) indicates that the 2-point function is the value of two operators

whose e↵ective dimensions are r
0

. Note that the 2-point function satisfies the set of
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Now we want to consider the E space. The eigenstate |Ei is defined by

H|Ei = E|Ei (2.3.16)
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Explicit construction of 
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The expression (2.3.12) indicates that the 2-point function is the value of two operators

whose e↵ective dimensions are r
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Now we want to consider the E space. The eigenstate |Ei is defined by

H|Ei = E|Ei (2.3.16)
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operator is not primary & state is not conformal inv.



III. No-Lagrangian
Approach for CQM



Reconsider the original situation in DFF-model

The situation may not be essentially problem !

I. The energy spectrum is continuous
II. The vacuum state is non-normalizable

They rather indicate that 
the quantization needs subtle treatment due to 

the constraints on canonical variables
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It follows from (3.8) that the scaling dimension d of the vacuum is fixed by the Casimir

C2

d =
1±

√
1 + 4C2
2

. (3.9)

Alternatively, the Casimir is expressed as

C2 = d(d− 1). (3.10)

Let us act K on the vacuum and define

|Ω′′⟩ := K|Ω⟩. (3.11)

From the sl(2,R) algebra (2.16) and the diagonalization (3.5) we see that it satisfies

the relations

H|Ω′′⟩ = −2d|Ω⟩, (3.12)

D|Ω′′⟩ = i(d+ 1)|Ω′′⟩. (3.13)

(3.13) means thatK increases the eigenvalue of |Ω⟩ forD by i. For a further application

of K on the vacuum we find

D
(

K2|Ω⟩
)

= i(d+ 2)
(

K2|Ω⟩.
)

(3.14)

This implies that K2 increases the eigenvalue of |Ω⟩ for D by 2i.

As a simple example, let us consider the DFF-model [13] whose action is given by

S =
1

2

∫

dt
(

ẋ2 −
g

x2

)

(3.15)

where g is a dimensionless coupling constant parameter. The action (3.15) is invariant

under the conformal transformations (2.14) and δx = x/(ct + d). Using the Noether

method, one can deduce the conformal generators

H =
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2
+
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2x2
, D = −
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4
{x, p}, K =

1

2
x2 (3.16)

and the Casimir operator

C2 = d(d− 1) =
g

4
−

3

16
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Therefore if the vacuum state exists in the DFF-model, the coupling constant g deter-

mines the scaling dimension of the vacuum
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4

2
. (3.18)

For example, the Heisenberg picture vacuum is realized when g = 3
4 .
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The old issues in CQM could be due to an inappropriate quantization manner 
which naively assume that  all variables in Lagrangian are physical variables.
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Vacuum State Primary Operators

Here we will skip the issue on Lagrangian CQM, 
but address the Non-Lagrangian CQM as follows

of the vacuum

−1 ≤ ∆ ≤ −2d, (5.18)

−
1

2
≤ d ≤

1

2
. (5.19)

Similarly we can extract further constraints by rewriting (5.15) as

⟨O∆|KH + iD −D2|O∆⟩ = ⟨O∆|KH|O∆⟩+ (d+∆)(d+∆− 1). (5.20)

Since ⟨O∆|KH|O∆⟩ = |H|O∆⟩|2 is positive definite, we get a condition

∆(∆ + 2d− 1) ≤ 0, (5.21)

which gives the additional constraint

0 ≤ ∆ ≤ −2d+ 1. (5.22)

The result is depicted in Figure 2. The primary operators and the vacuum states

can exist in the orange region. As a consequence, the allowed range of the scaling

dimensions of the physical states |O∆⟩ which are constructed in terms of the vacua

and the primary operators is

−
1

2
≤ d+∆ ≤

1

2
. (5.23)

It supports the existence of the bosonic scalar with scaling dimension −1
2 , the fermion

with the scaling dimension 0 and the bosonic auxiliary field with scaling dimension 1
2 in

conformal quantum mechanics, as argued and constructed in the Lagrangian theory. If

we relax the condition (5.19) for the favored energy eigenstates |E⟩ under the unitary
evolution, which is examined by the D-function, the states are allowed in the green

region.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (5.12) and the primary operator (5.11). Let Q be the

corresponding charge operator that obeys

QO∆ = qO∆, (5.24)

Q|Ω⟩ = 0, (5.25)

[H,Q] = 0, (5.26)

[D,Q] = iδQQ (5.27)

with q ∈ R. (5.24) and (5.25) assign the charges such that the primary operator O∆

has charge q whereas the vacuum state has no charge. (5.26) implies that the charge
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under the finite transformation (2.14).

We will formulate conformal quantum mechanics in terms of the primary operators

O∆(t) acting on the vacuum state |Ω⟩. We assume that each state in the Hilbert space

is represented by

|state⟩ = F (G)|O∆1
(t1) · · ·O∆n

(tn)⟩ (5.12)

where

|O∆1
(t1) · · ·O∆n

(tn)⟩ = O∆1
(t1) · · ·O∆n

(tn)|Ω⟩ (5.13)

with F (G) being some function of G = uH + vD + wK. Let us examine the expec-

tation values ⟨stateA|stateB⟩ constructed as overlaps of the two states |stateA⟩ and

|stateB⟩ with the form of (5.12) in the Hilbert space. In this work we will explore the

expectation value involving the time-independent primary operators O∆ := O∆(0) and

take the conventional choice of the overall constant one which fixes the normalization

of O∆ as

⟨O∆|O∆⟩ = 1. (5.14)

Now we would like to extract constraints on the description of the unitary evolution

for a certain physical system. To achieve this, one needs to fix its time coordinate t and

construct all the physical states in such a way that they fall into the representations

of the sl(2,R) conformal algebra specified by the vacuum with the eigenvalue of the

Casimir invariant C2, i.e. the scaling dimension d. Given the normalized primary

operators (5.14), this corresponds to the condition

⟨O∆|C2|O∆⟩ = C2 = d(d− 1), (5.15)

which ensures the unitary evolution of the states by fixing the eigenvalue of the Casimir

invariant. Alternatively, we can write the expectation value (5.15) as

⟨O∆|HK − iD −D2|O∆⟩ = ⟨O∆|HK|O∆⟩+ (d+∆)(d+∆ + 1). (5.16)

Unitarity implies the positivity of the inner product in the Hilbert space. Demanding

that ⟨O∆|HK|O∆⟩ = |K|O∆⟩|2 is positive definite and combining (5.15) with (5.16),

we find a condition

(∆+ 2d)(∆+ 1) ≤ 0. (5.17)

Together with the preferred range (4.22) under the unitary evolution probed by the

D-function, we obtain the bounds on scaling dimension of the primary operator and
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Introduce 2 ingredients which stem from conformal symmetry

Construct physical states as

Step1

Step2



Vacuum state

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d ≤ 1

2
(0.2)

−1

2
≤ d+∆ ≤ 1

2
(0.3)

0 ≥ d ≥ −1

2
(0.4)

0 ≤ ∆ ≤ 1 (0.5)

0 ≥ δQ > 0 (0.6)

(0.7)

|Ω⟩ (0.8)

(0.9)

1

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d ≤ 1

2
(0.2)

−1

2
≤ d+∆ ≤ 1

2
(0.3)

0 ≥ d ≥ −1

2
(0.4)

0 ≤ ∆ ≤ 1 (0.5)

0 ≥ δQ > 0 (0.6)

(0.7)

x > 0 (0.8)

|Ω⟩ (0.9)

[x, p] = i (0.10)

H|Ω⟩ = 0 (0.11)

1

Due to the constraints, vacuum is not generically physical state, 
but rather the reference state 

Def

Hilbert space

D(E) := i⟨E|D|E⟩ (0.1)
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2
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2
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2
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2
(0.3)

0 ≥ d ≥ −1

2
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0 ≤ ∆ ≤ 1 (0.5)
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x > 0 (0.8)

|Ω⟩ (0.9)

[x, p] = i (0.10)

H|Ω⟩ = 0 (0.11)

⟨Ω|Ω⟩ = 1 (0.12)

|Ω⟩ ̸∈ H (0.13)

|Ω⟩ ∈ sl(2,R⟩ (0.14)

⟨bra| : (0.15)

|ket⟩ (→ C (0.16)

(0.17)

1



D(E) := i⟨E|D|E⟩ (0.1)
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≤ d ≤ 1
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0 ≥ d ≥ −1
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[x, p] = i (0.10)

H|Ω⟩ = 0 (0.11)

⟨Ω|Ω⟩ = 1 (0.12)

(0.13)

1

We take the normalization

Bra (dual states)

D(E) := i⟨E|D|E⟩ (0.1)
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Ω⟩ ̸∈ H (0.13)

⟨bra| : (0.14)

|ket⟩ (→ C (0.15)
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D(E) := i⟨E|D|E⟩ (0.1)
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⟨Ω|Ω⟩ = 1 (0.12)

Ω⟩ ̸∈ H (0.13)

⟨bra| : (0.14)

|ket⟩ (→ C (0.15)

(0.16)

1

D(E) := i⟨E|D|E⟩ (0.1)
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⟨bra| : (0.15)

|ket⟩ (→ C (0.16)

C2 = KH + iD −D2 (0.17)

(0.18)

1

Casimir operator

D(E) := i⟨E|D|E⟩ (0.1)
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⟨bra| : (0.15)

|ket⟩ (→ C (0.16)

C2 = KH + iD −D2 (0.17)

⟨bra|K ⇔ H|ket⟩ (0.18)

⟨bra|D ⇔ D|ket⟩ (0.19)

⟨bra| ⇔ D|ket⟩ (0.20)

(0.21)

1
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SL(2,R) (0.16)

|ket⟩ (→ C (0.17)

C2 = KH + iD −D2 (0.18)

⟨bra|K ⇔ H|ket⟩ (0.19)

⟨bra|D ⇔ D|ket⟩ (0.20)

⟨bra| ⇔ D|ket⟩ (0.21)

(0.22)
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D(E) := i⟨E|D|E⟩ (0.1)
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|Ω⟩ ∈ sl(2,R⟩ (0.14)
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SL(2,R) (0.16)

|ket⟩ (→ C (0.17)
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⟨bra| ⇔ D|ket⟩ (0.21)

(0.22)

1

D(E) := i⟨E|D|E⟩ (0.1)
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≤ d ≤ 1
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0 ≥ d ≥ −1
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|ket⟩ (→ C (0.17)
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⟨bra|D ⇔ D|ket⟩ (0.20)

⟨bra| ⇔ D|ket⟩ (0.21)

(0.22)

1

imposes constraints on construction of bra

Þ No ! 

Def

non-normalizable
vacuum ?

such vacuum is generically not physical state, 
it cannot be written as wfn of physical obserbables as in DFF.



D(E) := i⟨E|D|E⟩ (0.1)
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D|Ω⟩ = id|Ω⟩ (0.22)

⟨Ω|D|Ω⟩ = id (0.23)

(0.24)

1

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d ≤ 1

2
(0.2)

−1

2
≤ d+∆ ≤ 1

2
(0.3)

0 ≥ d ≥ −1

2
(0.4)

0 ≤ ∆ ≤ 1 (0.5)

0 ≥ δQ > 0 (0.6)

(0.7)

x > 0 (0.8)

|Ω⟩ (0.9)

[x, p] = i (0.10)

H|Ω⟩ = 0 (0.11)

⟨Ω|Ω⟩ = 1 (0.12)

|Ω⟩ ̸∈ H (0.13)

|Ω⟩ ∈ sl(2,R⟩ (0.14)

⟨bra| : (0.15)

SL(2,R) (0.16)

|ket⟩ (→ C (0.17)

C2 = KH + iD −D2 (0.18)

⟨bra|K ⇔ H|ket⟩ (0.19)

⟨bra|D ⇔ D|ket⟩ (0.20)

⟨bra| ⇔ D|ket⟩ (0.21)

D|Ω⟩ = id|Ω⟩ (0.22)

⟨Ω|D|Ω⟩ = id (0.23)

(0.24)

1

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d ≤ 1

2
(0.2)

−1

2
≤ d+∆ ≤ 1

2
(0.3)

0 ≥ d ≥ −1

2
(0.4)

0 ≤ ∆ ≤ 1 (0.5)

0 ≥ δQ > 0 (0.6)

(0.7)

x > 0 (0.8)

|Ω⟩ (0.9)

[x, p] = i (0.10)

H|Ω⟩ = 0 (0.11)

⟨Ω|Ω⟩ = 1 (0.12)

|Ω⟩ ̸∈ H (0.13)

|Ω⟩ ∈ sl(2,R⟩ (0.14)

⟨bra| : (0.15)

SL(2,R) (0.16)

|ket⟩ (→ C (0.17)

C2 = KH + iD −D2 (0.18)

⟨bra|K ⇔ H|ket⟩ (0.19)

⟨bra|D ⇔ D|ket⟩ (0.20)

⟨bra| ⇔ D|ket⟩ (0.21)

D|Ω⟩ = id|Ω⟩ (0.22)

⟨Ω|D|Ω⟩ = id (0.23)

C2 = d(d− 1) (0.24)

1

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d ≤ 1

2
(0.2)

−1

2
≤ d+∆ ≤ 1

2
(0.3)

0 ≥ d ≥ −1

2
(0.4)

0 ≤ ∆ ≤ 1 (0.5)

0 ≥ δQ > 0 (0.6)

(0.7)

x > 0 (0.8)

|Ω⟩ (0.9)

[x, p] = i (0.10)

H|Ω⟩ = 0 (0.11)

⟨Ω|Ω⟩ = 1 (0.12)

|Ω⟩ ̸∈ H (0.13)

|Ω⟩ ∈ sl(2,R⟩ (0.14)

⟨bra| : (0.15)

SL(2,R) (0.16)

|ket⟩ (→ C (0.17)

C2 = KH + iD −D2 (0.18)

⟨bra|K ⇔ H|ket⟩ (0.19)

⟨bra|D ⇔ D|ket⟩ (0.20)

⟨bra| ⇔ D|ket⟩ (0.21)

D|Ω⟩ = id|Ω⟩ (0.22)

⟨Ω|D2|Ω⟩ = −(d+ C2) = −d2 (0.23)

⟨Ω|D|Ω⟩ = id (0.24)

C2 = d(d− 1) (0.25)

1

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d ≤ 1

2
(0.2)

−1

2
≤ d+∆ ≤ 1

2
(0.3)

0 ≥ d ≥ −1

2
(0.4)

0 ≤ ∆ ≤ 1 (0.5)

0 ≥ δQ > 0 (0.6)

(0.7)

x > 0 (0.8)

|Ω⟩ (0.9)

[x, p] = i (0.10)

H|Ω⟩ = 0 (0.11)

⟨Ω|Ω⟩ = 1 (0.12)

|Ω⟩ ̸∈ H (0.13)

|Ω⟩ ∈ sl(2,R⟩ (0.14)

⟨bra| : (0.15)

SL(2,R) (0.16)

|ket⟩ (→ C (0.17)

C2 = KH + iD −D2 (0.18)

⟨bra|K ⇔ H|ket⟩ (0.19)

⟨bra|D ⇔ D|ket⟩ (0.20)

⟨bra| ⇔ D|ket⟩ (0.21)

D|Ω⟩ = id|Ω⟩ (0.22)

⟨Ω|D2|Ω⟩ = −(d+ C2) = −d2 (0.23)

⟨Ω|D|Ω⟩ = id (0.24)

C2 = d(d− 1)d ∈ R (0.25)

1

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d ≤ 1

2
(0.2)

−1

2
≤ d+∆ ≤ 1

2
(0.3)

0 ≥ d ≥ −1

2
(0.4)

0 ≤ ∆ ≤ 1 (0.5)

0 ≥ δQ > 0 (0.6)

(0.7)

x > 0 (0.8)

|Ω⟩ (0.9)

[x, p] = i (0.10)

H|Ω⟩ = 0 (0.11)

⟨Ω|Ω⟩ = 1 (0.12)

|Ω⟩ ̸∈ H (0.13)

|Ω⟩ ∈ sl(2,R⟩ (0.14)

⟨bra| : (0.15)

SL(2,R) (0.16)

|ket⟩ (→ C (0.17)

C2 = KH + iD −D2 (0.18)

⟨bra|K ⇔ H|ket⟩ (0.19)

⟨bra|D ⇔ D|ket⟩ (0.20)

⟨bra| ⇔ D|ket⟩ (0.21)

D|Ω⟩ = id|Ω⟩ (0.22)

⟨Ω|D2|Ω⟩ = −(d+ C2) = −d2 (0.23)

⟨Ω|D|Ω⟩ = id (0.24)

C2 = d(d− 1) (0.25)

d ∈ R (0.26)

D(Kn|Ω⟩) = i(d+ n)K|Ω⟩ (0.27)

1

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d ≤ 1

2
(0.2)

−1

2
≤ d+∆ ≤ 1

2
(0.3)

0 ≥ d ≥ −1

2
(0.4)

0 ≤ ∆ ≤ 1 (0.5)

0 ≥ δQ > 0 (0.6)

(0.7)

x > 0 (0.8)

|Ω⟩ (0.9)

[x, p] = i (0.10)

H|Ω⟩ = 0 (0.11)

⟨Ω|Ω⟩ = 1 (0.12)

|Ω⟩ ̸∈ H (0.13)

|Ω⟩ ∈ sl(2,R⟩ (0.14)

⟨bra| : (0.15)

SL(2,R) (0.16)

|ket⟩ (→ C (0.17)

C2 = KH + iD −D2 (0.18)

⟨bra|K ⇔ H|ket⟩ (0.19)

⟨bra|D ⇔ D|ket⟩ (0.20)

⟨bra| ⇔ D|ket⟩ (0.21)

D|Ω⟩ = id|Ω⟩ (0.22)

⟨Ω|D2|Ω⟩ = −(d+ C2) = −d2 (0.23)

⟨Ω|D|Ω⟩ = id (0.24)

C2 = d(d− 1) (0.25)

d ∈ R (0.26)
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1

Casimir characterizes the scaling dimension of vacuum of CQM !

scaling dimension of vacuum

※ Conformal boost increases by 1

of the vacuum

−1 ≤ ∆ ≤ −2d, (5.18)

−
1

2
≤ d ≤

1

2
. (5.19)

Similarly we can extract further constraints by rewriting (5.15) as

⟨O∆|KH + iD −D2|O∆⟩ = ⟨O∆|KH|O∆⟩+ (d+∆)(d+∆− 1). (5.20)

Since ⟨O∆|KH|O∆⟩ = |H|O∆⟩|2 is positive definite, we get a condition

∆(∆ + 2d− 1) ≤ 0, (5.21)

which gives the additional constraint

0 ≤ ∆ ≤ −2d+ 1. (5.22)

The result is depicted in Figure 2. The primary operators and the vacuum states

can exist in the orange region. As a consequence, the allowed range of the scaling

dimensions of the physical states |O∆⟩ which are constructed in terms of the vacua

and the primary operators is

−
1

2
≤ d+∆ ≤

1

2
. (5.23)

It supports the existence of the bosonic scalar with scaling dimension −1
2 , the fermion

with the scaling dimension 0 and the bosonic auxiliary field with scaling dimension 1
2 in

conformal quantum mechanics, as argued and constructed in the Lagrangian theory. If

we relax the condition (5.19) for the favored energy eigenstates |E⟩ under the unitary
evolution, which is examined by the D-function, the states are allowed in the green

region.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (5.12) and the primary operator (5.11). Let Q be the

corresponding charge operator that obeys

QO∆ = qO∆, (5.24)

Q|Ω⟩ = 0, (5.25)

[H,Q] = 0, (5.26)

[D,Q] = iδQQ (5.27)

with q ∈ R. (5.24) and (5.25) assign the charges such that the primary operator O∆

has charge q whereas the vacuum state has no charge. (5.26) implies that the charge
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The energy eigenstates in CQM generally have continuous spectrum.

1

H|E⟩ = E|E⟩ (1.1)

C2 = 0 (1.2)

C2 ̸= 0 (1.3)

x → x′ (1.4)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.5)

H(eiαD|E⟩) = e−αE(eiαD|E⟩) (1.6)

x
′µ = xµ + aµ (1.7)

x
′µ = αxµ (1.8)

x
′µ = Mµ

νx
ν (1.9)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.10)

d =
1±

√
1 + 4C2
2

|Ω⟩ ∝ td| ⟩ (1.11)

D|Ω⟩ = id|Ω⟩ (1.12)

xµ → xµ + ϵµ (1.13)

gµν → gµν − (∂µϵν + ∂νϵµ) (1.14)

∂µϵν + ∂νϵµ = f(x)gµν (1.15)

〈
O1(x1) · · · On(xn)

〉
(1.16)

1

Energy eigenstate

d =
1±

√
1 + 4C2
2

(0.28)

=
1±

√
g + 1

4

2
(0.29)

S =
1

2

∫
dt

(
ẋ2 − g

x2

)
(0.30)

(0.31)

H|E⟩ = E|E⟩ (0.32)

2

However, again we do not identify generic energy eigenstates 
with the physical states ! 

Dilatation operator makes such energy eigenstate.

We have to project out non-physical states from 

4 D-function

Consider an energy eigenstate |E⟩

H|E⟩ = E|E⟩ (4.1)

with energy eigenvalue E ∈ R. Taking into account the hermiticity of the Hamiltonian

H and the expression (2.17) of the Casimir operator we can take the corresponding

bra for the state (4.1) as

⟨E|K = ⟨E|E (4.2)

where ⟨E| is the dual bra of the energy eigenstate |E⟩. Let us apply D and K to the

energy eigenstate and define

|E ′⟩ := D|E⟩, |E ′′⟩ := K|E⟩. (4.3)

Then we have

H|E ′⟩ = E|E ′⟩+ iE|E⟩, (4.4)

H|E ′′⟩ = E|E ′′⟩+ 2i|E ′⟩. (4.5)

From (4.4) the state |E ′⟩ is not the energy eigenstate due to the term iE|E⟩. The

energy eigenstate |E⟩ is unchanged under the scale transformation generated by D

only when |E⟩ is the vacuum state |Ω⟩ 5.

Similarly according to (4.5), |E ′′⟩ is not the energy eigenstate because of the term

2i|E ′⟩. The energy eigenstate can be realized under the conformal boost generated by

K as the energy eigenstate only when |E ′⟩ vanishes, i.e. d = 0 and E = 0. In this

case (4.5) requires that |E ′′⟩ is the vacuum state. Then (4.3) implies that |E ′′⟩ is the
eigenstate of K

K|Ω⟩ = k|Ω⟩ (4.6)

with eigenvalue k. Therefore only the vacuum state obeying (4.6) and

H|Ω⟩ = D|Ω⟩ = 0 (4.7)

keeps the same energy eigenvalue under the conformal transformations. In particular

the conformally invariant vacuum is realized only when the vacuum satisfies

H|Ω⟩ = D|Ω⟩ = K|Ω⟩ = 0. (4.8)

5This fact was also pointed out in Appendix C of [16].
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Q. How can we construct CQM by 
imposing physical requirement?

Thus far we have no physical input. 
We have just viewed the SL(2,R) as conformal symmetry 

and introduced reference states for CQM.

unitary evolution of energy eigenstates

4 D-function

Consider an energy eigenstate |E⟩

H|E⟩ = E|E⟩ (4.1)

with energy eigenvalue E ∈ R. Taking into account the hermiticity of the Hamiltonian

H and the expression (2.17) of the Casimir operator we can take the corresponding

bra for the state (4.1) as

⟨E|K = ⟨E|E (4.2)

where ⟨E| is the dual bra of the energy eigenstate |E⟩. Let us apply D and K to the

energy eigenstate and define

|E ′⟩ := D|E⟩, |E ′′⟩ := K|E⟩. (4.3)

Then we have

H|E ′⟩ = E|E ′⟩+ iE|E⟩, (4.4)

H|E ′′⟩ = E|E ′′⟩+ 2i|E ′⟩. (4.5)

From (4.4) the state |E ′⟩ is not the energy eigenstate due to the term iE|E⟩. The

energy eigenstate |E⟩ is unchanged under the scale transformation generated by D

only when |E⟩ is the vacuum state |Ω⟩ 5.

Similarly according to (4.5), |E ′′⟩ is not the energy eigenstate because of the term

2i|E ′⟩. The energy eigenstate can be realized under the conformal boost generated by

K as the energy eigenstate only when |E ′⟩ vanishes, i.e. d = 0 and E = 0. In this

case (4.5) requires that |E ′′⟩ is the vacuum state. Then (4.3) implies that |E ′′⟩ is the
eigenstate of K

K|Ω⟩ = k|Ω⟩ (4.6)

with eigenvalue k. Therefore only the vacuum state obeying (4.6) and

H|Ω⟩ = D|Ω⟩ = 0 (4.7)

keeps the same energy eigenvalue under the conformal transformations. In particular

the conformally invariant vacuum is realized only when the vacuum satisfies

H|Ω⟩ = D|Ω⟩ = K|Ω⟩ = 0. (4.8)

5This fact was also pointed out in Appendix C of [16].
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D-function

completeness of 

1

C2 ≤
1

4
(1.1)

D(E) =
1 +

√
1− 4C2 + 4E2

2
(1.2)

⟨D⟩ (1.3)

H|E⟩ = E|E⟩ (1.4)

gµν → e2αgµν (1.5)

d

dα
logZ[S2k] =

V2k

V2k−1
r2k⟨T µ

µ⟩ (1.6)

C2 = 0 (1.7)

C2 ̸= 0 (1.8)
∫

S2k

⟨T µ
µ⟩ (1.9)

g (1.10)

E (1.11)

x → x′ (1.12)

gµν(x) → g′µν(x
′) = Ω(x)g(x) (1.13)

H(eiαD|E⟩) = e−αE(eiαD|E⟩) (1.14)

x
′µ = xµ + aµ (1.15)

x
′µ = αxµ (1.16)

x
′µ = Mµ

νx
ν (1.17)

x
′µ =

xµ − bµx2

1− 2 · x+ b2x2
(1.18)

d =
1±

√
1 + 4C2
2

|Ω⟩ ∝ td| ⟩ (1.19)

D|Ω⟩ = id|Ω⟩ (1.20)

1

Define

In this case the vacuum state admits the Heisenberg picture in which the state has no

time dependence.

Employing the Baker-Campbell-Hausdorff formula, we find that

eHDe−H = D + iH, eHKe−H = K + 2iD −H, (4.9)

eaDHe−aD = e−iaH, eaDKe−aD = eiaK. (4.10)

Using the relation (4.10), one can show that

H
(

eiαD|E⟩
)

= e−αE
(

eiαD|E⟩
)

. (4.11)

Taking α as a continuous parameter, the energy spectrum can be continuous. Hence

the continuous energy spectrum is a universal feature in conformal quantum mechanics.

However, such undesirable feature can be cured by selecting the observables out of the

canonical operators. Thus it does not conclude that one should discard the system

with time coordinate t as the physical system.

Now consider a matrix element

D(E) :=
1

i
⟨E|D|E⟩. (4.12)

This describes the quantum scaling dimension of the energy eigenstate |E⟩ and it is

a real function of the energy eigenvalue E. The overall factor in (4.12) eliminates the

imaginary unit due to the anti-hermiticity of the dilatation generator D.

We assume that the energy eigenstate |E⟩ forms a complete orthonormal set 6

1 =

∫

dE|E⟩⟨E|, ⟨E1|E2⟩ = δ(E1 −E2). (4.14)

Making use of (2.17), (4.1), (4.2) and (4.14), we find the quadratic equation

D(E)2 −D(E)− (C2 −E2) = 0, (4.15)

whose solution is given by

D(E) =
1±

√

1 + 4(C2 − E2)

2
. (4.16)

6In [17], for the DFF-model the energy eigenstates |E⟩ with these properties are actually con-

structed from the proposed state |t⟩ by the Fourier transform

|E⟩ = 2r0E
1

2
−r0

∫

∞

−∞

dt

2π
e−iEt|t⟩. (4.13)

The author thanks R. Jackiw for pointing out this point.
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quantum scaling dimension of 

4 D-function

Consider an energy eigenstate |E⟩

H|E⟩ = E|E⟩ (4.1)

with energy eigenvalue E ∈ R. Taking into account the hermiticity of the Hamiltonian

H and the expression (2.17) of the Casimir operator we can take the corresponding

bra for the state (4.1) as

⟨E|K = ⟨E|E (4.2)

where ⟨E| is the dual bra of the energy eigenstate |E⟩. Let us apply D and K to the

energy eigenstate and define

|E ′⟩ := D|E⟩, |E ′′⟩ := K|E⟩. (4.3)

Then we have

H|E ′⟩ = E|E ′⟩+ iE|E⟩, (4.4)

H|E ′′⟩ = E|E ′′⟩+ 2i|E ′⟩. (4.5)

From (4.4) the state |E ′⟩ is not the energy eigenstate due to the term iE|E⟩. The

energy eigenstate |E⟩ is unchanged under the scale transformation generated by D

only when |E⟩ is the vacuum state |Ω⟩ 5.

Similarly according to (4.5), |E ′′⟩ is not the energy eigenstate because of the term

2i|E ′⟩. The energy eigenstate can be realized under the conformal boost generated by

K as the energy eigenstate only when |E ′⟩ vanishes, i.e. d = 0 and E = 0. In this

case (4.5) requires that |E ′′⟩ is the vacuum state. Then (4.3) implies that |E ′′⟩ is the
eigenstate of K

K|Ω⟩ = k|Ω⟩ (4.6)

with eigenvalue k. Therefore only the vacuum state obeying (4.6) and

H|Ω⟩ = D|Ω⟩ = 0 (4.7)

keeps the same energy eigenvalue under the conformal transformations. In particular

the conformally invariant vacuum is realized only when the vacuum satisfies

H|Ω⟩ = D|Ω⟩ = K|Ω⟩ = 0. (4.8)

5This fact was also pointed out in Appendix C of [16].
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Unitarity of the evolution operator for
can be realized when as
for a choice of negative sign 
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, C2 −
3

4

D(E) =

d

1 + 4(C2 C2 +
1

4
− E2)

≤
1

2
.

−

1

2
,

Figure 1: The D-function. It is defined in the range 0 ≤ E2 ≤ C2 + 1
4 and decreasing

monotonically from the UV to the IR.

the energy squared is bounded above and below; 0 ≤ E2 ≤ C2 + 1
4 . Correspondingly,

D(E) is also bounded above and below

d ≤ D(E) ≤
1

2
(4.22)

where d is the scaling dimension (3.9) of the vacuum state. The normalizability of the

energy eigenstate under the evolution operator can be kept when E2 = C2.
To summarize, if conformal quantum mechanics dual to the AdS2 has the vacuum

|Ω⟩ and a complete orthonormal set of energy eigenstates |E⟩ with the averaged scaling

dimension (4.17), the energy eigenstate will realize well-behaved unitary evolution at

E2 = C2 for −1
4 < C2 < 3

4 .

Here we would like to argue the physical implications of the D-function. It involves

two important physical quantities, scaling dimension and energy. In quantum field

theory change of scale is described by the RG transformation and the number of

degrees of freedom in a physical system decreases along the RG flows from high energy

to lower energy. In CFT2 this can be quantitatively measured by defining a c-function

[4] which has the following properties:

1. It is a real function of coupling constant g and energy scale E which is defined

on the space of theories.

2. It monotonically decreases along the RG flow.

3. It is stationary at the RG fixed point where its value equals the crucial parameter

in the CFT.

13

d =
1±

√
1 + 4C2
2

(0.28)

=
1±

√
g + 1

4

2
(0.29)

S =
1

2

∫
dt

(
ẋ2 − g

x2

)
(0.30)

(0.31)

H|E⟩ = E|E⟩ (0.32)

eiαD|E⟩V (x) =
1

x2
(0.33)

|E⟩ ∼ tD(E)=0 (0.34)

(0.35)

2

To make all predictions in quantum mechanics work correctly, we shall associate

some energy eigenstate |E⟩ of the energy E with the unitary group to describe time

evolution, i.e. the unitary evolution. However, as the quantity D(E) measures the

averaged scaling dimension of the energy eigenstate |E⟩, the energy eigenstate |E⟩
would behave as tD(E). So it is preferable to have D(E) = 0. To achieve this, we will

need to take the minus sign in (4.16) and we have

D(E) =
1−

√

1 + 4(C2 − E2)

2
, (4.17)

which we will call a D-function.

Now let us make a connection to the AdS/CFT correspondence. It tells [18, 19]

that the bulk mass m of a scalar field in AdS2 space is related to the dimension ∆m
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m =
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1 + 4m2
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For 3
4 < m2 only the boundary conditions with ∆+
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[20, 21, 22] as z∆
+
m near z = 0 for a free scalar of mass m in the AdS2 space whose

metric is given by

ds2 =
1

z2
(dz2 + dt2). (4.20)

Since (4.17) corresponds to∆−
m, it is unlikely that the dual conformal quantum mechan-

ics appears when 3
4 < m2. Meanwhile there can be two possible boundary conditions

with ∆+
m and ∆−

m when [20, 21, 22]
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< m2 <

3
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where the lower bound is the Breitenlohner-Freedman bound 7. Comparing (4.16) with

(4.19) for ∆−
m, the mass range leads to E2 − 1

4 ≤ C2 ≤ E2 + 3
4 . The existence of the

vacuum state requires that the Casimir is bounded above and below; −1
4 ≤ C2 ≤ 3

4 and

that the scaling dimension d of the vacuum has a bound −1
2 ≤ d ≤ 1

2 . The resulting

function (4.17) is shown in Figure 1. As the energy eigenvalue E takes real values,

7It has been discussed [23] that an electric field E in AdS2 can shift the Breitenlohner-Freedman

bound − 1
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not consider such effect in this work.
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To make all predictions in quantum mechanics work correctly, we shall associate

some energy eigenstate |E⟩ of the energy E with the unitary group to describe time

evolution, i.e. the unitary evolution. However, as the quantity D(E) measures the

averaged scaling dimension of the energy eigenstate |E⟩, the energy eigenstate |E⟩
would behave as tD(E). So it is preferable to have D(E) = 0. To achieve this, we will

need to take the minus sign in (4.16) and we have

D(E) =
1−

√

1 + 4(C2 − E2)

2
, (4.17)

which we will call a D-function.

Now let us make a connection to the AdS/CFT correspondence. It tells [18, 19]

that the bulk mass m of a scalar field in AdS2 space is related to the dimension ∆m

of the corresponding operator on the boundary as

∆m(∆m − 1) = m2 (4.18)

and there are two solutions

∆±

m =
1±

√
1 + 4m2

2
. (4.19)

For 3
4 < m2 only the boundary conditions with ∆+

m lead to the normalizable solution

[20, 21, 22] as z∆
+
m near z = 0 for a free scalar of mass m in the AdS2 space whose

metric is given by

ds2 =
1

z2
(dz2 + dt2). (4.20)

Since (4.17) corresponds to∆−
m, it is unlikely that the dual conformal quantum mechan-

ics appears when 3
4 < m2. Meanwhile there can be two possible boundary conditions

with ∆+
m and ∆−

m when [20, 21, 22]

−
1

4
< m2 <

3

4
(4.21)

where the lower bound is the Breitenlohner-Freedman bound 7. Comparing (4.16) with

(4.19) for ∆−
m, the mass range leads to E2 − 1

4 ≤ C2 ≤ E2 + 3
4 . The existence of the

vacuum state requires that the Casimir is bounded above and below; −1
4 ≤ C2 ≤ 3

4 and

that the scaling dimension d of the vacuum has a bound −1
2 ≤ d ≤ 1

2 . The resulting

function (4.17) is shown in Figure 1. As the energy eigenvalue E takes real values,

7It has been discussed [23] that an electric field E in AdS2 can shift the Breitenlohner-Freedman

bound − 1

4
< m2 to − 1

4
+ E2 ≤ m2 due to the pair production of the Schwinger effect. But we will

not consider such effect in this work.
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where the lower bound is the Breitenlohner-Freedman bound 7. Comparing (4.16) with

(4.19) for ∆−
m, the mass range leads to E2 − 1

4 ≤ C2 ≤ E2 + 3
4 . The existence of the

vacuum state requires that the Casimir is bounded above and below; −1
4 ≤ C2 ≤ 3

4 and

that the scaling dimension d of the vacuum has a bound −1
2 ≤ d ≤ 1

2 . The resulting

function (4.17) is shown in Figure 1. As the energy eigenvalue E takes real values,

7It has been discussed [23] that an electric field E in AdS2 can shift the Breitenlohner-Freedman

bound − 1

4
< m2 to − 1

4
+ E2 ≤ m2 due to the pair production of the Schwinger effect. But we will

not consider such effect in this work.
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In this case the vacuum state admits the Heisenberg picture in which the state has no

time dependence.

Employing the Baker-Campbell-Hausdorff formula, we find that

eHDe−H = D + iH, eHKe−H = K + 2iD −H, (4.9)

eaDHe−aD = e−iaH, eaDKe−aD = eiaK. (4.10)

Using the relation (4.10), one can show that

H
(

eiαD|E⟩
)

= e−αE
(

eiαD|E⟩
)

. (4.11)

Taking α as a continuous parameter, the energy spectrum can be continuous. Hence

the continuous energy spectrum is a universal feature in conformal quantum mechanics.

However, such undesirable feature can be cured by selecting the observables out of the

canonical operators. Thus it does not conclude that one should discard the system

with time coordinate t as the physical system.

Now consider a matrix element

D(E) :=
1

i
⟨E|D|E⟩. (4.12)

This describes the quantum scaling dimension of the energy eigenstate |E⟩ and it is

a real function of the energy eigenvalue E. The overall factor in (4.12) eliminates the

imaginary unit due to the anti-hermiticity of the dilatation generator D.

We assume that the energy eigenstate |E⟩ forms a complete orthonormal set 6

1 =

∫

dE|E⟩⟨E|, ⟨E1|E2⟩ = δ(E1 −E2). (4.14)

Making use of (2.17), (4.1), (4.2) and (4.14), we find the quadratic equation

D(E)2 −D(E)− (C2 −E2) = 0, (4.15)

whose solution is given by

D(E) =
1±

√

1 + 4(C2 − E2)

2
. (4.16)

6In [17], for the DFF-model the energy eigenstates |E⟩ with these properties are actually con-

structed from the proposed state |t⟩ by the Fourier transform

|E⟩ = 2r0E
1

2
−r0

∫

∞

−∞

dt

2π
e−iEt|t⟩. (4.13)

The author thanks R. Jackiw for pointing out this point.
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quantum scaling dimension of 

4 D-function

Consider an energy eigenstate |E⟩

H|E⟩ = E|E⟩ (4.1)

with energy eigenvalue E ∈ R. Taking into account the hermiticity of the Hamiltonian

H and the expression (2.17) of the Casimir operator we can take the corresponding

bra for the state (4.1) as

⟨E|K = ⟨E|E (4.2)

where ⟨E| is the dual bra of the energy eigenstate |E⟩. Let us apply D and K to the

energy eigenstate and define

|E ′⟩ := D|E⟩, |E ′′⟩ := K|E⟩. (4.3)

Then we have

H|E ′⟩ = E|E ′⟩+ iE|E⟩, (4.4)

H|E ′′⟩ = E|E ′′⟩+ 2i|E ′⟩. (4.5)

From (4.4) the state |E ′⟩ is not the energy eigenstate due to the term iE|E⟩. The

energy eigenstate |E⟩ is unchanged under the scale transformation generated by D

only when |E⟩ is the vacuum state |Ω⟩ 5.

Similarly according to (4.5), |E ′′⟩ is not the energy eigenstate because of the term

2i|E ′⟩. The energy eigenstate can be realized under the conformal boost generated by

K as the energy eigenstate only when |E ′⟩ vanishes, i.e. d = 0 and E = 0. In this

case (4.5) requires that |E ′′⟩ is the vacuum state. Then (4.3) implies that |E ′′⟩ is the
eigenstate of K

K|Ω⟩ = k|Ω⟩ (4.6)

with eigenvalue k. Therefore only the vacuum state obeying (4.6) and

H|Ω⟩ = D|Ω⟩ = 0 (4.7)

keeps the same energy eigenvalue under the conformal transformations. In particular

the conformally invariant vacuum is realized only when the vacuum satisfies

H|Ω⟩ = D|Ω⟩ = K|Ω⟩ = 0. (4.8)

5This fact was also pointed out in Appendix C of [16].
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existence of vacuum of scaling dimension

of the vacuum

−1 ≤ ∆ ≤ −2d, (5.18)

−
1

2
≤ d ≤

1

2
. (5.19)

Similarly we can extract further constraints by rewriting (5.15) as

⟨O∆|KH + iD −D2|O∆⟩ = ⟨O∆|KH|O∆⟩+ (d+∆)(d+∆− 1). (5.20)

Since ⟨O∆|KH|O∆⟩ = |H|O∆⟩|2 is positive definite, we get a condition

∆(∆ + 2d− 1) ≤ 0, (5.21)

which gives the additional constraint

0 ≤ ∆ ≤ −2d+ 1. (5.22)

The result is depicted in Figure 2. The primary operators and the vacuum states

can exist in the orange region. As a consequence, the allowed range of the scaling

dimensions of the physical states |O∆⟩ which are constructed in terms of the vacua

and the primary operators is

−
1

2
≤ d+∆ ≤

1

2
. (5.23)

It supports the existence of the bosonic scalar with scaling dimension −1
2 , the fermion

with the scaling dimension 0 and the bosonic auxiliary field with scaling dimension 1
2 in

conformal quantum mechanics, as argued and constructed in the Lagrangian theory. If

we relax the condition (5.19) for the favored energy eigenstates |E⟩ under the unitary
evolution, which is examined by the D-function, the states are allowed in the green

region.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (5.12) and the primary operator (5.11). Let Q be the

corresponding charge operator that obeys

QO∆ = qO∆, (5.24)

Q|Ω⟩ = 0, (5.25)

[H,Q] = 0, (5.26)

[D,Q] = iδQQ (5.27)

with q ∈ R. (5.24) and (5.25) assign the charges such that the primary operator O∆

has charge q whereas the vacuum state has no charge. (5.26) implies that the charge
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To make all predictions in quantum mechanics work correctly, we shall associate

some energy eigenstate |E⟩ of the energy E with the unitary group to describe time

evolution, i.e. the unitary evolution. However, as the quantity D(E) measures the

averaged scaling dimension of the energy eigenstate |E⟩, the energy eigenstate |E⟩
would behave as tD(E). So it is preferable to have D(E) = 0. To achieve this, we will

need to take the minus sign in (4.16) and we have

D(E) =
1−

√

1 + 4(C2 − E2)

2
, (4.17)

which we will call a D-function.

Now let us make a connection to the AdS/CFT correspondence. It tells [18, 19]

that the bulk mass m of a scalar field in AdS2 space is related to the dimension ∆m

of the corresponding operator on the boundary as

∆m(∆m − 1) = m2 (4.18)

and there are two solutions

∆±

m =
1±

√
1 + 4m2

2
. (4.19)

For 3
4 < m2 only the boundary conditions with ∆+

m lead to the normalizable solution

[20, 21, 22] as z∆
+
m near z = 0 for a free scalar of mass m in the AdS2 space whose

metric is given by

ds2 =
1

z2
(dz2 + dt2). (4.20)

Since (4.17) corresponds to∆−
m, it is unlikely that the dual conformal quantum mechan-

ics appears when 3
4 < m2. Meanwhile there can be two possible boundary conditions

with ∆+
m and ∆−

m when [20, 21, 22]

−
1

4
< m2 <

3

4
(4.21)

where the lower bound is the Breitenlohner-Freedman bound 7. Comparing (4.16) with

(4.19) for ∆−
m, the mass range leads to E2 − 1

4 ≤ C2 ≤ E2 + 3
4 . The existence of the

vacuum state requires that the Casimir is bounded above and below; −1
4 ≤ C2 ≤ 3

4 and

that the scaling dimension d of the vacuum has a bound −1
2 ≤ d ≤ 1

2 . The resulting

function (4.17) is shown in Figure 1. As the energy eigenvalue E takes real values,

7It has been discussed [23] that an electric field E in AdS2 can shift the Breitenlohner-Freedman

bound − 1

4
< m2 to − 1

4
+ E2 ≤ m2 due to the pair production of the Schwinger effect. But we will

not consider such effect in this work.
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Bounds on dimensions 
of the reference vacuum state



• positive & real

• decreasing monotonically along RG-flow

• stationary at RG-fixed pt and equal to crucial parameter in CFTd

C-function and C-theorem
A function of coupling constant and energy scale
which is defined on the space of theory

decreasing energy scale

conformal anomaly in d=2k

counting massless dof
on that energy scale 
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Figure 1: The D-function. It is defined in the range 0 ≤ E2 ≤ C2 + 1
4 and decreasing

monotonically from the UV to the IR.

the energy squared is bounded above and below; 0 ≤ E2 ≤ C2 + 1
4 . Correspondingly,

D(E) is also bounded above and below

d ≤ D(E) ≤
1

2
(4.22)

where d is the scaling dimension (3.9) of the vacuum state. The normalizability of the

energy eigenstate under the evolution operator can be kept when E2 = C2.
To summarize, if conformal quantum mechanics dual to the AdS2 has the vacuum

|Ω⟩ and a complete orthonormal set of energy eigenstates |E⟩ with the averaged scaling

dimension (4.17), the energy eigenstate will realize well-behaved unitary evolution at

E2 = C2 for −1
4 < C2 < 3

4 .

Here we would like to argue the physical implications of the D-function. It involves

two important physical quantities, scaling dimension and energy. In quantum field

theory change of scale is described by the RG transformation and the number of

degrees of freedom in a physical system decreases along the RG flows from high energy

to lower energy. In CFT2 this can be quantitatively measured by defining a c-function

[4] which has the following properties:

1. It is a real function of coupling constant g and energy scale E which is defined

on the space of theories.

2. It monotonically decreases along the RG flow.

3. It is stationary at the RG fixed point where its value equals the crucial parameter

in the CFT.
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1

Scaling dimension of vacua

Actually the D-function follow the properties of C-function !

In this case the vacuum state admits the Heisenberg picture in which the state has no

time dependence.

Employing the Baker-Campbell-Hausdorff formula, we find that

eHDe−H = D + iH, eHKe−H = K + 2iD −H, (4.9)

eaDHe−aD = e−iaH, eaDKe−aD = eiaK. (4.10)

Using the relation (4.10), one can show that

H
(

eiαD|E⟩
)

= e−αE
(

eiαD|E⟩
)

. (4.11)

Taking α as a continuous parameter, the energy spectrum can be continuous. Hence

the continuous energy spectrum is a universal feature in conformal quantum mechanics.

However, such undesirable feature can be cured by selecting the observables out of the

canonical operators. Thus it does not conclude that one should discard the system

with time coordinate t as the physical system.

Now consider a matrix element

D(E) :=
1

i
⟨E|D|E⟩. (4.12)

This describes the quantum scaling dimension of the energy eigenstate |E⟩ and it is

a real function of the energy eigenvalue E. The overall factor in (4.12) eliminates the

imaginary unit due to the anti-hermiticity of the dilatation generator D.

We assume that the energy eigenstate |E⟩ forms a complete orthonormal set 6

1 =

∫

dE|E⟩⟨E|, ⟨E1|E2⟩ = δ(E1 −E2). (4.14)

Making use of (2.17), (4.1), (4.2) and (4.14), we find the quadratic equation

D(E)2 −D(E)− (C2 −E2) = 0, (4.15)

whose solution is given by

D(E) =
1±

√

1 + 4(C2 − E2)

2
. (4.16)

6In [17], for the DFF-model the energy eigenstates |E⟩ with these properties are actually con-

structed from the proposed state |t⟩ by the Fourier transform

|E⟩ = 2r0E
1

2
−r0

∫

∞

−∞

dt

2π
e−iEt|t⟩. (4.13)

The author thanks R. Jackiw for pointing out this point.
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Unitarity <=> C-theorem

It is proposed [5] that for even dimensional CFTd, the Euler characteristic appearing

in the trace anomaly provides a c-function, which can be evaluated as the expectation

value of the trace of the energy-momentum tensor on the sphere Sd

c ∼
∫

Sd

⟨T µ
µ ⟩. (4.23)

We remark that the trace T µ
µ of the energy momentum tensor is related to the conserved

current of the dilatation D as the scale invariance is achieved when the trace of the

energy momentum tensor vanishes [24]. This leads us to expect that in conformal

quantum mechanics the expectation value ⟨D⟩ of the dilatation, which depends on the

energy scale E, can play a role of a c-function. In fact, we see that the D-function has

the above properties of a c-function:

1. The D-function is defined on the space of theory as it depends on the Casimir

which may involve the coupling constants of the theories considered. For in-

stance, in the DFF-model (3.15) the Casimir invariant is given by the coupling

constant g as in (3.18) and the D-function is represented by

D(E) =
1−

√

g − 4E2 + 1
4

2
. (4.24)

Since the dimensionless coupling constant g parameterizes the theories, the D-

function is defined on the space of the theories.

2. Along the flow from the UV to the IR, the energy scale decreases and the D-

function decreases monotonically with the energy scale E

dD(E)

dE
=

2E
√

1 + 4(C2 − E2)
≥ 0. (4.25)

This shows the monotonic flow for the D-function.

3. At the fixed point E = 0 of the flow, it is stationary with its value

D(E = 0) = d =
1−

√
1 + 4C2
2

. (4.26)

This is the crucial parameter in conformal quantum mechanics, that is the scaling

dimension (3.15) of the vacuum state.

Therefore the D-function exhibits analogous properties as a c-function. It supports

the irreversibility of the flow from the UV to the IR in conformal quantum mechanics.

At the fixed point it becomes the scaling dimension d of the vacuum that encodes

the theory considered. As dimension conceptually measures certain properties of an

object that is independent from other objects, the D-function as an averaged scaling

dimension of energy eigenstates, including the scaling dimension d of the vacuum

counts the number of degrees of freedom in a similar way as a c-function.
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energy momentum tensor vanishes [24]. This leads us to expect that in conformal

quantum mechanics the expectation value ⟨D⟩ of the dilatation, which depends on the

energy scale E, can play a role of a c-function. In fact, we see that the D-function has

the above properties of a c-function:

1. The D-function is defined on the space of theory as it depends on the Casimir

which may involve the coupling constants of the theories considered. For in-

stance, in the DFF-model (3.15) the Casimir invariant is given by the coupling

constant g as in (3.18) and the D-function is represented by

D(E) =
1−

√

g − 4E2 + 1
4

2
. (4.24)

Since the dimensionless coupling constant g parameterizes the theories, the D-

function is defined on the space of the theories.

2. Along the flow from the UV to the IR, the energy scale decreases and the D-

function decreases monotonically with the energy scale E

dD(E)

dE
=

2E
√

1 + 4(C2 − E2)
≥ 0. (4.25)

This shows the monotonic flow for the D-function.

3. At the fixed point E = 0 of the flow, it is stationary with its value

D(E = 0) = d =
1−

√
1 + 4C2
2

. (4.26)

This is the crucial parameter in conformal quantum mechanics, that is the scaling

dimension (3.15) of the vacuum state.

Therefore the D-function exhibits analogous properties as a c-function. It supports

the irreversibility of the flow from the UV to the IR in conformal quantum mechanics.

At the fixed point it becomes the scaling dimension d of the vacuum that encodes

the theory considered. As dimension conceptually measures certain properties of an

object that is independent from other objects, the D-function as an averaged scaling

dimension of energy eigenstates, including the scaling dimension d of the vacuum

counts the number of degrees of freedom in a similar way as a c-function.
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Primary Operators
To describe physical system, 
we postulate the presence of primary operators

We then find that

HO(t) = iȮ(t) (3.47) op1b4a

DO(t) =

(
−it

∂

∂t
+ d

)
O(t) (3.48) op1b4b

KO(t) =

(
it2

∂

∂t
− 2td+ k

)
. (3.49) op1b4c

Here we will consider the case d = ∆I. This implies that kO(0) = 0 and (
op1b4a
3.47)-(

op1b4c
3.49)

simplify as

HO∆(t) = iȮ∆(t) (3.50) op1b5a

DO∆(t) =

(
−it

∂

∂t
+∆

)
O∆(t) (3.51) op1b5b

KO∆(t) =

(
it2

∂

∂t
− 2t∆

)
O∆(t). (3.52) op1b5c

Equivalently we can define the primary operators O∆(t) which obey (
op1b5a
3.50)-(

op1b5b
3.51) by

the transformation law

O∆(t) →
(
∂t′

∂t

)∆

O∆(t
′) =

1

(ct+ d)2∆
O∆(t

′) (3.53) op1b6a

under the finite transformation (
cf1a1
2.7).

A Useful Formula

eHDe−H = D + iH, eHKe−H = K + 2iD −H, (A.1) app1a

eaDHe−aD = e−iaH, eaDKe−aD = eiaK, (A.2) app1b

eKHe−K = H − 2iD −K, eKDe−K = D + iK. (A.3) app1c
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Q. What can we learn CQM from correlation function ?
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SL(2,R) (1.42)

PSL(2,R) = SL(2,R)/±I (1.43)

G = D (1.44)

t →t′ = eτ t (1.45)

u = 0, v = 1, w = 0 (1.46)

∆ > 0 (1.47)

τ = log
t

t0
(1.48)

t = eτ t0 (1.49)

δt = τ t0 (1.50)

δt′ = γ∆t =
∆t√
1− v2

c2

(1.51)

dτ = dt

√√√√1− 2

c2
GMi

r2i
− v2

c2
− 2

c2
GMi

r2i

1

1− 2
c2

GMi

r2i

v2∥
c2

(1.52)

⟨O∆1(t1) · · · O∆n(tn)⟩ (1.53)

G = K (1.54)

t → t′ =
t

1− τ t
(1.55)

u = 0, v = 0, w = 1 (1.56)

∆ = 0 (1.57)

τ =
1

t0
− 1

t
(1.58)

t =
t0

1− τ t0
(1.59)

δt = τ t20 (1.60)

3

w/o Lagrangian description

under the finite transformation (2.14).

We will formulate conformal quantum mechanics in terms of the primary operators

O∆(t) acting on the vacuum state |Ω⟩. We assume that each state in the Hilbert space

is represented by

|state⟩ = F (G)|O∆1
(t1) · · ·O∆n

(tn)⟩ (5.12)

where

|O∆1
(t1) · · ·O∆n

(tn)⟩ = O∆1
(t1) · · ·O∆n

(tn)|Ω⟩ (5.13)

with F (G) being some function of G = uH + vD + wK. Let us examine the expec-

tation values ⟨stateA|stateB⟩ constructed as overlaps of the two states |stateA⟩ and

|stateB⟩ with the form of (5.12) in the Hilbert space. In this work we will explore the

expectation value involving the time-independent primary operators O∆ := O∆(0) and

take the conventional choice of the overall constant one which fixes the normalization

of O∆ as

⟨O∆|O∆⟩ = 1. (5.14)

Now we would like to extract constraints on the description of the unitary evolution

for a certain physical system. To achieve this, one needs to fix its time coordinate t and

construct all the physical states in such a way that they fall into the representations

of the sl(2,R) conformal algebra specified by the vacuum with the eigenvalue of the

Casimir invariant C2, i.e. the scaling dimension d. Given the normalized primary

operators (5.14), this corresponds to the condition

⟨O∆|C2|O∆⟩ = C2 = d(d− 1), (5.15)

which ensures the unitary evolution of the states by fixing the eigenvalue of the Casimir

invariant. Alternatively, we can write the expectation value (5.15) as

⟨O∆|HK − iD −D2|O∆⟩ = ⟨O∆|HK|O∆⟩+ (d+∆)(d+∆ + 1). (5.16)

Unitarity implies the positivity of the inner product in the Hilbert space. Demanding

that ⟨O∆|HK|O∆⟩ = |K|O∆⟩|2 is positive definite and combining (5.15) with (5.16),

we find a condition

(∆+ 2d)(∆+ 1) ≤ 0. (5.17)

Together with the preferred range (4.22) under the unitary evolution probed by the

D-function, we obtain the bounds on scaling dimension of the primary operator and
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Weinberg-Witten Theorem

1. If theory has Lorentz covariant conserved current,  
massless charged spin > 1/2 particle does not exist.

II. If theory has Lorentz covariant EM tensor, 
massless spin > 1 does not exist.

hp0,±j|Jµ|p,±ji (1.100)

hp0,±j|T µ⌫ |p,±ji (1.101)

6

hp0,±j|Jµ|p,±ji (1.100)

hp0,±j|T µ⌫ |p,±ji (1.101)

6

hp0,±j|Jµ|p,±ji = 0 (1.100)

hp0,±j|T µ⌫ |p,±ji (1.101)

j >
1

2

(1.102)

j > 1 (1.103)

6

hp0,±j|Jµ|p,±ji = 0 (1.100)

hp0,±j|T µ⌫ |p,±ji (1.101)

j >
1

2

(1.102)

j > 1 (1.103)

6

hp0,±j|Jµ|p,±ji = 0 (1.100)

hp0,±j|T µ⌫ |p,±ji (1.101)

j >
1

2

(1.102)

j > 1 (1.103)

6

hp0,±j|Jµ|p,±ji = 0 (1.100)

hp0,±j|T µ⌫ |p,±ji (1.101)

j >
1

2

(1.102)

j > 1 (1.103)

6

Given the conditions, the following matrix elements should never vanish

’80 Weinberg-Witten
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6

<=> Charge conservation

<=> Energy conservation

Although the statement is just simple group theoretical analysis, 
the it gives powerful constraint on spin and physically meaningful. 

Casimir of Poincare group



No-Go Theorem in CQM

Now consider similar constraints in CQM on scaling dimension

Casimir of SL(2,R) conformal group

under the finite transformation (2.14).

We will formulate conformal quantum mechanics in terms of the primary operators

O∆(t) acting on the vacuum state |Ω⟩. We assume that each state in the Hilbert space

is represented by

|state⟩ = F (G)|O∆1
(t1) · · ·O∆n

(tn)⟩ (5.12)

where

|O∆1
(t1) · · ·O∆n

(tn)⟩ = O∆1
(t1) · · ·O∆n

(tn)|Ω⟩ (5.13)

with F (G) being some function of G = uH + vD + wK. Let us examine the expec-

tation values ⟨stateA|stateB⟩ constructed as overlaps of the two states |stateA⟩ and

|stateB⟩ with the form of (5.12) in the Hilbert space. In this work we will explore the

expectation value involving the time-independent primary operators O∆ := O∆(0) and

take the conventional choice of the overall constant one which fixes the normalization

of O∆ as

⟨O∆|O∆⟩ = 1. (5.14)

Now we would like to extract constraints on the description of the unitary evolution

for a certain physical system. To achieve this, one needs to fix its time coordinate t and

construct all the physical states in such a way that they fall into the representations

of the sl(2,R) conformal algebra specified by the vacuum with the eigenvalue of the

Casimir invariant C2, i.e. the scaling dimension d. Given the normalized primary

operators (5.14), this corresponds to the condition

⟨O∆|C2|O∆⟩ = C2 = d(d− 1), (5.15)

which ensures the unitary evolution of the states by fixing the eigenvalue of the Casimir

invariant. Alternatively, we can write the expectation value (5.15) as

⟨O∆|HK − iD −D2|O∆⟩ = ⟨O∆|HK|O∆⟩+ (d+∆)(d+∆ + 1). (5.16)

Unitarity implies the positivity of the inner product in the Hilbert space. Demanding

that ⟨O∆|HK|O∆⟩ = |K|O∆⟩|2 is positive definite and combining (5.15) with (5.16),

we find a condition

(∆+ 2d)(∆+ 1) ≤ 0. (5.17)

Together with the preferred range (4.22) under the unitary evolution probed by the

D-function, we obtain the bounds on scaling dimension of the primary operator and
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of the vacuum

−1 ≤ ∆ ≤ −2d, (5.18)

−
1

2
≤ d ≤

1

2
. (5.19)

Similarly we can extract further constraints by rewriting (5.15) as

⟨O∆|KH + iD −D2|O∆⟩ = ⟨O∆|KH|O∆⟩+ (d+∆)(d+∆− 1). (5.20)

Since ⟨O∆|KH|O∆⟩ = |H|O∆⟩|2 is positive definite, we get a condition

∆(∆ + 2d− 1) ≤ 0, (5.21)

which gives the additional constraint

0 ≤ ∆ ≤ −2d+ 1. (5.22)

The result is depicted in Figure 2. The primary operators and the vacuum states

can exist in the orange region. As a consequence, the allowed range of the scaling

dimensions of the physical states |O∆⟩ which are constructed in terms of the vacua

and the primary operators is

−
1

2
≤ d+∆ ≤

1

2
. (5.23)

It supports the existence of the bosonic scalar with scaling dimension −1
2 , the fermion

with the scaling dimension 0 and the bosonic auxiliary field with scaling dimension 1
2 in

conformal quantum mechanics, as argued and constructed in the Lagrangian theory. If

we relax the condition (5.19) for the favored energy eigenstates |E⟩ under the unitary
evolution, which is examined by the D-function, the states are allowed in the green

region.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (5.12) and the primary operator (5.11). Let Q be the

corresponding charge operator that obeys

QO∆ = qO∆, (5.24)

Q|Ω⟩ = 0, (5.25)

[H,Q] = 0, (5.26)

[D,Q] = iδQQ (5.27)

with q ∈ R. (5.24) and (5.25) assign the charges such that the primary operator O∆

has charge q whereas the vacuum state has no charge. (5.26) implies that the charge
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It is proposed [5] that for even dimensional CFTd, the Euler characteristic appearing

in the trace anomaly provides a c-function, which can be evaluated as the expectation

value of the trace of the energy-momentum tensor on the sphere Sd

c ∼
∫

Sd

⟨T µ
µ ⟩. (4.23)

We remark that the trace T µ
µ of the energy momentum tensor is related to the conserved

current of the dilatation D as the scale invariance is achieved when the trace of the

energy momentum tensor vanishes [24]. This leads us to expect that in conformal

quantum mechanics the expectation value ⟨D⟩ of the dilatation, which depends on the

energy scale E, can play a role of a c-function. In fact, we see that the D-function has

the above properties of a c-function:

1. The D-function is defined on the space of theory as it depends on the Casimir

which may involve the coupling constants of the theories considered. For in-

stance, in the DFF-model (3.15) the Casimir invariant is given by the coupling

constant g as in (3.18) and the D-function is represented by

D(E) =
1−

√

g − 4E2 + 1
4

2
. (4.24)

Since the dimensionless coupling constant g parameterizes the theories, the D-

function is defined on the space of the theories.

2. Along the flow from the UV to the IR, the energy scale decreases and the D-

function decreases monotonically with the energy scale E

dD(E)

dE
=

2E
√

1 + 4(C2 − E2)
≥ 0. (4.25)

This shows the monotonic flow for the D-function.

3. At the fixed point E = 0 of the flow, it is stationary with its value

D(E = 0) = d =
1−

√
1 + 4C2
2

. (4.26)

This is the crucial parameter in conformal quantum mechanics, that is the scaling

dimension (3.15) of the vacuum state.

Therefore the D-function exhibits analogous properties as a c-function. It supports

the irreversibility of the flow from the UV to the IR in conformal quantum mechanics.

At the fixed point it becomes the scaling dimension d of the vacuum that encodes

the theory considered. As dimension conceptually measures certain properties of an

object that is independent from other objects, the D-function as an averaged scaling

dimension of energy eigenstates, including the scaling dimension d of the vacuum

counts the number of degrees of freedom in a similar way as a c-function.
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expectation value involving the time-independent primary operators O∆ := O∆(0) and

take the conventional choice of the overall constant one which fixes the normalization

of O∆ as

⟨O∆|O∆⟩ = 1. (5.14)

Now we would like to extract constraints on the description of the unitary evolution

for a certain physical system. To achieve this, one needs to fix its time coordinate t and

construct all the physical states in such a way that they fall into the representations

of the sl(2,R) conformal algebra specified by the vacuum with the eigenvalue of the

Casimir invariant C2, i.e. the scaling dimension d. Given the normalized primary

operators (5.14), this corresponds to the condition

⟨O∆|C2|O∆⟩ = C2 = d(d− 1), (5.15)

which ensures the unitary evolution of the states by fixing the eigenvalue of the Casimir

invariant. Alternatively, we can write the expectation value (5.15) as

⟨O∆|HK − iD −D2|O∆⟩ = ⟨O∆|HK|O∆⟩+ (d+∆)(d+∆ + 1). (5.16)

Unitarity implies the positivity of the inner product in the Hilbert space. Demanding

that ⟨O∆|HK|O∆⟩ = |K|O∆⟩|2 is positive definite and combining (5.15) with (5.16),

we find a condition

(∆+ 2d)(∆+ 1) ≤ 0. (5.17)

Together with the preferred range (4.22) under the unitary evolution probed by the

D-function, we obtain the bounds on scaling dimension of the primary operator and
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of the vacuum

−1 ≤ ∆ ≤ −2d, (5.18)

−
1

2
≤ d ≤

1

2
. (5.19)

Similarly we can extract further constraints by rewriting (5.15) as

⟨O∆|KH + iD −D2|O∆⟩ = ⟨O∆|KH|O∆⟩+ (d+∆)(d+∆− 1). (5.20)

Since ⟨O∆|KH|O∆⟩ = |H|O∆⟩|2 is positive definite, we get a condition

∆(∆ + 2d− 1) ≤ 0, (5.21)

which gives the additional constraint

0 ≤ ∆ ≤ −2d+ 1. (5.22)

The result is depicted in Figure 2. The primary operators and the vacuum states

can exist in the orange region. As a consequence, the allowed range of the scaling

dimensions of the physical states |O∆⟩ which are constructed in terms of the vacua

and the primary operators is

−
1

2
≤ d+∆ ≤

1

2
. (5.23)

It supports the existence of the bosonic scalar with scaling dimension −1
2 , the fermion

with the scaling dimension 0 and the bosonic auxiliary field with scaling dimension 1
2 in

conformal quantum mechanics, as argued and constructed in the Lagrangian theory. If

we relax the condition (5.19) for the favored energy eigenstates |E⟩ under the unitary
evolution, which is examined by the D-function, the states are allowed in the green

region.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (5.12) and the primary operator (5.11). Let Q be the

corresponding charge operator that obeys

QO∆ = qO∆, (5.24)

Q|Ω⟩ = 0, (5.25)

[H,Q] = 0, (5.26)

[D,Q] = iδQQ (5.27)

with q ∈ R. (5.24) and (5.25) assign the charges such that the primary operator O∆

has charge q whereas the vacuum state has no charge. (5.26) implies that the charge
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charged 2. Eq.(
nogo2a3

5.24) implies that the charge operator Q is an auxiliary field. In the

Lagrangian description it would have no kinetic term, so it can be eliminated by its

algebraic equation of motion. Eq.(
nogo2a4

5.25) gives the scaling dimension �Q for the charge

operator Q. In the following we assume that �Q � 0 as all known charge operators

have this property.

The corresponding symmetry transformation is called a “global” transformation

if �Q = 0 because every charge at t is transformed in the same way so that q is a

constant charge, which we will call global charge. For the continuous case an operator

can be realized by exponentiating the corresponding global charge. When the theory

is defined also on a d � 1-dimensional space Md�1 separated from time, we can define

the higher-form global symmetry and the higher-form global charge Q(Md�1)
Gaiotto:2014kfa

[15].

On the other hand, if �Q > 0 we will call the symmetry transformation “gauge”

transformation because the charge is a function of time coordinate as q(t) / t�Q . In

this case the elimination of the charge operator by its equation of motion and the

gauge fixing would gives rise to the Gauss constraint. We will refer to the charge

operator as a gauge operator.

By demanding that the energy expectation value

hO�|[K, Q]H|O�i (5.26) nogo2b1

is positive definite, we get

q�Q (�Q � 1 + 2(d + �))  0. (5.27) nogo2b2

While for the global charge operator with �Q = 0 the above condition holds and there

is no constraint, for the gauge operator with �Q > 0 we obtain constraints

�  �d +
1 � �Q

2
, for q > 0, (5.28) nogo2c1

� � �d +
1 � �Q

2
, for q < 0. (5.29) nogo2c2

So if a primary operator has both positive and negative gauge charges, its scaling

dimension is determined by

� = �d +
1 � �Q

2
. (5.30) nogo2c3

With the regions (
dfcn2a

4.20), (
dfcn2b

4.21) and (
nogo1a1

5.20), there exists a bound on the scaling dimen-

sion of the charge operator

0  �Q  4. (5.31) nogo2c4

2
For simplicity here we turn o↵ the charge for the vacuum state, however, if the vacuum state has

charge q⌦, the analysis goes along the same lines with q replaced by q + q⌦.
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With this normalized primary operators, consider the expectation value

hO�|C2|O�i = C2 = d(d � 1). (5.17) en1

An alternative point of view, we can write it as

hO�|HK � iD � D2|O�i = hO�|HK|O�i + (d + �)(d + � + 1). (5.18) en2

Requiring that the energy expectation value hO�|H|KO�i is positive definite and

combining eq.(
en1

5.17) with eq.(
en2

5.18), we find a condition

(� + 2d)(� + 1)  0. (5.19) en3

Taking into account the ranges (
dfcn2a

4.20) and (
dfcn2b

4.21) given by the D-function, we find a

constraint

�1  �  1 (5.20) nogo1a1

on the scaling dimension of the primary operator.

In particular, if the vacuum state |⌦i allows for the Heisenberg picture with d = 0,

the above constraint becomes more stringent

�1  �  0. (5.21) nogo1a3

It rules out primary operators with scaling dimension � < �1 and those with 0 < �.

In support of the consistency of the constraint, we see that the bosonic scalar operator

with scaling dimension �1
2 and fermionic operator with the scaling dimension 0 can

exist in CQM with the Heisenberg picture vacuum, as argued in the Lagrangian theory,

involving the DFF model
deAlfaro:1976je, Chamon:2011xk

[6, 12] and the superconformal quantum mechanics
Fubini:1984hf,Freedman:1990gd

[13, 14]

The upper bound �  0 is compatible with the Heisenberg vacuum state in such a

way that the integral of O�(t)|⌦i / t� over t is convergent.

Suppose that a theory allows the construction of a conserved charge. We will not

rely on the Lagrangian, but rather describe the charge as an abstract operator. Let Q

be the corresponding charge operator that obeys

QO� = qO�, (5.22) nogo2a1

Q|⌦i = 0, (5.23) nogo2a2

[H, Q] = 0, (5.24) nogo2a3

[D, Q] = i�QQ (5.25) nogo2a4

where q is a c-number. Eq.(
nogo2a1

5.22) and (
nogo2a2

5.23) assign the corresponding charges. We

assume that the primary operator O� has charge q and that the vacuum state is not

14
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The r.h.s. of eq.(
eco1a

4.14) should take a real value since it describes the energy expectation

value and the energy eigenvalue. Thus the function D(E) should be a real function.

We assume that the energy eigenstate |Ei form a complete orthonormal set so that

1 =

Z
dE|EihE|, (4.15) e1a

hE1|E2i = �(E1 � E2). (4.16) e1b

We then find

D(E) =
1 ± p

1 + 4(C2 � E2)

2
. (4.17) dfcn1a

Via the AdS/CFT correspondence, the bulk mass m of a scalar field in AdS2 space

is related to the dimension � of the corresponding operator on the boundary as

�(� � 1) = m2 (4.18) ads2a1

and there are two solutions
Gubser:1998bc,Witten:1998qj

[7, 8]

�± =
1 ± p

1 + 4m2

2
. (4.19) ads2a2

For 3
4 < m2 there is a unique admissible boundary condition as z�+ near z = 0

for a free scalar of mass m in AdS2 space and a unique quantization, whereas for

�1
4 < m2 < 3

4 there can be two possible boundary conditions as z�+ and z�� near

z = 0 and two possible quantizations
Breitenlohner:1982bm,Mezincescu:1984ev

[9, 10]. Comparison of eq.(
dfcn1a

4.17) with (
ads2a2

4.19) and

the above two mass ranges lead to two cases; 3
4 < C2 and �1

4 < C2 < 3
4 respectively.

As an energy eigenstate |Ei scales as tD(E), the good scaling behavior of the energy

eigenstate is realized when D(E) = 0. For this reason, we may adopt for D(E) the

latter case (Figure
figdfn

1)

D(E) =
1 � p

1 + 4(C2 � E2)

2
, for �1

4
< C2 <

3

4
, (4.20) dfcn2a

which corresponds to ��. The energy squared is bounded above and below; 0  E2 
C2 + 1

4 . Correspondingly, D(E) is also bounded above and below

d  D(E)  1

2
(4.21) dfcn2b

where d is the scaling dimension (
cqmv3g

3.19) of the vacuum state. The normalizability of

the energy eigenstate under the evolution operator can be kept when E2 = C2.

In quantum field theory change of scale is described by the renormalization group

(RG) transformation. In general the number of degrees of freedom in a physical system

decrease along the RG flows to lower energy. In CFT this can be quantitatively

measured by defining c-function
Zamolodchikov:1986gt

[1] which has the following properties:

10

The upper bound, i.e. the case where the dimension 4 gauge operator is coupled to the

primary operator, is only possible when the primary operator has dimension � = �1

the vacuum has dimension d = �1
2 .

Fixing the scaling dimension d of the vacuum, we encounter further constraints on

the dimensions �Q of the charge operator. Especially if we consider the Heisenberg

picture vacuum with d = 0, the conditions (
nogo2c3

5.30) and (
nogo2c4

5.31) become

� =
1 � �Q

2
(5.32) nogo2d1

and

1  �Q  3. (5.33) nogo2d2

Consequently in this case neither global charge nor gauge operators with �Q > 3 can

exist. For example, this would prohibit the existence of higher spin > 3 gauge fields.

It follows from (
nogo2d1

5.32) that the gauge operators with �Q = 1 which would realize spin

1 gauge fields involving photons and gluons which are only coupled to the fermions

with � = 0.

�1
2 , � = �2d
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A sequence of three finite transformations (2.6), (2.9) and (2.12) can be expressed by

t ! t0 = f(t) =
at + b

ct + d
, A =

 
a b

c d

!
2 SL(2, R). (2.14)

The infinitesimal transformations (2.7), (2.10) and (2.13) are summarized as

�t = ✏1 + ✏2t + ✏3t
2 (2.15)

where ✏1, ✏2 and ✏3 are the infinitesimal parameters of the Hamiltonian H, the di-

latation D and the special conformal transformation K respectively. The conformal

generators obey the commutation relations

[H, D] = iH, [K, D] = �iK, [H, K] = 2iD, (2.16)

which form the sl(2, R) algebra. In terms of the conformal generators, the Casimir

operator C2 of the sl(2, R) conformal algebra is written as

C2 =
1

2
(HK + KH) � D2 = KH + iD � D2. (2.17)

This expression specifies a choice of basis and its dual of the conformal algebra in terms

of the Hamiltonian, the dilatation and the special conformal transformation. Note

that (2.17) is a universal relation in conformal quantum mechanics although one can

obtain an alternative quantum mechanical description with di↵erent time coordinate

t0 = f(t) from (2.14) and its Hamiltonian H 0. For instance, in the simple conformal

quantum mechanical model, known as the DFF-model [13] with the action (3.15),

one can find the theory with di↵erent Lagrangian involving the harmonic potential

by changing the original time coordinate t into a new time coordinate t0 = 2 tan�1 t

whose Hamiltonian is H 0 := 1
2(H + K), which admits the discrete spectrum and the

normalizable ground state. However, still the generators H, D and K should be viewed

as the conformal generators in the time coordinate t and therefore the relation (2.17)

would intrinsically characterize the conjugation and scalar product in the state space

of conformal quantum mechanics with the time coordinate t.

One might worry that the system with the time coordinate t does not admit a dis-

crete energy spectrum and a normalizable vacuum state, as observed in [13]. However,

it only implies that the quantization needs a subtle treatment due to the constraints

on the canonical variables [14]. In other words, such undesirable properties for the

physical description originate from a naive assumption in the quantization problem

that all the canonical variables are the observables in the Hilbert space. For example,

in the DFF model with g > 0, the constraint x > 0 should be taken seriously to pro-

ceed the consistent quantization so that some operators and the states do not belong

6



under the finite transformation (2.14).

We will formulate conformal quantum mechanics in terms of the primary operators

O∆(t) acting on the vacuum state |Ω⟩. We assume that each state in the Hilbert space

is represented by

|state⟩ = F (G)|O∆1
(t1) · · ·O∆n

(tn)⟩ (5.12)

where

|O∆1
(t1) · · ·O∆n

(tn)⟩ = O∆1
(t1) · · ·O∆n

(tn)|Ω⟩ (5.13)

with F (G) being some function of G = uH + vD + wK. Let us examine the expec-

tation values ⟨stateA|stateB⟩ constructed as overlaps of the two states |stateA⟩ and

|stateB⟩ with the form of (5.12) in the Hilbert space. In this work we will explore the

expectation value involving the time-independent primary operators O∆ := O∆(0) and

take the conventional choice of the overall constant one which fixes the normalization

of O∆ as

⟨O∆|O∆⟩ = 1. (5.14)

Now we would like to extract constraints on the description of the unitary evolution

for a certain physical system. To achieve this, one needs to fix its time coordinate t and

construct all the physical states in such a way that they fall into the representations

of the sl(2,R) conformal algebra specified by the vacuum with the eigenvalue of the

Casimir invariant C2, i.e. the scaling dimension d. Given the normalized primary

operators (5.14), this corresponds to the condition

⟨O∆|C2|O∆⟩ = C2 = d(d− 1), (5.15)

which ensures the unitary evolution of the states by fixing the eigenvalue of the Casimir

invariant. Alternatively, we can write the expectation value (5.15) as

⟨O∆|HK − iD −D2|O∆⟩ = ⟨O∆|HK|O∆⟩+ (d+∆)(d+∆ + 1). (5.16)

Unitarity implies the positivity of the inner product in the Hilbert space. Demanding

that ⟨O∆|HK|O∆⟩ = |K|O∆⟩|2 is positive definite and combining (5.15) with (5.16),

we find a condition

(∆+ 2d)(∆+ 1) ≤ 0. (5.17)

Together with the preferred range (4.22) under the unitary evolution probed by the

D-function, we obtain the bounds on scaling dimension of the primary operator and
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of the vacuum

−1 ≤ ∆ ≤ −2d, (5.18)

−
1

2
≤ d ≤

1

2
. (5.19)

Similarly we can extract further constraints by rewriting (5.15) as

⟨O∆|KH + iD −D2|O∆⟩ = ⟨O∆|KH|O∆⟩+ (d+∆)(d+∆− 1). (5.20)

Since ⟨O∆|KH|O∆⟩ = |H|O∆⟩|2 is positive definite, we get a condition

∆(∆ + 2d− 1) ≤ 0, (5.21)

which gives the additional constraint

0 ≤ ∆ ≤ −2d+ 1. (5.22)

The result is depicted in Figure 2. The primary operators and the vacuum states

can exist in the orange region. As a consequence, the allowed range of the scaling

dimensions of the physical states |O∆⟩ which are constructed in terms of the vacua

and the primary operators is

−
1

2
≤ d+∆ ≤

1

2
. (5.23)

It supports the existence of the bosonic scalar with scaling dimension −1
2 , the fermion

with the scaling dimension 0 and the bosonic auxiliary field with scaling dimension 1
2 in

conformal quantum mechanics, as argued and constructed in the Lagrangian theory. If

we relax the condition (5.19) for the favored energy eigenstates |E⟩ under the unitary
evolution, which is examined by the D-function, the states are allowed in the green

region.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (5.12) and the primary operator (5.11). Let Q be the

corresponding charge operator that obeys

QO∆ = qO∆, (5.24)

Q|Ω⟩ = 0, (5.25)

[H,Q] = 0, (5.26)

[D,Q] = iδQQ (5.27)

with q ∈ R. (5.24) and (5.25) assign the charges such that the primary operator O∆

has charge q whereas the vacuum state has no charge. (5.26) implies that the charge
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charged 2. Eq.(
nogo2a3

5.24) implies that the charge operator Q is an auxiliary field. In the

Lagrangian description it would have no kinetic term, so it can be eliminated by its

algebraic equation of motion. Eq.(
nogo2a4

5.25) gives the scaling dimension �Q for the charge

operator Q. In the following we assume that �Q � 0 as all known charge operators

have this property.

The corresponding symmetry transformation is called a “global” transformation

if �Q = 0 because every charge at t is transformed in the same way so that q is a

constant charge, which we will call global charge. For the continuous case an operator

can be realized by exponentiating the corresponding global charge. When the theory

is defined also on a d � 1-dimensional space Md�1 separated from time, we can define

the higher-form global symmetry and the higher-form global charge Q(Md�1)
Gaiotto:2014kfa

[15].

On the other hand, if �Q > 0 we will call the symmetry transformation “gauge”

transformation because the charge is a function of time coordinate as q(t) / t�Q . In

this case the elimination of the charge operator by its equation of motion and the

gauge fixing would gives rise to the Gauss constraint. We will refer to the charge

operator as a gauge operator.

By demanding that the energy expectation value

hO�|[K, Q]H|O�i (5.26) nogo2b1

is positive definite, we get

q�Q (�Q � 1 + 2(d + �))  0. (5.27) nogo2b2

While for the global charge operator with �Q = 0 the above condition holds and there

is no constraint, for the gauge operator with �Q > 0 we obtain constraints

�  �d +
1 � �Q

2
, for q > 0, (5.28) nogo2c1

� � �d +
1 � �Q

2
, for q < 0. (5.29) nogo2c2

So if a primary operator has both positive and negative gauge charges, its scaling

dimension is determined by

� = �d +
1 � �Q

2
. (5.30) nogo2c3

With the regions (
dfcn2a

4.20), (
dfcn2b

4.21) and (
nogo1a1

5.20), there exists a bound on the scaling dimen-

sion of the charge operator

0  �Q  4. (5.31) nogo2c4

2
For simplicity here we turn o↵ the charge for the vacuum state, however, if the vacuum state has

charge q⌦, the analysis goes along the same lines with q replaced by q + q⌦.
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With the regions (
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sion of the charge operator
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2
For simplicity here we turn o↵ the charge for the vacuum state, however, if the vacuum state has

charge q⌦, the analysis goes along the same lines with q replaced by q + q⌦.
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With this normalized primary operators, consider the expectation value

hO�|C2|O�i = C2 = d(d � 1). (5.17) en1

An alternative point of view, we can write it as

hO�|HK � iD � D2|O�i = hO�|HK|O�i + (d + �)(d + � + 1). (5.18) en2

Requiring that the energy expectation value hO�|H|KO�i is positive definite and

combining eq.(
en1

5.17) with eq.(
en2

5.18), we find a condition

(� + 2d)(� + 1)  0. (5.19) en3

Taking into account the ranges (
dfcn2a

4.20) and (
dfcn2b

4.21) given by the D-function, we find a

constraint

�1  �  1 (5.20) nogo1a1

on the scaling dimension of the primary operator.

In particular, if the vacuum state |⌦i allows for the Heisenberg picture with d = 0,

the above constraint becomes more stringent

�1  �  0. (5.21) nogo1a3

It rules out primary operators with scaling dimension � < �1 and those with 0 < �.

In support of the consistency of the constraint, we see that the bosonic scalar operator

with scaling dimension �1
2 and fermionic operator with the scaling dimension 0 can

exist in CQM with the Heisenberg picture vacuum, as argued in the Lagrangian theory,

involving the DFF model
deAlfaro:1976je, Chamon:2011xk

[6, 12] and the superconformal quantum mechanics
Fubini:1984hf,Freedman:1990gd

[13, 14]

The upper bound �  0 is compatible with the Heisenberg vacuum state in such a

way that the integral of O�(t)|⌦i / t� over t is convergent.

Suppose that a theory allows the construction of a conserved charge. We will not

rely on the Lagrangian, but rather describe the charge as an abstract operator. Let Q

be the corresponding charge operator that obeys

QO� = qO�, (5.22) nogo2a1

Q|⌦i = 0, (5.23) nogo2a2

[H, Q] = 0, (5.24) nogo2a3

[D, Q] = i�QQ (5.25) nogo2a4

where q is a c-number. Eq.(
nogo2a1

5.22) and (
nogo2a2

5.23) assign the corresponding charges. We

assume that the primary operator O� has charge q and that the vacuum state is not
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The r.h.s. of eq.(
eco1a

4.14) should take a real value since it describes the energy expectation

value and the energy eigenvalue. Thus the function D(E) should be a real function.

We assume that the energy eigenstate |Ei form a complete orthonormal set so that

1 =

Z
dE|EihE|, (4.15) e1a

hE1|E2i = �(E1 � E2). (4.16) e1b

We then find

D(E) =
1 ± p

1 + 4(C2 � E2)

2
. (4.17) dfcn1a

Via the AdS/CFT correspondence, the bulk mass m of a scalar field in AdS2 space

is related to the dimension � of the corresponding operator on the boundary as

�(� � 1) = m2 (4.18) ads2a1

and there are two solutions
Gubser:1998bc,Witten:1998qj

[7, 8]

�± =
1 ± p

1 + 4m2

2
. (4.19) ads2a2

For 3
4 < m2 there is a unique admissible boundary condition as z�+ near z = 0

for a free scalar of mass m in AdS2 space and a unique quantization, whereas for

�1
4 < m2 < 3

4 there can be two possible boundary conditions as z�+ and z�� near

z = 0 and two possible quantizations
Breitenlohner:1982bm,Mezincescu:1984ev

[9, 10]. Comparison of eq.(
dfcn1a

4.17) with (
ads2a2

4.19) and

the above two mass ranges lead to two cases; 3
4 < C2 and �1

4 < C2 < 3
4 respectively.

As an energy eigenstate |Ei scales as tD(E), the good scaling behavior of the energy

eigenstate is realized when D(E) = 0. For this reason, we may adopt for D(E) the

latter case (Figure
figdfn

1)

D(E) =
1 � p

1 + 4(C2 � E2)

2
, for �1

4
< C2 <

3

4
, (4.20) dfcn2a

which corresponds to ��. The energy squared is bounded above and below; 0  E2 
C2 + 1

4 . Correspondingly, D(E) is also bounded above and below

d  D(E)  1

2
(4.21) dfcn2b

where d is the scaling dimension (
cqmv3g

3.19) of the vacuum state. The normalizability of

the energy eigenstate under the evolution operator can be kept when E2 = C2.

In quantum field theory change of scale is described by the renormalization group

(RG) transformation. In general the number of degrees of freedom in a physical system

decrease along the RG flows to lower energy. In CFT this can be quantitatively

measured by defining c-function
Zamolodchikov:1986gt

[1] which has the following properties:

10

The upper bound, i.e. the case where the dimension 4 gauge operator is coupled to the

primary operator, is only possible when the primary operator has dimension � = �1

the vacuum has dimension d = �1
2 .

Fixing the scaling dimension d of the vacuum, we encounter further constraints on

the dimensions �Q of the charge operator. Especially if we consider the Heisenberg

picture vacuum with d = 0, the conditions (
nogo2c3

5.30) and (
nogo2c4

5.31) become

� =
1 � �Q

2
(5.32) nogo2d1

and

1  �Q  3. (5.33) nogo2d2

Consequently in this case neither global charge nor gauge operators with �Q > 3 can

exist. For example, this would prohibit the existence of higher spin > 3 gauge fields.

It follows from (
nogo2d1

5.32) that the gauge operators with �Q = 1 which would realize spin

1 gauge fields involving photons and gluons which are only coupled to the fermions

with � = 0.

�1
2 , � = �2d

References

Zamolodchikov:1986gt [1] A. B. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group

in a 2D Field Theory,” JETP Lett. 43 (1986) 730–732. [Pisma Zh. Eksp. Teor.

Fiz.43,565(1986)].

Cardy:1988cwa [2] J. L. Cardy, “Is There a c Theorem in Four-Dimensions?,” Phys. Lett. B215

(1988) 749–752.

Weinberg:1980kq [3] S. Weinberg and E. Witten, “Limits on Massless Particles,” Phys. Lett. B96

(1980) 59–62.

Gerasimov:1996zk [4] A. Gerasimov, S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and

M. Olshanetsky, “Liouville type models in group theory framework. 1. Finite

dimensional algebras,” Int. J. Mod. Phys. A12 (1997) 2523–2584,

hep-th/9601161.

mironov1997tau [5] A. Mironov, “⌧ -function within group theory approach and its quantization,”

arXiv preprint q-alg/9711006 (1997).

deAlfaro:1976je [6] V. de Alfaro, S. Fubini, and G. Furlan, “Conformal Invariance in Quantum

Mechanics,” Nuovo Cim. A34 (1976) 569.

16

The upper bound, i.e. the case where the dimension 4 gauge operator is coupled to the

primary operator, is only possible when the primary operator has dimension � = �1

the vacuum has dimension d = �1
2 .

Fixing the scaling dimension d of the vacuum, we encounter further constraints on

the dimensions �Q of the charge operator. Especially if we consider the Heisenberg

picture vacuum with d = 0, the conditions (
nogo2c3

5.30) and (
nogo2c4

5.31) become

� =
1 � �Q

2
(5.32) nogo2d1

and

1  �Q  3. (5.33) nogo2d2

Consequently in this case neither global charge nor gauge operators with �Q > 3 can

exist. For example, this would prohibit the existence of higher spin > 3 gauge fields.

It follows from (
nogo2d1

5.32) that the gauge operators with �Q = 1 which would realize spin

1 gauge fields involving photons and gluons which are only coupled to the fermions

with � = 0.

�1
2 , � = �2d

References

Zamolodchikov:1986gt [1] A. B. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group

in a 2D Field Theory,” JETP Lett. 43 (1986) 730–732. [Pisma Zh. Eksp. Teor.

Fiz.43,565(1986)].

Cardy:1988cwa [2] J. L. Cardy, “Is There a c Theorem in Four-Dimensions?,” Phys. Lett. B215

(1988) 749–752.

Weinberg:1980kq [3] S. Weinberg and E. Witten, “Limits on Massless Particles,” Phys. Lett. B96

(1980) 59–62.

Gerasimov:1996zk [4] A. Gerasimov, S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and

M. Olshanetsky, “Liouville type models in group theory framework. 1. Finite

dimensional algebras,” Int. J. Mod. Phys. A12 (1997) 2523–2584,

hep-th/9601161.

mironov1997tau [5] A. Mironov, “⌧ -function within group theory approach and its quantization,”

arXiv preprint q-alg/9711006 (1997).

deAlfaro:1976je [6] V. de Alfaro, S. Fubini, and G. Furlan, “Conformal Invariance in Quantum

Mechanics,” Nuovo Cim. A34 (1976) 569.

16

A sequence of three finite transformations (2.6), (2.9) and (2.12) can be expressed by

t ! t0 = f(t) =
at + b

ct + d
, A =

 
a b

c d

!
2 SL(2, R). (2.14)

The infinitesimal transformations (2.7), (2.10) and (2.13) are summarized as

�t = ✏1 + ✏2t + ✏3t
2 (2.15)

where ✏1, ✏2 and ✏3 are the infinitesimal parameters of the Hamiltonian H, the di-

latation D and the special conformal transformation K respectively. The conformal

generators obey the commutation relations

[H, D] = iH, [K, D] = �iK, [H, K] = 2iD, (2.16)

which form the sl(2, R) algebra. In terms of the conformal generators, the Casimir

operator C2 of the sl(2, R) conformal algebra is written as

C2 =
1

2
(HK + KH) � D2 = KH + iD � D2. (2.17)

This expression specifies a choice of basis and its dual of the conformal algebra in terms

of the Hamiltonian, the dilatation and the special conformal transformation. Note

that (2.17) is a universal relation in conformal quantum mechanics although one can

obtain an alternative quantum mechanical description with di↵erent time coordinate

t0 = f(t) from (2.14) and its Hamiltonian H 0. For instance, in the simple conformal

quantum mechanical model, known as the DFF-model [13] with the action (3.15),

one can find the theory with di↵erent Lagrangian involving the harmonic potential

by changing the original time coordinate t into a new time coordinate t0 = 2 tan�1 t

whose Hamiltonian is H 0 := 1
2(H + K), which admits the discrete spectrum and the

normalizable ground state. However, still the generators H, D and K should be viewed

as the conformal generators in the time coordinate t and therefore the relation (2.17)

would intrinsically characterize the conjugation and scalar product in the state space

of conformal quantum mechanics with the time coordinate t.

One might worry that the system with the time coordinate t does not admit a dis-

crete energy spectrum and a normalizable vacuum state, as observed in [13]. However,

it only implies that the quantization needs a subtle treatment due to the constraints

on the canonical variables [14]. In other words, such undesirable properties for the

physical description originate from a naive assumption in the quantization problem

that all the canonical variables are the observables in the Hilbert space. For example,

in the DFF model with g > 0, the constraint x > 0 should be taken seriously to pro-

ceed the consistent quantization so that some operators and the states do not belong

6

charged 2. Eq.(
nogo2a3
5.24) implies that the charge operator Q is an auxiliary field. In the

Lagrangian description it would have no kinetic term, so it can be eliminated by its

algebraic equation of motion. Eq.(
nogo2a4
5.25) gives the scaling dimension �Q for the charge

operator Q. In the following we assume that �Q � 0 as all known charge operators

have this property.

The corresponding symmetry transformation is called a “global” transformation

if �Q = 0 because every charge at t is transformed in the same way so that q is a

constant charge, which we will call global charge. For the continuous case an operator

can be realized by exponentiating the corresponding global charge. When the theory

is defined also on a d � 1-dimensional space Md�1 separated from time, we can define

the higher-form global symmetry and the higher-form global charge Q(Md�1)
Gaiotto:2014kfa
[15].

On the other hand, if �Q > 0 we will call the symmetry transformation “gauge”

transformation because the charge is a function of time coordinate as q(t) / t�Q . In

this case the elimination of the charge operator by its equation of motion and the

gauge fixing would gives rise to the Gauss constraint. We will refer to the charge

operator as a gauge operator.

By demanding that the energy expectation value

hO�|[K, Q]H|O�i (5.26) nogo2b1

is positive definite, we get

q�Q (�Q � 1 + 2(d + �))  0. (5.27) nogo2b2

While for the global charge operator with �Q = 0 the above condition holds and there

is no constraint, for the gauge operator with �Q > 0 we obtain constraints

�  �d +
1 � �Q

2
, for q > 0, (5.28) nogo2c1

� � �d +
1 � �Q

2
, for q < 0. (5.29) nogo2c2

So if a primary operator has both positive and negative gauge charges, its scaling

dimension is determined by

� = �d +
1 � �Q

2
. (5.30) nogo2c3

With the regions (
dfcn2a
4.20), (

dfcn2b
4.21) and (

nogo1a1
5.20), there exists a bound on the scaling dimen-

sion of the charge operator

0  �Q  4. (5.31) nogo2c4

2For simplicity here we turn o↵ the charge for the vacuum state, however, if the vacuum state has

charge q�, the analysis goes along the same lines with q replaced by q + q�.
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With this normalized primary operators, consider the expectation value

hO�|C2|O�i = C2 = d(d � 1). (5.17) en1

An alternative point of view, we can write it as

hO�|HK � iD � D2|O�i = hO�|HK|O�i + (d + �)(d + � + 1). (5.18) en2

Requiring that the energy expectation value hO�|H|KO�i is positive definite and

combining eq.(
en1
5.17) with eq.(

en2
5.18), we find a condition

(� + 2d)(� + 1)  0. (5.19) en3

Taking into account the ranges (
dfcn2a
4.20) and (

dfcn2b
4.21) given by the D-function, we find a

constraint

�1  �  1 (5.20) nogo1a1

on the scaling dimension of the primary operator.

In particular, if the vacuum state |⌦i allows for the Heisenberg picture with d = 0,

the above constraint becomes more stringent

�1  �  0. (5.21) nogo1a3

It rules out primary operators with scaling dimension � < �1 and those with 0 < �.

In support of the consistency of the constraint, we see that the bosonic scalar operator

with scaling dimension �1
2 and fermionic operator with the scaling dimension 0 can

exist in CQM with the Heisenberg picture vacuum, as argued in the Lagrangian theory,

involving the DFF model
deAlfaro:1976je, Chamon:2011xk
[6, 12] and the superconformal quantum mechanics

Fubini:1984hf,Freedman:1990gd
[13, 14]

The upper bound �  0 is compatible with the Heisenberg vacuum state in such a

way that the integral of O�(t)|⌦i / t� over t is convergent.

Suppose that a theory allows the construction of a conserved charge. We will not

rely on the Lagrangian, but rather describe the charge as an abstract operator. Let Q

be the corresponding charge operator that obeys

QO� = qO�, (5.22) nogo2a1

Q|⌦i = 0, (5.23) nogo2a2

[H, Q] = 0, (5.24) nogo2a3

[D, Q] = i�QQ (5.25) nogo2a4

where q is a c-number. Eq.(
nogo2a1
5.22) and (

nogo2a2
5.23) assign the corresponding charges. We

assume that the primary operator O� has charge q and that the vacuum state is not
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The r.h.s. of eq.(
eco1a
4.14) should take a real value since it describes the energy expectation

value and the energy eigenvalue. Thus the function D(E) should be a real function.

We assume that the energy eigenstate |Ei form a complete orthonormal set so that

1 =

Z
dE|EihE|, (4.15) e1a

hE1|E2i = �(E1 � E2). (4.16) e1b

We then find

D(E) =
1 ± p

1 + 4(C2 � E2)

2
. (4.17) dfcn1a

Via the AdS/CFT correspondence, the bulk mass m of a scalar field in AdS2 space

is related to the dimension � of the corresponding operator on the boundary as

�(� � 1) = m2 (4.18) ads2a1

and there are two solutions
Gubser:1998bc,Witten:1998qj
[7, 8]

�± =
1 ± p

1 + 4m2

2
. (4.19) ads2a2

For 3
4 < m2 there is a unique admissible boundary condition as z�+ near z = 0

for a free scalar of mass m in AdS2 space and a unique quantization, whereas for

�1
4 < m2 < 3

4 there can be two possible boundary conditions as z�+ and z�� near

z = 0 and two possible quantizations
Breitenlohner:1982bm,Mezincescu:1984ev
[9, 10]. Comparison of eq.(

dfcn1a
4.17) with (

ads2a2
4.19) and

the above two mass ranges lead to two cases; 3
4 < C2 and �1

4 < C2 < 3
4 respectively.

As an energy eigenstate |Ei scales as tD(E), the good scaling behavior of the energy

eigenstate is realized when D(E) = 0. For this reason, we may adopt for D(E) the

latter case (Figure
figdfn
1)

D(E) =
1 � p

1 + 4(C2 � E2)

2
, for �1

4
< C2 <

3

4
, (4.20) dfcn2a

which corresponds to ��. The energy squared is bounded above and below; 0  E2 
C2 + 1

4 . Correspondingly, D(E) is also bounded above and below

d  D(E)  1

2
(4.21) dfcn2b

where d is the scaling dimension (
cqmv3g
3.19) of the vacuum state. The normalizability of

the energy eigenstate under the evolution operator can be kept when E2 = C2.

In quantum field theory change of scale is described by the renormalization group

(RG) transformation. In general the number of degrees of freedom in a physical system

decrease along the RG flows to lower energy. In CFT this can be quantitatively

measured by defining c-function
Zamolodchikov:1986gt
[1] which has the following properties:

10

The upper bound, i.e. the case where the dimension 4 gauge operator is coupled to the

primary operator, is only possible when the primary operator has dimension � = �1

the vacuum has dimension d = �1
2 .

Fixing the scaling dimension d of the vacuum, we encounter further constraints on

the dimensions �Q of the charge operator. Especially if we consider the Heisenberg

picture vacuum with d = 0, the conditions (
nogo2c3
5.30) and (

nogo2c4
5.31) become

� =
1 � �Q

2
(5.32) nogo2d1

and

1  �Q  3. (5.33) nogo2d2

Consequently in this case neither global charge nor gauge operators with �Q > 3 can

exist. For example, this would prohibit the existence of higher spin > 3 gauge fields.

It follows from (
nogo2d1
5.32) that the gauge operators with �Q = 1 which would realize spin

1 gauge fields involving photons and gluons which are only coupled to the fermions

with � = 0.

�1
2 , � = �2d
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Figure 2: The bound on (d, �) in conformal quantum mechanics with conserved charge

Q. Here d is the scaling dimension of the vacuum, � is that of the charged primary

operator and �Q is that of the charge operator. In the green region the primary

operator and the vacuum are allowed and the red line represents the charged primary

operator. fignogo

The both lower and upper bounds, i.e. the case where the both gauge operators with

�Q = 1 and �Q = 3 exist, are satisfied only when the vacuum admits the Heisenberg

picture. Consequently gauge operators with �Q > 3 cannot exist. For example, this

would prohibit the existence of higher spin s > 3 gauge fields appearing in higher

dimensional field theories. It follows from (
nogo2d1
??) that the gauge operators with �Q = 1

which would realize spin s = 1 gauge fields involving photons and gluons in a four-

dimensional field theory are only coupled to the fermions with � = 0. This forbids

the existence of charged Higgs boson.

� = �2d � 1

6 Discussion

dissec

In this work we have studied conformal quantum mechanics with the vacuum state and

the primary operators. We have shown that a matrix element of the dilatation operator

between two energy eigenstates define a conformal quantum mechanical counterpart

of a c-function, which we call D-function. Its monotonic decrease from the UV to

the IR along the flow supports the universal irreversibility of the RG flow in higher

dimensional field theories. At the fixed point of the flow it becomes a crucial parameter
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where g acts on time coordinate t as (
cf1a1
2.14) and T (g) is the representation matrix. It

follows from (
op1a1
5.1) that S↵�(g, 0) should be a representation of the stability subgroup at

time t = 0. According to the infinitesimal transformation (
ci1a1
2.15) this subgroup is given

by the dilatation and special conformal transformation. The commutation relation

(
cc1a1
2.16) reduces to

[K, D] = �iK, [K, K] = 0. (5.2) op1a2

Every element of the sl(2, R) conformal algebra can be constructed by ascribing the

time dependence to the generators

D(t) = eiHtDe�iHt = D � tH, (5.3) op1a3

K(t) = eiHtKe�iHt = K � 2tD + t2H (5.4) op1a4

Assume that

HO(0) = iȮ(0), (5.5) op1b1

DO(0) = i�O(0), (5.6) op1b2

KO(0) = �O(0). (5.7) op1b3

Here we will consider the case with � being c-number so that the operators O(0)

enjoys definite scaling dimensions. (
op1a2
5.2) then implies that �O(0) = 0 and we find that

HO�(t) = iȮ�(t), (5.8) op1b5a

DO�(t) = i

✓
�t

@

@t
+ �

◆
O�(t), (5.9) op1b5b

KO�(t) = i

✓
t2

@

@t
� 2t�

◆
O�(t). (5.10) op1b5c

Equivalently we can define the primary operators O�(t) which obey (
op1b5a
5.8)-(

op1b5c
5.10) by

the transformation law

O�(t) !
✓

@t0

@t

◆�

O�(t0) =
1

(ct + d)2�
O�(t0) (5.11) op1b6a

under the finite transformation (
cf1a1
2.14). The transformation laws (

op1b5a
5.8)-(

op1b5c
5.10) give rise

to the conformal Ward identities

0 =
n�

i=1

i

✓
�ti

@

@ti
+ �i + d

◆
h⌦|O1(t1) · · · On(tn)|⌦i , (5.12) op1b6b1

0 =
n�

i=1

i

✓
t2i

@

@ti
� 2ti(�i + d)

◆
h⌦|O1(t1) · · · On(tn)|⌦i . (5.13) op1b6b2
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Figure 2: The bound on (d, �) in conformal quantum mechanics. In the green region

the primary operator and the vacuum are allowed and the red line characterizes the

charged primary operator coupled the gauge operator of �Q. fignogo

Since hO�|KH|O�i = |H|O�i|2 is positive definite, we get a condition

�(� + 2d � 1)  0, (5.21) en5

which gives the additional constraint

0  � = �2d + 1. (5.22) nogo1a1a

The result is depicted in Figure
fignogo
2. The primary operator and the vacuum state can

exist in the green region. In particular the allowed range of the scaling dimensions of

the primary operator is

�1  �  0. (5.23) nogo1a1

While this rules out the primary operators with scaling dimension � < �1 and those

with 0 < �, it supports the existence of the bosonic scalar operator with scaling

dimension �1
2 and fermionic operator with the scaling dimension 0 in conformal quan-

tum mechanics, as argued and constructed in the Lagrangian theory. Both of these

bounds are compatible only for the Heisenberg picture vacuum with d = 0.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (
state1a
5.12) and the primary operator (

op1b6a
5.11). Let Q be the
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under the finite transformation (2.14).

We will formulate conformal quantum mechanics in terms of the primary operators

O∆(t) acting on the vacuum state |Ω⟩. We assume that each state in the Hilbert space

is represented by

|state⟩ = F (G)|O∆1
(t1) · · ·O∆n

(tn)⟩ (5.12)

where

|O∆1
(t1) · · ·O∆n

(tn)⟩ = O∆1
(t1) · · ·O∆n

(tn)|Ω⟩ (5.13)

with F (G) being some function of G = uH + vD + wK. Let us examine the expec-

tation values ⟨stateA|stateB⟩ constructed as overlaps of the two states |stateA⟩ and

|stateB⟩ with the form of (5.12) in the Hilbert space. In this work we will explore the

expectation value involving the time-independent primary operators O∆ := O∆(0) and

take the conventional choice of the overall constant one which fixes the normalization

of O∆ as

⟨O∆|O∆⟩ = 1. (5.14)

Now we would like to extract constraints on the description of the unitary evolution

for a certain physical system. To achieve this, one needs to fix its time coordinate t and

construct all the physical states in such a way that they fall into the representations

of the sl(2,R) conformal algebra specified by the vacuum with the eigenvalue of the

Casimir invariant C2, i.e. the scaling dimension d. Given the normalized primary

operators (5.14), this corresponds to the condition

⟨O∆|C2|O∆⟩ = C2 = d(d− 1), (5.15)

which ensures the unitary evolution of the states by fixing the eigenvalue of the Casimir

invariant. Alternatively, we can write the expectation value (5.15) as

⟨O∆|HK − iD −D2|O∆⟩ = ⟨O∆|HK|O∆⟩+ (d+∆)(d+∆ + 1). (5.16)

Unitarity implies the positivity of the inner product in the Hilbert space. Demanding

that ⟨O∆|HK|O∆⟩ = |K|O∆⟩|2 is positive definite and combining (5.15) with (5.16),

we find a condition

(∆+ 2d)(∆+ 1) ≤ 0. (5.17)

Together with the preferred range (4.22) under the unitary evolution probed by the

D-function, we obtain the bounds on scaling dimension of the primary operator and
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of the vacuum

−1 ≤ ∆ ≤ −2d, (5.18)

−
1

2
≤ d ≤

1

2
. (5.19)

Similarly we can extract further constraints by rewriting (5.15) as

⟨O∆|KH + iD −D2|O∆⟩ = ⟨O∆|KH|O∆⟩+ (d+∆)(d+∆− 1). (5.20)

Since ⟨O∆|KH|O∆⟩ = |H|O∆⟩|2 is positive definite, we get a condition

∆(∆ + 2d− 1) ≤ 0, (5.21)

which gives the additional constraint

0 ≤ ∆ ≤ −2d+ 1. (5.22)

The result is depicted in Figure 2. The primary operators and the vacuum states

can exist in the orange region. As a consequence, the allowed range of the scaling

dimensions of the physical states |O∆⟩ which are constructed in terms of the vacua

and the primary operators is

−
1

2
≤ d+∆ ≤

1

2
. (5.23)

It supports the existence of the bosonic scalar with scaling dimension −1
2 , the fermion

with the scaling dimension 0 and the bosonic auxiliary field with scaling dimension 1
2 in

conformal quantum mechanics, as argued and constructed in the Lagrangian theory. If

we relax the condition (5.19) for the favored energy eigenstates |E⟩ under the unitary
evolution, which is examined by the D-function, the states are allowed in the green

region.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (5.12) and the primary operator (5.11). Let Q be the

corresponding charge operator that obeys

QO∆ = qO∆, (5.24)

Q|Ω⟩ = 0, (5.25)

[H,Q] = 0, (5.26)

[D,Q] = iδQQ (5.27)

with q ∈ R. (5.24) and (5.25) assign the charges such that the primary operator O∆

has charge q whereas the vacuum state has no charge. (5.26) implies that the charge
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charged 2. Eq.(
nogo2a3

5.24) implies that the charge operator Q is an auxiliary field. In the

Lagrangian description it would have no kinetic term, so it can be eliminated by its

algebraic equation of motion. Eq.(
nogo2a4

5.25) gives the scaling dimension �Q for the charge

operator Q. In the following we assume that �Q � 0 as all known charge operators

have this property.

The corresponding symmetry transformation is called a “global” transformation

if �Q = 0 because every charge at t is transformed in the same way so that q is a

constant charge, which we will call global charge. For the continuous case an operator

can be realized by exponentiating the corresponding global charge. When the theory

is defined also on a d � 1-dimensional space Md�1 separated from time, we can define

the higher-form global symmetry and the higher-form global charge Q(Md�1)
Gaiotto:2014kfa

[15].

On the other hand, if �Q > 0 we will call the symmetry transformation “gauge”

transformation because the charge is a function of time coordinate as q(t) / t�Q . In

this case the elimination of the charge operator by its equation of motion and the

gauge fixing would gives rise to the Gauss constraint. We will refer to the charge

operator as a gauge operator.

By demanding that the energy expectation value

hO�|[K, Q]H|O�i (5.26) nogo2b1

is positive definite, we get

q�Q (�Q � 1 + 2(d + �))  0. (5.27) nogo2b2

While for the global charge operator with �Q = 0 the above condition holds and there

is no constraint, for the gauge operator with �Q > 0 we obtain constraints

�  �d +
1 � �Q

2
, for q > 0, (5.28) nogo2c1

� � �d +
1 � �Q

2
, for q < 0. (5.29) nogo2c2

So if a primary operator has both positive and negative gauge charges, its scaling

dimension is determined by

� = �d +
1 � �Q

2
. (5.30) nogo2c3

With the regions (
dfcn2a

4.20), (
dfcn2b

4.21) and (
nogo1a1

5.20), there exists a bound on the scaling dimen-

sion of the charge operator

0  �Q  4. (5.31) nogo2c4

2
For simplicity here we turn o↵ the charge for the vacuum state, however, if the vacuum state has

charge q⌦, the analysis goes along the same lines with q replaced by q + q⌦.
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With this normalized primary operators, consider the expectation value

hO�|C2|O�i = C2 = d(d � 1). (5.17) en1

An alternative point of view, we can write it as

hO�|HK � iD � D2|O�i = hO�|HK|O�i + (d + �)(d + � + 1). (5.18) en2

Requiring that the energy expectation value hO�|H|KO�i is positive definite and

combining eq.(
en1

5.17) with eq.(
en2

5.18), we find a condition

(� + 2d)(� + 1)  0. (5.19) en3

Taking into account the ranges (
dfcn2a

4.20) and (
dfcn2b

4.21) given by the D-function, we find a

constraint

�1  �  1 (5.20) nogo1a1

on the scaling dimension of the primary operator.

In particular, if the vacuum state |⌦i allows for the Heisenberg picture with d = 0,

the above constraint becomes more stringent

�1  �  0. (5.21) nogo1a3

It rules out primary operators with scaling dimension � < �1 and those with 0 < �.

In support of the consistency of the constraint, we see that the bosonic scalar operator

with scaling dimension �1
2 and fermionic operator with the scaling dimension 0 can

exist in CQM with the Heisenberg picture vacuum, as argued in the Lagrangian theory,

involving the DFF model
deAlfaro:1976je, Chamon:2011xk

[6, 12] and the superconformal quantum mechanics
Fubini:1984hf,Freedman:1990gd

[13, 14]

The upper bound �  0 is compatible with the Heisenberg vacuum state in such a

way that the integral of O�(t)|⌦i / t� over t is convergent.

Suppose that a theory allows the construction of a conserved charge. We will not

rely on the Lagrangian, but rather describe the charge as an abstract operator. Let Q

be the corresponding charge operator that obeys

QO� = qO�, (5.22) nogo2a1

Q|⌦i = 0, (5.23) nogo2a2

[H, Q] = 0, (5.24) nogo2a3

[D, Q] = i�QQ (5.25) nogo2a4

where q is a c-number. Eq.(
nogo2a1

5.22) and (
nogo2a2

5.23) assign the corresponding charges. We

assume that the primary operator O� has charge q and that the vacuum state is not
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5.18), we find a condition

(� + 2d)(� + 1)  0. (5.19) en3

Taking into account the ranges (
dfcn2a

4.20) and (
dfcn2b

4.21) given by the D-function, we find a

constraint

�1  �  1 (5.20) nogo1a1

on the scaling dimension of the primary operator.

In particular, if the vacuum state |⌦i allows for the Heisenberg picture with d = 0,

the above constraint becomes more stringent

�1  �  0. (5.21) nogo1a3

It rules out primary operators with scaling dimension � < �1 and those with 0 < �.

In support of the consistency of the constraint, we see that the bosonic scalar operator

with scaling dimension �1
2 and fermionic operator with the scaling dimension 0 can

exist in CQM with the Heisenberg picture vacuum, as argued in the Lagrangian theory,

involving the DFF model
deAlfaro:1976je, Chamon:2011xk

[6, 12] and the superconformal quantum mechanics
Fubini:1984hf,Freedman:1990gd

[13, 14]

The upper bound �  0 is compatible with the Heisenberg vacuum state in such a

way that the integral of O�(t)|⌦i / t� over t is convergent.

Suppose that a theory allows the construction of a conserved charge. We will not

rely on the Lagrangian, but rather describe the charge as an abstract operator. Let Q

be the corresponding charge operator that obeys

QO� = qO�, (5.22) nogo2a1

Q|⌦i = 0, (5.23) nogo2a2

[H, Q] = 0, (5.24) nogo2a3

[D, Q] = i�QQ (5.25) nogo2a4

where q is a c-number. Eq.(
nogo2a1

5.22) and (
nogo2a2

5.23) assign the corresponding charges. We

assume that the primary operator O� has charge q and that the vacuum state is not

14

The r.h.s. of eq.(
eco1a

4.14) should take a real value since it describes the energy expectation

value and the energy eigenvalue. Thus the function D(E) should be a real function.

We assume that the energy eigenstate |Ei form a complete orthonormal set so that

1 =

Z
dE|EihE|, (4.15) e1a

hE1|E2i = �(E1 � E2). (4.16) e1b

We then find

D(E) =
1 ± p

1 + 4(C2 � E2)

2
. (4.17) dfcn1a

Via the AdS/CFT correspondence, the bulk mass m of a scalar field in AdS2 space

is related to the dimension � of the corresponding operator on the boundary as

�(� � 1) = m2 (4.18) ads2a1

and there are two solutions
Gubser:1998bc,Witten:1998qj

[7, 8]

�± =
1 ± p

1 + 4m2

2
. (4.19) ads2a2

For 3
4 < m2 there is a unique admissible boundary condition as z�+ near z = 0

for a free scalar of mass m in AdS2 space and a unique quantization, whereas for

�1
4 < m2 < 3

4 there can be two possible boundary conditions as z�+ and z�� near

z = 0 and two possible quantizations
Breitenlohner:1982bm,Mezincescu:1984ev

[9, 10]. Comparison of eq.(
dfcn1a

4.17) with (
ads2a2

4.19) and

the above two mass ranges lead to two cases; 3
4 < C2 and �1

4 < C2 < 3
4 respectively.

As an energy eigenstate |Ei scales as tD(E), the good scaling behavior of the energy

eigenstate is realized when D(E) = 0. For this reason, we may adopt for D(E) the

latter case (Figure
figdfn

1)

D(E) =
1 � p

1 + 4(C2 � E2)

2
, for �1

4
< C2 <

3

4
, (4.20) dfcn2a

which corresponds to ��. The energy squared is bounded above and below; 0  E2 
C2 + 1

4 . Correspondingly, D(E) is also bounded above and below

d  D(E)  1

2
(4.21) dfcn2b

where d is the scaling dimension (
cqmv3g

3.19) of the vacuum state. The normalizability of

the energy eigenstate under the evolution operator can be kept when E2 = C2.

In quantum field theory change of scale is described by the renormalization group

(RG) transformation. In general the number of degrees of freedom in a physical system

decrease along the RG flows to lower energy. In CFT this can be quantitatively

measured by defining c-function
Zamolodchikov:1986gt

[1] which has the following properties:

10

The upper bound, i.e. the case where the dimension 4 gauge operator is coupled to the

primary operator, is only possible when the primary operator has dimension � = �1

the vacuum has dimension d = �1
2 .

Fixing the scaling dimension d of the vacuum, we encounter further constraints on

the dimensions �Q of the charge operator. Especially if we consider the Heisenberg

picture vacuum with d = 0, the conditions (
nogo2c3

5.30) and (
nogo2c4

5.31) become

� =
1 � �Q

2
(5.32) nogo2d1

and

1  �Q  3. (5.33) nogo2d2

Consequently in this case neither global charge nor gauge operators with �Q > 3 can

exist. For example, this would prohibit the existence of higher spin > 3 gauge fields.

It follows from (
nogo2d1

5.32) that the gauge operators with �Q = 1 which would realize spin

1 gauge fields involving photons and gluons which are only coupled to the fermions

with � = 0.

�1
2 , � = �2d
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A sequence of three finite transformations (2.6), (2.9) and (2.12) can be expressed by

t ! t0 = f(t) =
at + b

ct + d
, A =

 
a b

c d

!
2 SL(2, R). (2.14)

The infinitesimal transformations (2.7), (2.10) and (2.13) are summarized as

�t = ✏1 + ✏2t + ✏3t
2 (2.15)

where ✏1, ✏2 and ✏3 are the infinitesimal parameters of the Hamiltonian H, the di-

latation D and the special conformal transformation K respectively. The conformal

generators obey the commutation relations

[H, D] = iH, [K, D] = �iK, [H, K] = 2iD, (2.16)

which form the sl(2, R) algebra. In terms of the conformal generators, the Casimir

operator C2 of the sl(2, R) conformal algebra is written as

C2 =
1

2
(HK + KH) � D2 = KH + iD � D2. (2.17)

This expression specifies a choice of basis and its dual of the conformal algebra in terms

of the Hamiltonian, the dilatation and the special conformal transformation. Note

that (2.17) is a universal relation in conformal quantum mechanics although one can

obtain an alternative quantum mechanical description with di↵erent time coordinate

t0 = f(t) from (2.14) and its Hamiltonian H 0. For instance, in the simple conformal

quantum mechanical model, known as the DFF-model [13] with the action (3.15),

one can find the theory with di↵erent Lagrangian involving the harmonic potential

by changing the original time coordinate t into a new time coordinate t0 = 2 tan�1 t

whose Hamiltonian is H 0 := 1
2(H + K), which admits the discrete spectrum and the

normalizable ground state. However, still the generators H, D and K should be viewed

as the conformal generators in the time coordinate t and therefore the relation (2.17)

would intrinsically characterize the conjugation and scalar product in the state space

of conformal quantum mechanics with the time coordinate t.

One might worry that the system with the time coordinate t does not admit a dis-

crete energy spectrum and a normalizable vacuum state, as observed in [13]. However,

it only implies that the quantization needs a subtle treatment due to the constraints

on the canonical variables [14]. In other words, such undesirable properties for the

physical description originate from a naive assumption in the quantization problem

that all the canonical variables are the observables in the Hilbert space. For example,

in the DFF model with g > 0, the constraint x > 0 should be taken seriously to pro-

ceed the consistent quantization so that some operators and the states do not belong

6

charged 2. Eq.(
nogo2a3
5.24) implies that the charge operator Q is an auxiliary field. In the

Lagrangian description it would have no kinetic term, so it can be eliminated by its

algebraic equation of motion. Eq.(
nogo2a4
5.25) gives the scaling dimension �Q for the charge

operator Q. In the following we assume that �Q � 0 as all known charge operators

have this property.

The corresponding symmetry transformation is called a “global” transformation

if �Q = 0 because every charge at t is transformed in the same way so that q is a

constant charge, which we will call global charge. For the continuous case an operator

can be realized by exponentiating the corresponding global charge. When the theory

is defined also on a d � 1-dimensional space Md�1 separated from time, we can define

the higher-form global symmetry and the higher-form global charge Q(Md�1)
Gaiotto:2014kfa
[15].

On the other hand, if �Q > 0 we will call the symmetry transformation “gauge”

transformation because the charge is a function of time coordinate as q(t) / t�Q . In

this case the elimination of the charge operator by its equation of motion and the

gauge fixing would gives rise to the Gauss constraint. We will refer to the charge

operator as a gauge operator.

By demanding that the energy expectation value

hO�|[K, Q]H|O�i (5.26) nogo2b1

is positive definite, we get

q�Q (�Q � 1 + 2(d + �))  0. (5.27) nogo2b2

While for the global charge operator with �Q = 0 the above condition holds and there

is no constraint, for the gauge operator with �Q > 0 we obtain constraints

�  �d +
1 � �Q

2
, for q > 0, (5.28) nogo2c1

� � �d +
1 � �Q

2
, for q < 0. (5.29) nogo2c2

So if a primary operator has both positive and negative gauge charges, its scaling

dimension is determined by

� = �d +
1 � �Q

2
. (5.30) nogo2c3

With the regions (
dfcn2a
4.20), (

dfcn2b
4.21) and (

nogo1a1
5.20), there exists a bound on the scaling dimen-

sion of the charge operator

0  �Q  4. (5.31) nogo2c4

2For simplicity here we turn o↵ the charge for the vacuum state, however, if the vacuum state has

charge q�, the analysis goes along the same lines with q replaced by q + q�.
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2
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With the regions (
dfcn2a
4.20), (

dfcn2b
4.21) and (

nogo1a1
5.20), there exists a bound on the scaling dimen-

sion of the charge operator
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With the regions (
dfcn2a
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dfcn2b
4.21) and (
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With this normalized primary operators, consider the expectation value

hO�|C2|O�i = C2 = d(d � 1). (5.17) en1

An alternative point of view, we can write it as

hO�|HK � iD � D2|O�i = hO�|HK|O�i + (d + �)(d + � + 1). (5.18) en2

Requiring that the energy expectation value hO�|H|KO�i is positive definite and

combining eq.(
en1
5.17) with eq.(

en2
5.18), we find a condition

(� + 2d)(� + 1)  0. (5.19) en3

Taking into account the ranges (
dfcn2a
4.20) and (

dfcn2b
4.21) given by the D-function, we find a

constraint

�1  �  1 (5.20) nogo1a1

on the scaling dimension of the primary operator.

In particular, if the vacuum state |⌦i allows for the Heisenberg picture with d = 0,

the above constraint becomes more stringent

�1  �  0. (5.21) nogo1a3

It rules out primary operators with scaling dimension � < �1 and those with 0 < �.

In support of the consistency of the constraint, we see that the bosonic scalar operator

with scaling dimension �1
2 and fermionic operator with the scaling dimension 0 can

exist in CQM with the Heisenberg picture vacuum, as argued in the Lagrangian theory,

involving the DFF model
deAlfaro:1976je, Chamon:2011xk
[6, 12] and the superconformal quantum mechanics

Fubini:1984hf,Freedman:1990gd
[13, 14]

The upper bound �  0 is compatible with the Heisenberg vacuum state in such a

way that the integral of O�(t)|⌦i / t� over t is convergent.

Suppose that a theory allows the construction of a conserved charge. We will not

rely on the Lagrangian, but rather describe the charge as an abstract operator. Let Q

be the corresponding charge operator that obeys

QO� = qO�, (5.22) nogo2a1

Q|⌦i = 0, (5.23) nogo2a2

[H, Q] = 0, (5.24) nogo2a3

[D, Q] = i�QQ (5.25) nogo2a4

where q is a c-number. Eq.(
nogo2a1
5.22) and (

nogo2a2
5.23) assign the corresponding charges. We

assume that the primary operator O� has charge q and that the vacuum state is not
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The r.h.s. of eq.(
eco1a
4.14) should take a real value since it describes the energy expectation

value and the energy eigenvalue. Thus the function D(E) should be a real function.

We assume that the energy eigenstate |Ei form a complete orthonormal set so that

1 =

Z
dE|EihE|, (4.15) e1a

hE1|E2i = �(E1 � E2). (4.16) e1b

We then find

D(E) =
1 ± p

1 + 4(C2 � E2)

2
. (4.17) dfcn1a

Via the AdS/CFT correspondence, the bulk mass m of a scalar field in AdS2 space

is related to the dimension � of the corresponding operator on the boundary as

�(� � 1) = m2 (4.18) ads2a1

and there are two solutions
Gubser:1998bc,Witten:1998qj
[7, 8]

�± =
1 ± p

1 + 4m2

2
. (4.19) ads2a2

For 3
4 < m2 there is a unique admissible boundary condition as z�+ near z = 0

for a free scalar of mass m in AdS2 space and a unique quantization, whereas for

�1
4 < m2 < 3

4 there can be two possible boundary conditions as z�+ and z�� near

z = 0 and two possible quantizations
Breitenlohner:1982bm,Mezincescu:1984ev
[9, 10]. Comparison of eq.(

dfcn1a
4.17) with (

ads2a2
4.19) and

the above two mass ranges lead to two cases; 3
4 < C2 and �1

4 < C2 < 3
4 respectively.

As an energy eigenstate |Ei scales as tD(E), the good scaling behavior of the energy

eigenstate is realized when D(E) = 0. For this reason, we may adopt for D(E) the

latter case (Figure
figdfn
1)

D(E) =
1 � p

1 + 4(C2 � E2)

2
, for �1

4
< C2 <

3

4
, (4.20) dfcn2a

which corresponds to ��. The energy squared is bounded above and below; 0  E2 
C2 + 1

4 . Correspondingly, D(E) is also bounded above and below

d  D(E)  1

2
(4.21) dfcn2b

where d is the scaling dimension (
cqmv3g
3.19) of the vacuum state. The normalizability of

the energy eigenstate under the evolution operator can be kept when E2 = C2.

In quantum field theory change of scale is described by the renormalization group

(RG) transformation. In general the number of degrees of freedom in a physical system

decrease along the RG flows to lower energy. In CFT this can be quantitatively

measured by defining c-function
Zamolodchikov:1986gt
[1] which has the following properties:
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The upper bound, i.e. the case where the dimension 4 gauge operator is coupled to the

primary operator, is only possible when the primary operator has dimension � = �1

the vacuum has dimension d = �1
2 .

Fixing the scaling dimension d of the vacuum, we encounter further constraints on

the dimensions �Q of the charge operator. Especially if we consider the Heisenberg

picture vacuum with d = 0, the conditions (
nogo2c3
5.30) and (

nogo2c4
5.31) become

� =
1 � �Q

2
(5.32) nogo2d1

and

1  �Q  3. (5.33) nogo2d2

Consequently in this case neither global charge nor gauge operators with �Q > 3 can

exist. For example, this would prohibit the existence of higher spin > 3 gauge fields.

It follows from (
nogo2d1
5.32) that the gauge operators with �Q = 1 which would realize spin

1 gauge fields involving photons and gluons which are only coupled to the fermions

with � = 0.

�1
2 , � = �2d
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1 gauge fields involving photons and gluons which are only coupled to the fermions

with � = 0.

�1
2 , � = �2d
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Figure 2: The bound on (d, �) in conformal quantum mechanics with conserved charge

Q. Here d is the scaling dimension of the vacuum, � is that of the charged primary

operator and �Q is that of the charge operator. In the green region the primary

operator and the vacuum are allowed and the red line represents the charged primary

operator. fignogo

The both lower and upper bounds, i.e. the case where the both gauge operators with

�Q = 1 and �Q = 3 exist, are satisfied only when the vacuum admits the Heisenberg

picture. Consequently gauge operators with �Q > 3 cannot exist. For example, this

would prohibit the existence of higher spin s > 3 gauge fields appearing in higher

dimensional field theories. It follows from (
nogo2d1
??) that the gauge operators with �Q = 1

which would realize spin s = 1 gauge fields involving photons and gluons in a four-

dimensional field theory are only coupled to the fermions with � = 0. This forbids

the existence of charged Higgs boson.

� = �2d � 1

6 Discussion

dissec

In this work we have studied conformal quantum mechanics with the vacuum state and

the primary operators. We have shown that a matrix element of the dilatation operator

between two energy eigenstates define a conformal quantum mechanical counterpart

of a c-function, which we call D-function. Its monotonic decrease from the UV to

the IR along the flow supports the universal irreversibility of the RG flow in higher

dimensional field theories. At the fixed point of the flow it becomes a crucial parameter
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where g acts on time coordinate t as (
cf1a1
2.14) and T (g) is the representation matrix. It

follows from (
op1a1
5.1) that S↵�(g, 0) should be a representation of the stability subgroup at

time t = 0. According to the infinitesimal transformation (
ci1a1
2.15) this subgroup is given

by the dilatation and special conformal transformation. The commutation relation

(
cc1a1
2.16) reduces to

[K, D] = �iK, [K, K] = 0. (5.2) op1a2

Every element of the sl(2, R) conformal algebra can be constructed by ascribing the

time dependence to the generators

D(t) = eiHtDe�iHt = D � tH, (5.3) op1a3

K(t) = eiHtKe�iHt = K � 2tD + t2H (5.4) op1a4

Assume that

HO(0) = iȮ(0), (5.5) op1b1

DO(0) = i�O(0), (5.6) op1b2

KO(0) = �O(0). (5.7) op1b3

Here we will consider the case with � being c-number so that the operators O(0)

enjoys definite scaling dimensions. (
op1a2
5.2) then implies that �O(0) = 0 and we find that

HO�(t) = iȮ�(t), (5.8) op1b5a

DO�(t) = i

✓
�t

@

@t
+ �

◆
O�(t), (5.9) op1b5b

KO�(t) = i

✓
t2

@

@t
� 2t�

◆
O�(t). (5.10) op1b5c

Equivalently we can define the primary operators O�(t) which obey (
op1b5a
5.8)-(

op1b5c
5.10) by

the transformation law

O�(t) !
✓

@t0

@t

◆�

O�(t0) =
1

(ct + d)2�
O�(t0) (5.11) op1b6a

under the finite transformation (
cf1a1
2.14). The transformation laws (

op1b5a
5.8)-(

op1b5c
5.10) give rise

to the conformal Ward identities

0 =
n�

i=1

i

✓
�ti

@

@ti
+ �i + d

◆
h⌦|O1(t1) · · · On(tn)|⌦i , (5.12) op1b6b1

0 =
n�

i=1

i

✓
t2i

@

@ti
� 2ti(�i + d)

◆
h⌦|O1(t1) · · · On(tn)|⌦i . (5.13) op1b6b2
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Figure 2: The bound on (d, �) in conformal quantum mechanics. In the green region

the primary operator and the vacuum are allowed and the red line characterizes the

charged primary operator coupled the gauge operator of �Q. fignogo

Since hO�|KH|O�i = |H|O�i|2 is positive definite, we get a condition

�(� + 2d � 1)  0, (5.21) en5

which gives the additional constraint

0  � = �2d + 1. (5.22) nogo1a1a

The result is depicted in Figure
fignogo
2. The primary operator and the vacuum state can

exist in the green region. In particular the allowed range of the scaling dimensions of

the primary operator is

�1  �  0. (5.23) nogo1a1

While this rules out the primary operators with scaling dimension � < �1 and those

with 0 < �, it supports the existence of the bosonic scalar operator with scaling

dimension �1
2 and fermionic operator with the scaling dimension 0 in conformal quan-

tum mechanics, as argued and constructed in the Lagrangian theory. Both of these

bounds are compatible only for the Heisenberg picture vacuum with d = 0.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (
state1a
5.12) and the primary operator (

op1b6a
5.11). Let Q be the
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To make all predictions in quantum mechanics work correctly, we shall associate

some energy eigenstate |E⟩ of the energy E with the unitary group to describe time

evolution, i.e. the unitary evolution. However, as the quantity D(E) measures the

averaged scaling dimension of the energy eigenstate |E⟩, the energy eigenstate |E⟩
would behave as tD(E). So it is preferable to have D(E) = 0. To achieve this, we will

need to take the minus sign in (4.16) and we have

D(E) =
1−

√

1 + 4(C2 − E2)

2
, (4.17)

which we will call a D-function.

Now let us make a connection to the AdS/CFT correspondence. It tells [18, 19]

that the bulk mass m of a scalar field in AdS2 space is related to the dimension ∆m

of the corresponding operator on the boundary as

∆m(∆m − 1) = m2 (4.18)

and there are two solutions

∆±

m =
1±

√
1 + 4m2

2
. (4.19)

For 3
4 < m2 only the boundary conditions with ∆+

m lead to the normalizable solution

[20, 21, 22] as z∆
+
m near z = 0 for a free scalar of mass m in the AdS2 space whose

metric is given by

ds2 =
1

z2
(dz2 + dt2). (4.20)

Since (4.17) corresponds to∆−
m, it is unlikely that the dual conformal quantum mechan-

ics appears when 3
4 < m2. Meanwhile there can be two possible boundary conditions

with ∆+
m and ∆−

m when [20, 21, 22]

−
1

4
< m2 <

3

4
(4.21)

where the lower bound is the Breitenlohner-Freedman bound 7. Comparing (4.16) with

(4.19) for ∆−
m, the mass range leads to E2 − 1

4 ≤ C2 ≤ E2 + 3
4 . The existence of the

vacuum state requires that the Casimir is bounded above and below; −1
4 ≤ C2 ≤ 3

4 and

that the scaling dimension d of the vacuum has a bound −1
2 ≤ d ≤ 1

2 . The resulting

function (4.17) is shown in Figure 1. As the energy eigenvalue E takes real values,

7It has been discussed [23] that an electric field E in AdS2 can shift the Breitenlohner-Freedman

bound − 1

4
< m2 to − 1

4
+ E2 ≤ m2 due to the pair production of the Schwinger effect. But we will

not consider such effect in this work.
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Admitted

under the finite transformation (2.14).

We will formulate conformal quantum mechanics in terms of the primary operators

O∆(t) acting on the vacuum state |Ω⟩. We assume that each state in the Hilbert space

is represented by

|state⟩ = F (G)|O∆1
(t1) · · ·O∆n

(tn)⟩ (5.12)

where

|O∆1
(t1) · · ·O∆n

(tn)⟩ = O∆1
(t1) · · ·O∆n

(tn)|Ω⟩ (5.13)

with F (G) being some function of G = uH + vD + wK. Let us examine the expec-

tation values ⟨stateA|stateB⟩ constructed as overlaps of the two states |stateA⟩ and

|stateB⟩ with the form of (5.12) in the Hilbert space. In this work we will explore the

expectation value involving the time-independent primary operators O∆ := O∆(0) and

take the conventional choice of the overall constant one which fixes the normalization

of O∆ as

⟨O∆|O∆⟩ = 1. (5.14)

Now we would like to extract constraints on the description of the unitary evolution

for a certain physical system. To achieve this, one needs to fix its time coordinate t and

construct all the physical states in such a way that they fall into the representations

of the sl(2,R) conformal algebra specified by the vacuum with the eigenvalue of the

Casimir invariant C2, i.e. the scaling dimension d. Given the normalized primary

operators (5.14), this corresponds to the condition

⟨O∆|C2|O∆⟩ = C2 = d(d− 1), (5.15)

which ensures the unitary evolution of the states by fixing the eigenvalue of the Casimir

invariant. Alternatively, we can write the expectation value (5.15) as

⟨O∆|HK − iD −D2|O∆⟩ = ⟨O∆|HK|O∆⟩+ (d+∆)(d+∆ + 1). (5.16)

Unitarity implies the positivity of the inner product in the Hilbert space. Demanding

that ⟨O∆|HK|O∆⟩ = |K|O∆⟩|2 is positive definite and combining (5.15) with (5.16),

we find a condition

(∆+ 2d)(∆+ 1) ≤ 0. (5.17)

Together with the preferred range (4.22) under the unitary evolution probed by the

D-function, we obtain the bounds on scaling dimension of the primary operator and
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Furthermore consider charge operator

of the vacuum

−1 ≤ ∆ ≤ −2d, (5.18)

−
1

2
≤ d ≤

1

2
. (5.19)

Similarly we can extract further constraints by rewriting (5.15) as

⟨O∆|KH + iD −D2|O∆⟩ = ⟨O∆|KH|O∆⟩+ (d+∆)(d+∆− 1). (5.20)

Since ⟨O∆|KH|O∆⟩ = |H|O∆⟩|2 is positive definite, we get a condition

∆(∆ + 2d− 1) ≤ 0, (5.21)

which gives the additional constraint

0 ≤ ∆ ≤ −2d+ 1. (5.22)

The result is depicted in Figure 2. The primary operators and the vacuum states

can exist in the orange region. As a consequence, the allowed range of the scaling

dimensions of the physical states |O∆⟩ which are constructed in terms of the vacua

and the primary operators is

−
1

2
≤ d+∆ ≤

1

2
. (5.23)

It supports the existence of the bosonic scalar with scaling dimension −1
2 , the fermion

with the scaling dimension 0 and the bosonic auxiliary field with scaling dimension 1
2 in

conformal quantum mechanics, as argued and constructed in the Lagrangian theory. If

we relax the condition (5.19) for the favored energy eigenstates |E⟩ under the unitary
evolution, which is examined by the D-function, the states are allowed in the green

region.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (5.12) and the primary operator (5.11). Let Q be the

corresponding charge operator that obeys

QO∆ = qO∆, (5.24)

Q|Ω⟩ = 0, (5.25)

[H,Q] = 0, (5.26)

[D,Q] = iδQQ (5.27)

with q ∈ R. (5.24) and (5.25) assign the charges such that the primary operator O∆

has charge q whereas the vacuum state has no charge. (5.26) implies that the charge
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follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (5.12) and the primary operator (5.11). Let Q be the

corresponding charge operator that obeys

QO∆ = qO∆, (5.24)

Q|Ω⟩ = 0, (5.25)

[H,Q] = 0, (5.26)

[D,Q] = iδQQ (5.27)

with q ∈ R. (5.24) and (5.25) assign the charges such that the primary operator O∆

has charge q whereas the vacuum state has no charge. (5.26) implies that the charge
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−
1

2
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1

2
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2
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−d+

∆

∆ = −d+
1− δQ

2
.

−1 ≤

≤ 1 (5.20)

≤
1

2

−

1

2
,

, ∆ = −2d

x > 0 should be taken seriously to pro-

≤ ∆ = −2d+ 1.

Figure 2: The bound on (d,∆) in conformal quantum mechanics. In the orange region

the primary operators with the dimension ∆ and the vacuum states with the dimension

d are allowed and the red line characterizes the charged physical states coupled to the

gauge operators of δQ. Without the favored condition (5.19) for the unitary evolution

of the states, the green region is also allowed.
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Consier

operator Q is not dynamical. In the Lagrangian description it would have no kinetic

term, so it can be eliminated by its algebraic equation of motion as an auxiliary field.

(5.27) gives the scaling dimension δQ of the charge operator Q. In the following we

will focus on the case δQ ≥ 0.

The corresponding symmetry transformation is a global transformation if δQ = 0

because every charge at t is transformed in the same way so that q is a constant

charge, which we will call a global charge. For the continuous symmetry an operator

can be realized by exponentiating the corresponding global charge. When the theory is

generalized by including a d−1-dimensional space Md−1 separated from time, one may

further define higher-form global symmetries and higher-form global charges Q(Md−1)

[25] by furnishing the scaling dimensions stemming from Md−1.

On the other hand, for δQ > 0 we view the symmetry transformation as a local

transformation because the charge is a function of time; q(t). In this case Q can

enter the Lagrangian and its elimination by the equation of motion and the gauge

fixing would gives the Gauss constraint. In the Lagrangian description of quantum

mechanics, it is nothing but an auxiliary gauge field. In quantum mechanics, it is the

Gauss law operator. Note that the Gauss law constraint is not the identity between

operators obeying the canonical commutation relation [·, ·] but rather it holds only

when acting on the physical states. In fact, it is well known that the Gauss law

constraint is incompatible with the canonical commutation relation 8. Therefore we

should not require the Jacobi identity for a canonical commutation relation operation

by including the Gauss law operator Q. When the theory is generalized by adding

a d − 1-dimensional space Md−1, this operator behaves as a vector- or tensor-like

operator since it has the non-vanishing scaling dimension. If a theory follows the

action principle, it naturally appears in the covariant derivative as a gauge field to

make the symmetry manifest. We will refer to the charge operator with δQ > 0 as a

gauge operator.

Consider a matrix element

⟨O∆|[K,Q]H|O∆⟩. (5.30)

Since [K,Q]H = (KH)Q−Q(KH) and the both actions of Q on the ket |O∆⟩ and on

8For example, in pure Maxwell theory the canonical commutation relations for the gauge fields

[Ai(x, 0), Ȧj(x
′, 0)] = iδijδ(x− x

′), [Ai(x, 0), Aj(x
′, 0)] = 0 (5.28)

are incompatible with the Gauss law constraints

divE = 0, Ei = Ȧi. (5.29)

See for example [14] for a more general discussion on the Gauss law constraint in quantum mechanics.
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the bra ⟨O∆| produce the same charge q ∈ R, this should vanish. On the other hand,

using the commutation relations (2.16) and (5.24)-(5.27), we find

[K,Q]H = 2iδQQD − δ2QQ + δQQ. (5.31)

Plugging this into (5.30) we get

qδQ (δQ − 1 + 2(d+∆)) = 0. (5.32)

For the global charge operator with δQ = 0 the above condition holds and there is no

constraint on the primary operator. However, for the gauge operator with δQ > 0 the

scaling dimension of the charged primary operator is determined by

d+∆ =
1− δQ

2
. (5.33)

The resulting constrained scaling dimension is illustrated in Figure 2. The red line

characterizes the gauge operator. Within the regions (5.23) and (5.19), there exists a

bound on the scaling dimension of the gauge operator

0 < δQ ≤ 2. (5.34)

This admits the presence of the gauge operators with δQ = 1, which would realize

massless spin s = 1 gauge fields involving photon and gluon, coupled to the physical

states with d+∆ = 0, i.e. free fermions. Also it is compatible with the gauge operators

with δQ = 2, which would show up as massless spin s = 2 fields involving graviton,

coupled to the physical states with d + ∆ = −1
2 , i.e. free bosonic scalars. On the

other hand, the bosonic auxiliary field with d + ∆ = 1
2 may not couple to the gauge

operators.

6 Discussion

In this work we have studied conformal quantum mechanics with the vacuum state

and the primary operators. We have shown that a matrix element of the dilatation

operator between two energy eigenstates may define a conformal quantum mechanical

counterpart of a c-function, which we call a D-function. Its monotonic decrease from

the UV to the IR along the flow supports the universal irreversibility of the RG flow

in higher dimensional field theories. At the fixed point of the flow it becomes a

crucial parameter d, that is the scaling dimension of the vacuum, which specifies the

theory, analogous to the central charge in two-dimensional conformal field theories. In

addition, we have found new no-go theorems which impose constraints and bounds on

scaling dimensions of the primary operator, the vacuum and the gauge operators.
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global charge operator

Gauge field may have arbitrary space-
time coordinate dependence (local field)

gauge operator



charged 2. Eq.(
nogo2a3

5.24) implies that the charge operator Q is an auxiliary field. In the

Lagrangian description it would have no kinetic term, so it can be eliminated by its

algebraic equation of motion. Eq.(
nogo2a4

5.25) gives the scaling dimension �Q for the charge

operator Q. In the following we assume that �Q � 0 as all known charge operators

have this property.

The corresponding symmetry transformation is called a “global” transformation

if �Q = 0 because every charge at t is transformed in the same way so that q is a

constant charge, which we will call global charge. For the continuous case an operator

can be realized by exponentiating the corresponding global charge. When the theory

is defined also on a d � 1-dimensional space Md�1 separated from time, we can define

the higher-form global symmetry and the higher-form global charge Q(Md�1)
Gaiotto:2014kfa

[15].

On the other hand, if �Q > 0 we will call the symmetry transformation “gauge”

transformation because the charge is a function of time coordinate as q(t) / t�Q . In

this case the elimination of the charge operator by its equation of motion and the

gauge fixing would gives rise to the Gauss constraint. We will refer to the charge

operator as a gauge operator.

By demanding that the energy expectation value

hO�|[K, Q]H|O�i (5.26) nogo2b1

is positive definite, we get

q�Q (�Q � 1 + 2(d + �))  0. (5.27) nogo2b2

While for the global charge operator with �Q = 0 the above condition holds and there

is no constraint, for the gauge operator with �Q > 0 we obtain constraints

�  �d +
1 � �Q

2
, for q > 0, (5.28) nogo2c1

� � �d +
1 � �Q

2
, for q < 0. (5.29) nogo2c2

So if a primary operator has both positive and negative gauge charges, its scaling

dimension is determined by

� = �d +
1 � �Q

2
. (5.30) nogo2c3

With the regions (
dfcn2a

4.20), (
dfcn2b

4.21) and (
nogo1a1

5.20), there exists a bound on the scaling dimen-

sion of the charge operator

0  �Q  4. (5.31) nogo2c4

2
For simplicity here we turn o↵ the charge for the vacuum state, however, if the vacuum state has

charge q⌦, the analysis goes along the same lines with q replaced by q + q⌦.
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With the regions (
dfcn2a
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dfcn2b
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nogo1a1

5.20), there exists a bound on the scaling dimen-

sion of the charge operator
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2
For simplicity here we turn o↵ the charge for the vacuum state, however, if the vacuum state has

charge q⌦, the analysis goes along the same lines with q replaced by q + q⌦.
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With this normalized primary operators, consider the expectation value

hO�|C2|O�i = C2 = d(d � 1). (5.17) en1

An alternative point of view, we can write it as

hO�|HK � iD � D2|O�i = hO�|HK|O�i + (d + �)(d + � + 1). (5.18) en2

Requiring that the energy expectation value hO�|H|KO�i is positive definite and

combining eq.(
en1

5.17) with eq.(
en2

5.18), we find a condition

(� + 2d)(� + 1)  0. (5.19) en3

Taking into account the ranges (
dfcn2a

4.20) and (
dfcn2b

4.21) given by the D-function, we find a

constraint

�1  �  1 (5.20) nogo1a1

on the scaling dimension of the primary operator.

In particular, if the vacuum state |⌦i allows for the Heisenberg picture with d = 0,

the above constraint becomes more stringent

�1  �  0. (5.21) nogo1a3

It rules out primary operators with scaling dimension � < �1 and those with 0 < �.

In support of the consistency of the constraint, we see that the bosonic scalar operator

with scaling dimension �1
2 and fermionic operator with the scaling dimension 0 can

exist in CQM with the Heisenberg picture vacuum, as argued in the Lagrangian theory,

involving the DFF model
deAlfaro:1976je, Chamon:2011xk

[6, 12] and the superconformal quantum mechanics
Fubini:1984hf,Freedman:1990gd

[13, 14]

The upper bound �  0 is compatible with the Heisenberg vacuum state in such a

way that the integral of O�(t)|⌦i / t� over t is convergent.

Suppose that a theory allows the construction of a conserved charge. We will not

rely on the Lagrangian, but rather describe the charge as an abstract operator. Let Q

be the corresponding charge operator that obeys

QO� = qO�, (5.22) nogo2a1

Q|⌦i = 0, (5.23) nogo2a2

[H, Q] = 0, (5.24) nogo2a3

[D, Q] = i�QQ (5.25) nogo2a4

where q is a c-number. Eq.(
nogo2a1

5.22) and (
nogo2a2

5.23) assign the corresponding charges. We

assume that the primary operator O� has charge q and that the vacuum state is not
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The r.h.s. of eq.(
eco1a

4.14) should take a real value since it describes the energy expectation

value and the energy eigenvalue. Thus the function D(E) should be a real function.

We assume that the energy eigenstate |Ei form a complete orthonormal set so that

1 =

Z
dE|EihE|, (4.15) e1a

hE1|E2i = �(E1 � E2). (4.16) e1b

We then find

D(E) =
1 ± p

1 + 4(C2 � E2)

2
. (4.17) dfcn1a

Via the AdS/CFT correspondence, the bulk mass m of a scalar field in AdS2 space

is related to the dimension � of the corresponding operator on the boundary as

�(� � 1) = m2 (4.18) ads2a1

and there are two solutions
Gubser:1998bc,Witten:1998qj

[7, 8]

�± =
1 ± p

1 + 4m2

2
. (4.19) ads2a2

For 3
4 < m2 there is a unique admissible boundary condition as z�+ near z = 0

for a free scalar of mass m in AdS2 space and a unique quantization, whereas for

�1
4 < m2 < 3

4 there can be two possible boundary conditions as z�+ and z�� near

z = 0 and two possible quantizations
Breitenlohner:1982bm,Mezincescu:1984ev

[9, 10]. Comparison of eq.(
dfcn1a

4.17) with (
ads2a2

4.19) and

the above two mass ranges lead to two cases; 3
4 < C2 and �1

4 < C2 < 3
4 respectively.

As an energy eigenstate |Ei scales as tD(E), the good scaling behavior of the energy

eigenstate is realized when D(E) = 0. For this reason, we may adopt for D(E) the

latter case (Figure
figdfn

1)

D(E) =
1 � p

1 + 4(C2 � E2)

2
, for �1

4
< C2 <

3

4
, (4.20) dfcn2a

which corresponds to ��. The energy squared is bounded above and below; 0  E2 
C2 + 1

4 . Correspondingly, D(E) is also bounded above and below

d  D(E)  1

2
(4.21) dfcn2b

where d is the scaling dimension (
cqmv3g

3.19) of the vacuum state. The normalizability of

the energy eigenstate under the evolution operator can be kept when E2 = C2.

In quantum field theory change of scale is described by the renormalization group

(RG) transformation. In general the number of degrees of freedom in a physical system

decrease along the RG flows to lower energy. In CFT this can be quantitatively

measured by defining c-function
Zamolodchikov:1986gt

[1] which has the following properties:

10

The upper bound, i.e. the case where the dimension 4 gauge operator is coupled to the

primary operator, is only possible when the primary operator has dimension � = �1

the vacuum has dimension d = �1
2 .

Fixing the scaling dimension d of the vacuum, we encounter further constraints on

the dimensions �Q of the charge operator. Especially if we consider the Heisenberg

picture vacuum with d = 0, the conditions (
nogo2c3

5.30) and (
nogo2c4

5.31) become

� =
1 � �Q

2
(5.32) nogo2d1

and

1  �Q  3. (5.33) nogo2d2

Consequently in this case neither global charge nor gauge operators with �Q > 3 can

exist. For example, this would prohibit the existence of higher spin > 3 gauge fields.

It follows from (
nogo2d1

5.32) that the gauge operators with �Q = 1 which would realize spin

1 gauge fields involving photons and gluons which are only coupled to the fermions

with � = 0.

�1
2 , � = �2d
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A sequence of three finite transformations (2.6), (2.9) and (2.12) can be expressed by

t ! t0 = f(t) =
at + b

ct + d
, A =

 
a b

c d

!
2 SL(2, R). (2.14)

The infinitesimal transformations (2.7), (2.10) and (2.13) are summarized as

�t = ✏1 + ✏2t + ✏3t
2 (2.15)

where ✏1, ✏2 and ✏3 are the infinitesimal parameters of the Hamiltonian H, the di-

latation D and the special conformal transformation K respectively. The conformal

generators obey the commutation relations

[H, D] = iH, [K, D] = �iK, [H, K] = 2iD, (2.16)

which form the sl(2, R) algebra. In terms of the conformal generators, the Casimir

operator C2 of the sl(2, R) conformal algebra is written as

C2 =
1

2
(HK + KH) � D2 = KH + iD � D2. (2.17)

This expression specifies a choice of basis and its dual of the conformal algebra in terms

of the Hamiltonian, the dilatation and the special conformal transformation. Note

that (2.17) is a universal relation in conformal quantum mechanics although one can

obtain an alternative quantum mechanical description with di↵erent time coordinate

t0 = f(t) from (2.14) and its Hamiltonian H 0. For instance, in the simple conformal

quantum mechanical model, known as the DFF-model [13] with the action (3.15),

one can find the theory with di↵erent Lagrangian involving the harmonic potential

by changing the original time coordinate t into a new time coordinate t0 = 2 tan�1 t

whose Hamiltonian is H 0 := 1
2(H + K), which admits the discrete spectrum and the

normalizable ground state. However, still the generators H, D and K should be viewed

as the conformal generators in the time coordinate t and therefore the relation (2.17)

would intrinsically characterize the conjugation and scalar product in the state space

of conformal quantum mechanics with the time coordinate t.

One might worry that the system with the time coordinate t does not admit a dis-

crete energy spectrum and a normalizable vacuum state, as observed in [13]. However,

it only implies that the quantization needs a subtle treatment due to the constraints

on the canonical variables [14]. In other words, such undesirable properties for the

physical description originate from a naive assumption in the quantization problem

that all the canonical variables are the observables in the Hilbert space. For example,

in the DFF model with g > 0, the constraint x > 0 should be taken seriously to pro-

ceed the consistent quantization so that some operators and the states do not belong

6

charged 2. Eq.(
nogo2a3
5.24) implies that the charge operator Q is an auxiliary field. In the

Lagrangian description it would have no kinetic term, so it can be eliminated by its

algebraic equation of motion. Eq.(
nogo2a4
5.25) gives the scaling dimension �Q for the charge

operator Q. In the following we assume that �Q � 0 as all known charge operators

have this property.

The corresponding symmetry transformation is called a “global” transformation

if �Q = 0 because every charge at t is transformed in the same way so that q is a

constant charge, which we will call global charge. For the continuous case an operator

can be realized by exponentiating the corresponding global charge. When the theory

is defined also on a d � 1-dimensional space Md�1 separated from time, we can define

the higher-form global symmetry and the higher-form global charge Q(Md�1)
Gaiotto:2014kfa
[15].

On the other hand, if �Q > 0 we will call the symmetry transformation “gauge”

transformation because the charge is a function of time coordinate as q(t) / t�Q . In

this case the elimination of the charge operator by its equation of motion and the

gauge fixing would gives rise to the Gauss constraint. We will refer to the charge

operator as a gauge operator.

By demanding that the energy expectation value

hO�|[K, Q]H|O�i (5.26) nogo2b1

is positive definite, we get

q�Q (�Q � 1 + 2(d + �))  0. (5.27) nogo2b2

While for the global charge operator with �Q = 0 the above condition holds and there

is no constraint, for the gauge operator with �Q > 0 we obtain constraints

�  �d +
1 � �Q

2
, for q > 0, (5.28) nogo2c1

� � �d +
1 � �Q

2
, for q < 0. (5.29) nogo2c2

So if a primary operator has both positive and negative gauge charges, its scaling

dimension is determined by

� = �d +
1 � �Q

2
. (5.30) nogo2c3

With the regions (
dfcn2a
4.20), (

dfcn2b
4.21) and (

nogo1a1
5.20), there exists a bound on the scaling dimen-

sion of the charge operator

0  �Q  4. (5.31) nogo2c4

2For simplicity here we turn o↵ the charge for the vacuum state, however, if the vacuum state has

charge q�, the analysis goes along the same lines with q replaced by q + q�.
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With this normalized primary operators, consider the expectation value

hO�|C2|O�i = C2 = d(d � 1). (5.17) en1

An alternative point of view, we can write it as

hO�|HK � iD � D2|O�i = hO�|HK|O�i + (d + �)(d + � + 1). (5.18) en2

Requiring that the energy expectation value hO�|H|KO�i is positive definite and

combining eq.(
en1
5.17) with eq.(

en2
5.18), we find a condition

(� + 2d)(� + 1)  0. (5.19) en3

Taking into account the ranges (
dfcn2a
4.20) and (

dfcn2b
4.21) given by the D-function, we find a

constraint

�1  �  1 (5.20) nogo1a1

on the scaling dimension of the primary operator.

In particular, if the vacuum state |⌦i allows for the Heisenberg picture with d = 0,

the above constraint becomes more stringent

�1  �  0. (5.21) nogo1a3

It rules out primary operators with scaling dimension � < �1 and those with 0 < �.

In support of the consistency of the constraint, we see that the bosonic scalar operator

with scaling dimension �1
2 and fermionic operator with the scaling dimension 0 can

exist in CQM with the Heisenberg picture vacuum, as argued in the Lagrangian theory,

involving the DFF model
deAlfaro:1976je, Chamon:2011xk
[6, 12] and the superconformal quantum mechanics

Fubini:1984hf,Freedman:1990gd
[13, 14]

The upper bound �  0 is compatible with the Heisenberg vacuum state in such a

way that the integral of O�(t)|⌦i / t� over t is convergent.

Suppose that a theory allows the construction of a conserved charge. We will not

rely on the Lagrangian, but rather describe the charge as an abstract operator. Let Q

be the corresponding charge operator that obeys

QO� = qO�, (5.22) nogo2a1

Q|⌦i = 0, (5.23) nogo2a2

[H, Q] = 0, (5.24) nogo2a3

[D, Q] = i�QQ (5.25) nogo2a4

where q is a c-number. Eq.(
nogo2a1
5.22) and (

nogo2a2
5.23) assign the corresponding charges. We

assume that the primary operator O� has charge q and that the vacuum state is not

14

The r.h.s. of eq.(
eco1a
4.14) should take a real value since it describes the energy expectation

value and the energy eigenvalue. Thus the function D(E) should be a real function.

We assume that the energy eigenstate |Ei form a complete orthonormal set so that

1 =

Z
dE|EihE|, (4.15) e1a

hE1|E2i = �(E1 � E2). (4.16) e1b

We then find

D(E) =
1 ± p

1 + 4(C2 � E2)

2
. (4.17) dfcn1a

Via the AdS/CFT correspondence, the bulk mass m of a scalar field in AdS2 space

is related to the dimension � of the corresponding operator on the boundary as

�(� � 1) = m2 (4.18) ads2a1

and there are two solutions
Gubser:1998bc,Witten:1998qj
[7, 8]

�± =
1 ± p

1 + 4m2

2
. (4.19) ads2a2

For 3
4 < m2 there is a unique admissible boundary condition as z�+ near z = 0

for a free scalar of mass m in AdS2 space and a unique quantization, whereas for

�1
4 < m2 < 3

4 there can be two possible boundary conditions as z�+ and z�� near

z = 0 and two possible quantizations
Breitenlohner:1982bm,Mezincescu:1984ev
[9, 10]. Comparison of eq.(

dfcn1a
4.17) with (

ads2a2
4.19) and

the above two mass ranges lead to two cases; 3
4 < C2 and �1

4 < C2 < 3
4 respectively.

As an energy eigenstate |Ei scales as tD(E), the good scaling behavior of the energy

eigenstate is realized when D(E) = 0. For this reason, we may adopt for D(E) the

latter case (Figure
figdfn
1)

D(E) =
1 � p

1 + 4(C2 � E2)

2
, for �1

4
< C2 <

3

4
, (4.20) dfcn2a

which corresponds to ��. The energy squared is bounded above and below; 0  E2 
C2 + 1

4 . Correspondingly, D(E) is also bounded above and below

d  D(E)  1

2
(4.21) dfcn2b

where d is the scaling dimension (
cqmv3g
3.19) of the vacuum state. The normalizability of

the energy eigenstate under the evolution operator can be kept when E2 = C2.

In quantum field theory change of scale is described by the renormalization group

(RG) transformation. In general the number of degrees of freedom in a physical system

decrease along the RG flows to lower energy. In CFT this can be quantitatively

measured by defining c-function
Zamolodchikov:1986gt
[1] which has the following properties:

10

The upper bound, i.e. the case where the dimension 4 gauge operator is coupled to the

primary operator, is only possible when the primary operator has dimension � = �1

the vacuum has dimension d = �1
2 .

Fixing the scaling dimension d of the vacuum, we encounter further constraints on

the dimensions �Q of the charge operator. Especially if we consider the Heisenberg

picture vacuum with d = 0, the conditions (
nogo2c3
5.30) and (

nogo2c4
5.31) become

� =
1 � �Q

2
(5.32) nogo2d1

and

1  �Q  3. (5.33) nogo2d2

Consequently in this case neither global charge nor gauge operators with �Q > 3 can

exist. For example, this would prohibit the existence of higher spin > 3 gauge fields.

It follows from (
nogo2d1
5.32) that the gauge operators with �Q = 1 which would realize spin

1 gauge fields involving photons and gluons which are only coupled to the fermions

with � = 0.

�1
2 , � = �2d
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Figure 2: The bound on (d, �) in conformal quantum mechanics with conserved charge

Q. Here d is the scaling dimension of the vacuum, � is that of the charged primary

operator and �Q is that of the charge operator. In the green region the primary

operator and the vacuum are allowed and the red line represents the charged primary

operator. fignogo

The both lower and upper bounds, i.e. the case where the both gauge operators with

�Q = 1 and �Q = 3 exist, are satisfied only when the vacuum admits the Heisenberg

picture. Consequently gauge operators with �Q > 3 cannot exist. For example, this

would prohibit the existence of higher spin s > 3 gauge fields appearing in higher

dimensional field theories. It follows from (
nogo2d1
??) that the gauge operators with �Q = 1

which would realize spin s = 1 gauge fields involving photons and gluons in a four-

dimensional field theory are only coupled to the fermions with � = 0. This forbids

the existence of charged Higgs boson.

� = �2d � 1

6 Discussion

dissec

In this work we have studied conformal quantum mechanics with the vacuum state and

the primary operators. We have shown that a matrix element of the dilatation operator

between two energy eigenstates define a conformal quantum mechanical counterpart

of a c-function, which we call D-function. Its monotonic decrease from the UV to

the IR along the flow supports the universal irreversibility of the RG flow in higher

dimensional field theories. At the fixed point of the flow it becomes a crucial parameter

18

where g acts on time coordinate t as (
cf1a1
2.14) and T (g) is the representation matrix. It

follows from (
op1a1
5.1) that S↵�(g, 0) should be a representation of the stability subgroup at

time t = 0. According to the infinitesimal transformation (
ci1a1
2.15) this subgroup is given

by the dilatation and special conformal transformation. The commutation relation

(
cc1a1
2.16) reduces to

[K, D] = �iK, [K, K] = 0. (5.2) op1a2

Every element of the sl(2, R) conformal algebra can be constructed by ascribing the

time dependence to the generators

D(t) = eiHtDe�iHt = D � tH, (5.3) op1a3

K(t) = eiHtKe�iHt = K � 2tD + t2H (5.4) op1a4

Assume that

HO(0) = iȮ(0), (5.5) op1b1

DO(0) = i�O(0), (5.6) op1b2

KO(0) = �O(0). (5.7) op1b3

Here we will consider the case with � being c-number so that the operators O(0)

enjoys definite scaling dimensions. (
op1a2
5.2) then implies that �O(0) = 0 and we find that

HO�(t) = iȮ�(t), (5.8) op1b5a

DO�(t) = i

✓
�t

@

@t
+ �

◆
O�(t), (5.9) op1b5b

KO�(t) = i

✓
t2

@

@t
� 2t�

◆
O�(t). (5.10) op1b5c

Equivalently we can define the primary operators O�(t) which obey (
op1b5a
5.8)-(

op1b5c
5.10) by

the transformation law

O�(t) !
✓

@t0

@t

◆�

O�(t0) =
1

(ct + d)2�
O�(t0) (5.11) op1b6a

under the finite transformation (
cf1a1
2.14). The transformation laws (

op1b5a
5.8)-(

op1b5c
5.10) give rise

to the conformal Ward identities

0 =
n�

i=1

i

✓
�ti

@

@ti
+ �i + d

◆
h⌦|O1(t1) · · · On(tn)|⌦i , (5.12) op1b6b1

0 =
n�

i=1

i

✓
t2i

@

@ti
� 2ti(�i + d)

◆
h⌦|O1(t1) · · · On(tn)|⌦i . (5.13) op1b6b2
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Figure 2: The bound on (d, �) in conformal quantum mechanics. In the green region

the primary operator and the vacuum are allowed and the red line characterizes the

charged primary operator coupled the gauge operator of �Q. fignogo

Since hO�|KH|O�i = |H|O�i|2 is positive definite, we get a condition

�(� + 2d � 1)  0, (5.21) en5

which gives the additional constraint

0  � = �2d + 1. (5.22) nogo1a1a

The result is depicted in Figure
fignogo
2. The primary operator and the vacuum state can

exist in the green region. In particular the allowed range of the scaling dimensions of

the primary operator is

�1  �  0. (5.23) nogo1a1

While this rules out the primary operators with scaling dimension � < �1 and those

with 0 < �, it supports the existence of the bosonic scalar operator with scaling

dimension �1
2 and fermionic operator with the scaling dimension 0 in conformal quan-

tum mechanics, as argued and constructed in the Lagrangian theory. Both of these

bounds are compatible only for the Heisenberg picture vacuum with d = 0.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (
state1a
5.12) and the primary operator (

op1b6a
5.11). Let Q be the
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charged 2. Eq.(
nogo2a3

5.24) implies that the charge operator Q is an auxiliary field. In the

Lagrangian description it would have no kinetic term, so it can be eliminated by its

algebraic equation of motion. Eq.(
nogo2a4

5.25) gives the scaling dimension �Q for the charge

operator Q. In the following we assume that �Q � 0 as all known charge operators

have this property.

The corresponding symmetry transformation is called a “global” transformation

if �Q = 0 because every charge at t is transformed in the same way so that q is a

constant charge, which we will call global charge. For the continuous case an operator

can be realized by exponentiating the corresponding global charge. When the theory

is defined also on a d � 1-dimensional space Md�1 separated from time, we can define

the higher-form global symmetry and the higher-form global charge Q(Md�1)
Gaiotto:2014kfa

[15].

On the other hand, if �Q > 0 we will call the symmetry transformation “gauge”

transformation because the charge is a function of time coordinate as q(t) / t�Q . In

this case the elimination of the charge operator by its equation of motion and the

gauge fixing would gives rise to the Gauss constraint. We will refer to the charge

operator as a gauge operator.

By demanding that the energy expectation value

hO�|[K, Q]H|O�i (5.26) nogo2b1

is positive definite, we get

q�Q (�Q � 1 + 2(d + �))  0. (5.27) nogo2b2

While for the global charge operator with �Q = 0 the above condition holds and there

is no constraint, for the gauge operator with �Q > 0 we obtain constraints

�  �d +
1 � �Q

2
, for q > 0, (5.28) nogo2c1

� � �d +
1 � �Q

2
, for q < 0. (5.29) nogo2c2

So if a primary operator has both positive and negative gauge charges, its scaling

dimension is determined by

� = �d +
1 � �Q

2
. (5.30) nogo2c3

With the regions (
dfcn2a

4.20), (
dfcn2b

4.21) and (
nogo1a1

5.20), there exists a bound on the scaling dimen-

sion of the charge operator

0  �Q  4. (5.31) nogo2c4

2
For simplicity here we turn o↵ the charge for the vacuum state, however, if the vacuum state has

charge q⌦, the analysis goes along the same lines with q replaced by q + q⌦.
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gauge operator

Bounds on dimensions 
of gauge operator

the bra ⟨O∆| produce the same charge q ∈ R, this should vanish. On the other hand,

using the commutation relations (2.16) and (5.24)-(5.27), we find

[K,Q]H = 2iδQQD − δ2QQ + δQQ. (5.31)

Plugging this into (5.30) we get

qδQ (δQ − 1 + 2(d+∆)) = 0. (5.32)

For the global charge operator with δQ = 0 the above condition holds and there is no

constraint on the primary operator. However, for the gauge operator with δQ > 0 the

scaling dimension of the charged primary operator is determined by

d+∆ =
1− δQ

2
. (5.33)

The resulting constrained scaling dimension is illustrated in Figure 2. The red line

characterizes the gauge operator. Within the regions (5.23) and (5.19), there exists a

bound on the scaling dimension of the gauge operator

0 < δQ ≤ 2. (5.34)

This admits the presence of the gauge operators with δQ = 1, which would realize

massless spin s = 1 gauge fields involving photon and gluon, coupled to the physical

states with d+∆ = 0, i.e. free fermions. Also it is compatible with the gauge operators

with δQ = 2, which would show up as massless spin s = 2 fields involving graviton,

coupled to the physical states with d + ∆ = −1
2 , i.e. free bosonic scalars. On the

other hand, the bosonic auxiliary field with d + ∆ = 1
2 may not couple to the gauge

operators.

6 Discussion

In this work we have studied conformal quantum mechanics with the vacuum state

and the primary operators. We have shown that a matrix element of the dilatation

operator between two energy eigenstates may define a conformal quantum mechanical

counterpart of a c-function, which we call a D-function. Its monotonic decrease from

the UV to the IR along the flow supports the universal irreversibility of the RG flow

in higher dimensional field theories. At the fixed point of the flow it becomes a

crucial parameter d, that is the scaling dimension of the vacuum, which specifies the

theory, analogous to the central charge in two-dimensional conformal field theories. In

addition, we have found new no-go theorems which impose constraints and bounds on

scaling dimensions of the primary operator, the vacuum and the gauge operators.

20

under the finite transformation (2.14).

We will formulate conformal quantum mechanics in terms of the primary operators

O∆(t) acting on the vacuum state |Ω⟩. We assume that each state in the Hilbert space

is represented by

|state⟩ = F (G)|O∆1
(t1) · · ·O∆n

(tn)⟩ (5.12)

where

|O∆1
(t1) · · ·O∆n

(tn)⟩ = O∆1
(t1) · · ·O∆n

(tn)|Ω⟩ (5.13)

with F (G) being some function of G = uH + vD + wK. Let us examine the expec-

tation values ⟨stateA|stateB⟩ constructed as overlaps of the two states |stateA⟩ and

|stateB⟩ with the form of (5.12) in the Hilbert space. In this work we will explore the

expectation value involving the time-independent primary operators O∆ := O∆(0) and

take the conventional choice of the overall constant one which fixes the normalization

of O∆ as

⟨O∆|O∆⟩ = 1. (5.14)

Now we would like to extract constraints on the description of the unitary evolution

for a certain physical system. To achieve this, one needs to fix its time coordinate t and

construct all the physical states in such a way that they fall into the representations

of the sl(2,R) conformal algebra specified by the vacuum with the eigenvalue of the

Casimir invariant C2, i.e. the scaling dimension d. Given the normalized primary

operators (5.14), this corresponds to the condition

⟨O∆|C2|O∆⟩ = C2 = d(d− 1), (5.15)

which ensures the unitary evolution of the states by fixing the eigenvalue of the Casimir

invariant. Alternatively, we can write the expectation value (5.15) as

⟨O∆|HK − iD −D2|O∆⟩ = ⟨O∆|HK|O∆⟩+ (d+∆)(d+∆ + 1). (5.16)

Unitarity implies the positivity of the inner product in the Hilbert space. Demanding

that ⟨O∆|HK|O∆⟩ = |K|O∆⟩|2 is positive definite and combining (5.15) with (5.16),

we find a condition

(∆+ 2d)(∆+ 1) ≤ 0. (5.17)

Together with the preferred range (4.22) under the unitary evolution probed by the

D-function, we obtain the bounds on scaling dimension of the primary operator and
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of the vacuum

−1 ≤ ∆ ≤ −2d, (5.18)

−
1

2
≤ d ≤

1

2
. (5.19)

Similarly we can extract further constraints by rewriting (5.15) as

⟨O∆|KH + iD −D2|O∆⟩ = ⟨O∆|KH|O∆⟩+ (d+∆)(d+∆− 1). (5.20)

Since ⟨O∆|KH|O∆⟩ = |H|O∆⟩|2 is positive definite, we get a condition

∆(∆ + 2d− 1) ≤ 0, (5.21)

which gives the additional constraint

0 ≤ ∆ ≤ −2d+ 1. (5.22)

The result is depicted in Figure 2. The primary operators and the vacuum states

can exist in the orange region. As a consequence, the allowed range of the scaling

dimensions of the physical states |O∆⟩ which are constructed in terms of the vacua

and the primary operators is

−
1

2
≤ d+∆ ≤

1

2
. (5.23)

It supports the existence of the bosonic scalar with scaling dimension −1
2 , the fermion

with the scaling dimension 0 and the bosonic auxiliary field with scaling dimension 1
2 in

conformal quantum mechanics, as argued and constructed in the Lagrangian theory. If

we relax the condition (5.19) for the favored energy eigenstates |E⟩ under the unitary
evolution, which is examined by the D-function, the states are allowed in the green

region.

Suppose that a theory allows the construction of a conserved charge. In what

follows, we will not rely on the Lagrangian, but rather describe a charge as the op-

erator that acts on the state (5.12) and the primary operator (5.11). Let Q be the

corresponding charge operator that obeys

QO∆ = qO∆, (5.24)

Q|Ω⟩ = 0, (5.25)

[H,Q] = 0, (5.26)

[D,Q] = iδQQ (5.27)

with q ∈ R. (5.24) and (5.25) assign the charges such that the primary operator O∆

has charge q whereas the vacuum state has no charge. (5.26) implies that the charge

17

To make all predictions in quantum mechanics work correctly, we shall associate

some energy eigenstate |E⟩ of the energy E with the unitary group to describe time

evolution, i.e. the unitary evolution. However, as the quantity D(E) measures the

averaged scaling dimension of the energy eigenstate |E⟩, the energy eigenstate |E⟩
would behave as tD(E). So it is preferable to have D(E) = 0. To achieve this, we will

need to take the minus sign in (4.16) and we have

D(E) =
1−

√

1 + 4(C2 − E2)

2
, (4.17)

which we will call a D-function.

Now let us make a connection to the AdS/CFT correspondence. It tells [18, 19]

that the bulk mass m of a scalar field in AdS2 space is related to the dimension ∆m

of the corresponding operator on the boundary as

∆m(∆m − 1) = m2 (4.18)

and there are two solutions

∆±

m =
1±

√
1 + 4m2

2
. (4.19)

For 3
4 < m2 only the boundary conditions with ∆+

m lead to the normalizable solution

[20, 21, 22] as z∆
+
m near z = 0 for a free scalar of mass m in the AdS2 space whose

metric is given by

ds2 =
1

z2
(dz2 + dt2). (4.20)

Since (4.17) corresponds to∆−
m, it is unlikely that the dual conformal quantum mechan-

ics appears when 3
4 < m2. Meanwhile there can be two possible boundary conditions

with ∆+
m and ∆−

m when [20, 21, 22]

−
1

4
< m2 <

3

4
(4.21)

where the lower bound is the Breitenlohner-Freedman bound 7. Comparing (4.16) with

(4.19) for ∆−
m, the mass range leads to E2 − 1

4 ≤ C2 ≤ E2 + 3
4 . The existence of the

vacuum state requires that the Casimir is bounded above and below; −1
4 ≤ C2 ≤ 3

4 and

that the scaling dimension d of the vacuum has a bound −1
2 ≤ d ≤ 1

2 . The resulting

function (4.17) is shown in Figure 1. As the energy eigenvalue E takes real values,

7It has been discussed [23] that an electric field E in AdS2 can shift the Breitenlohner-Freedman

bound − 1

4
< m2 to − 1

4
+ E2 ≤ m2 due to the pair production of the Schwinger effect. But we will

not consider such effect in this work.
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Bounds on dimensions 
of gauge operator

the bra ⟨O∆| produce the same charge q ∈ R, this should vanish. On the other hand,

using the commutation relations (2.16) and (5.24)-(5.27), we find

[K,Q]H = 2iδQQD − δ2QQ + δQQ. (5.31)

Plugging this into (5.30) we get

qδQ (δQ − 1 + 2(d+∆)) = 0. (5.32)

For the global charge operator with δQ = 0 the above condition holds and there is no

constraint on the primary operator. However, for the gauge operator with δQ > 0 the

scaling dimension of the charged primary operator is determined by

d+∆ =
1− δQ

2
. (5.33)

The resulting constrained scaling dimension is illustrated in Figure 2. The red line

characterizes the gauge operator. Within the regions (5.23) and (5.19), there exists a

bound on the scaling dimension of the gauge operator

0 < δQ ≤ 2. (5.34)

This admits the presence of the gauge operators with δQ = 1, which would realize

massless spin s = 1 gauge fields involving photon and gluon, coupled to the physical

states with d+∆ = 0, i.e. free fermions. Also it is compatible with the gauge operators

with δQ = 2, which would show up as massless spin s = 2 fields involving graviton,

coupled to the physical states with d + ∆ = −1
2 , i.e. free bosonic scalars. On the

other hand, the bosonic auxiliary field with d + ∆ = 1
2 may not couple to the gauge

operators.

6 Discussion

In this work we have studied conformal quantum mechanics with the vacuum state

and the primary operators. We have shown that a matrix element of the dilatation

operator between two energy eigenstates may define a conformal quantum mechanical

counterpart of a c-function, which we call a D-function. Its monotonic decrease from

the UV to the IR along the flow supports the universal irreversibility of the RG flow

in higher dimensional field theories. At the fixed point of the flow it becomes a

crucial parameter d, that is the scaling dimension of the vacuum, which specifies the

theory, analogous to the central charge in two-dimensional conformal field theories. In

addition, we have found new no-go theorems which impose constraints and bounds on

scaling dimensions of the primary operator, the vacuum and the gauge operators.

20
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the bra ⟨O∆| produce the same charge q ∈ R, this should vanish. On the other hand,

using the commutation relations (2.16) and (5.24)-(5.27), we find

[K,Q]H = 2iδQQD − δ2QQ + δQQ. (5.31)

Plugging this into (5.30) we get

qδQ (δQ − 1 + 2(d+∆)) = 0. (5.32)

For the global charge operator with δQ = 0 the above condition holds and there is no

constraint on the primary operator. However, for the gauge operator with δQ > 0 the

scaling dimension of the charged primary operator is determined by

d+∆ =
1− δQ

2
. (5.33)

The resulting constrained scaling dimension is illustrated in Figure 2. The red line

characterizes the gauge operator. Within the regions (5.23) and (5.19), there exists a

bound on the scaling dimension of the gauge operator

0 < δQ ≤ 2. (5.34)

This admits the presence of the gauge operators with δQ = 1, which would realize

massless spin s = 1 gauge fields involving photon and gluon, coupled to the physical

states with d+∆ = 0, i.e. free fermions. Also it is compatible with the gauge operators

with δQ = 2, which would show up as massless spin s = 2 fields involving graviton,

coupled to the physical states with d + ∆ = −1
2 , i.e. free bosonic scalars. On the

other hand, the bosonic auxiliary field with d + ∆ = 1
2 may not couple to the gauge

operators.

6 Discussion

In this work we have studied conformal quantum mechanics with the vacuum state

and the primary operators. We have shown that a matrix element of the dilatation

operator between two energy eigenstates may define a conformal quantum mechanical

counterpart of a c-function, which we call a D-function. Its monotonic decrease from

the UV to the IR along the flow supports the universal irreversibility of the RG flow

in higher dimensional field theories. At the fixed point of the flow it becomes a

crucial parameter d, that is the scaling dimension of the vacuum, which specifies the

theory, analogous to the central charge in two-dimensional conformal field theories. In

addition, we have found new no-go theorems which impose constraints and bounds on

scaling dimensions of the primary operator, the vacuum and the gauge operators.
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scalar may couple to two-form gauge fields

fermion may couple to one-form gauge fields



Main Results
i. C-function in CQM

⟨p′,±j|Jµ|p,±j⟩ = 0 (1.106)

⟨p′,±j|T µν |p,±j⟩ (1.107)

j >
1

2
(1.108)

j > 1 (1.109)

|p,±j⟩ → e±iθj|p,±j⟩ (1.110)

|p′,±j⟩ → e∓iθj|p′,±j⟩ (1.111)

e±2iθj⟨p′,±j|Jµ|p,±j⟩ (1.112)

e±2iθj⟨p′,±j|T µν |p,±j⟩ (1.113)

R(θ)µρ⟨p
′,±j|Jρ|p,±j⟩ (1.114)

R(θ)µρR(θ)νσ⟨p
′,±j|T ρσ|p,±j⟩ (1.115)

R(θ)µρ ⇒ eiθ, e−iθ (1.116)

H|E⟩ = E|E⟩ (1.117)

φE(x) =
√
xJ√

g+ 1
4

(√
2Ex

)
(1.118)

φ0(x) =

√
2

Γ(2r0)
e−

x2

2 x
1
2+
√

g+ 1
4 (1.119)

φn(x) =

√
Γ(n+ 1)

2Γ(n+ 2r0)
x− 1

2x2r0e−
x2

2 L2r0−1
n (x2) (1.120)

c =

∫

S2k

⟨T µ
µ⟩ (1.121)
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cf.

−1

2
≤ d+∆ ≤ 1

2
(0.1)

0 ≥ δQ > 0 (0.2)

1

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d+∆ ≤ 1

2
(0.2)

0 ≥ δQ > 0 (0.3)

1

D(E) := i⟨E|D|E⟩ (0.1)

−1

2
≤ d ≤ 1

2
(0.2)

−1

2
≤ d+∆ ≤ 1

2
(0.3)

0 ≥ δQ > 0 (0.4)

1

II. No-Go theorem in CQM

−d+

∆

∆ = −d+
1− δQ

2
.

−1 ≤

≤ 1 (5.20)

≤
1

2

−

1

2
,

, ∆ = −2d

x > 0 should be taken seriously to pro-

≤ ∆ = −2d+ 1.

Figure 2: The bound on (d,∆) in conformal quantum mechanics. In the orange region

the primary operators with the dimension ∆ and the vacuum states with the dimension

d are allowed and the red line characterizes the charged physical states coupled to the

gauge operators of δQ. Without the favored condition (5.19) for the unitary evolution

of the states, the green region is also allowed.
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Bounds on dimensions 
of reference state

Bounds on dimensions 
of physical state

Bounds on dimensions 
of gauge operator

the bra ⟨O∆| produce the same charge q ∈ R, this should vanish. On the other hand,

using the commutation relations (2.16) and (5.24)-(5.27), we find

[K,Q]H = 2iδQQD − δ2QQ + δQQ. (5.31)

Plugging this into (5.30) we get

qδQ (δQ − 1 + 2(d+∆)) = 0. (5.32)

For the global charge operator with δQ = 0 the above condition holds and there is no

constraint on the primary operator. However, for the gauge operator with δQ > 0 the

scaling dimension of the charged primary operator is determined by

d+∆ =
1− δQ

2
. (5.33)

The resulting constrained scaling dimension is illustrated in Figure 2. The red line

characterizes the gauge operator. Within the regions (5.23) and (5.19), there exists a

bound on the scaling dimension of the gauge operator

0 < δQ ≤ 2. (5.34)

This admits the presence of the gauge operators with δQ = 1, which would realize

massless spin s = 1 gauge fields involving photon and gluon, coupled to the physical

states with d+∆ = 0, i.e. free fermions. Also it is compatible with the gauge operators

with δQ = 2, which would show up as massless spin s = 2 fields involving graviton,

coupled to the physical states with d + ∆ = −1
2 , i.e. free bosonic scalars. On the

other hand, the bosonic auxiliary field with d + ∆ = 1
2 may not couple to the gauge

operators.

6 Discussion

In this work we have studied conformal quantum mechanics with the vacuum state

and the primary operators. We have shown that a matrix element of the dilatation

operator between two energy eigenstates may define a conformal quantum mechanical

counterpart of a c-function, which we call a D-function. Its monotonic decrease from

the UV to the IR along the flow supports the universal irreversibility of the RG flow

in higher dimensional field theories. At the fixed point of the flow it becomes a

crucial parameter d, that is the scaling dimension of the vacuum, which specifies the

theory, analogous to the central charge in two-dimensional conformal field theories. In

addition, we have found new no-go theorems which impose constraints and bounds on

scaling dimensions of the primary operator, the vacuum and the gauge operators.
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