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QFT = Quantum Mechanics + Special Relativity

State vector in Hilbert space + Pincare sym.

Fields => Casimir of Poincare alg t ‘1915 Einstein

Spin & Mass
P Maxwell eq. is conformal inv.

‘1915 Bateman, Cunningham

CFT = Quantum Mechanics + Conformal sym.
Operators => Casimir of conf alg anomalous dimension,
critical dimension etc.

Spin & Scaling dimension

CFT can be defined via sym properties
of the correlation functions !

» No need Lagrangian !
(O1(1) -+ Onlan))




CQM = Quantum Mechanics + Conformal Symmetry of Time

State vector in Hilbert space + SL(2,R)

Operators => Casimir of conf alg » Energy & Scaling dimension !

Scaling dimension

Hamiltonian # dilatation
in CQM

Q. What can we learn CQM from correlation function?

(On,(t1) -~ O, (tn))

w/o Lagrangian description
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Main Results

i. C-functionin CQM .
. c= T+
D(E) := i(E|D|E) /Sg,f 2
Bounds on dimensions 1 1 o
of reference state _5 <d< 5 (unitarity)
A=-2d+1
Il. No-Go theorem in CQM
A=-2d
Bounds on dimensions 1 1 h— gu 1 —dq
of physical state ——= < d -+ A < = 2
2 2 (positivity)

Bounds on dimensions 0 < 5@ S 2

of gauge operator




l. Conformal Symmetry
of Time



Conformal Symmetry

Conformal Transf = Invertible coordinate map that leaves metric invariant up to scale

/ / N
r — X gw/(x) — g;u/(x) — Q(x)g(x)
finite transf. infinitesimal transf.
. / .
|. Translation rH =t + at PM == —Z@M
2. Dilatation lel’u — art @ = —Z'QSMQD
3. Rotation = MH L, =iz, —x,2,)
VRS NV .
4.5CT o U @: —i(22,2"0, — 2°0),
2 2
1—2 -2+ b°x

Extension of Poincare sym.



Locally preserving angle
between 2 distinct points



Conformal Transformation of Time

ot — ot + €

Juv — Juv @Ey + au@

d=1

—

solve 9

f(x)gw/ m— f(z) = dﬁueu

o = A+ B,a"
d—1)0°f =0

20,0,€p = Np0u | + M pOuf — MO, f

no constraint

—> Conf(R) = Diff(R)
conf(R) = C*(R)



But...

* Definition through metric tensor & absence of angle
shows that d=1 is completely different.

* Diff(R) essentially requires the presence of gravity.

)

Appearance of D & K,
is intrinsically motivated time symmetry !



Infinitesimal transf.

| Translation B(: _7;@/ |. Translation ] — @g
t
2. Dilatation D = _m@ j> 2.Dilatation  ]) — it%
—J—Rotation L,LLV — ré,fm?y_ﬁ?ﬁﬁ_
: 1,
K, = —i e — %0 3.5CT K =it —
4.5CT = —i(2#pa—y ) 3.SCT it

H,D|=iH [K,D|=—iK [H,K]=2iD

. k 1 /K

conf(R) :=s0(1,2) & sl(2,R) = sp(2)

Conformal Symmetry of Time



New time

dt

G=uH +vD +wK dr =
u + vt + wt?

G|V) = z—\\If>

Schrodinger Equation

=> (4 is the new Hamiltonian of new time T



t At Discriminant of new time
T = / dr = / + 70
to

u + vt + wt'? A =v* — duw

.
2wt+v—vVA| ]

2wt—|—’u—|—\/z

1

v—ﬂ)) for A > 0

1
\/_Z (111 fv+\/Z

2 —1 2wit+v -1 v
= (tan i tan T) for A <0

- (- 2) for A =

3 different classes of new time



finite transf. of time

t =

| . Translation

2. Dilatation

3.5CT

at+b Az(g ;) e PSL(2,R)
ct+d
detA =1
t =t — ¢ A:( 1 0)
—€1 1
t’:€_€2t 14:(6_7 92 )
0 e?
I t 1 €3
et +1 AZ(() 1 )

infinitesimal transf. of time

0t = €1 + €2t -+ €3t2



Difference between CQM & CFT

. Time symmetr’y taken seriously
(H # D, energy & dimension, no Wick rotation, no radial quantization)

.  Hilbert space rather than Fock space

(zero point energy, ground state # vacuum) 08 Sen ’I| Chamon et al

lll.  AdS,/CFT, correspondence

(one-dimensional disconnected bdy, AdS, factor in BH)



Il. Lagrangian CQM



Lagrangian COM (DFF model)

‘76 de Alfaro Fubini Furlan

d=|
1 24
L= §0u¢5“¢ — gpa-2 » S = %/dt (;;;2 _ %)

scale inv. scalar field theory o at—+b x’(t’) x(t)

ct+d ct+d
Hamiltonian H = 1(p2 + 9
2 x>
. . 1
Dilatation generator D =tH — z(a:p + px)

1 1
SCT generator K =t*H — §t(xp + px) + §x2



Energy eigenstate H|E) = E|E)

* The spectr@continuouD

* The spectrum is bounded below

* For E>O0, there exists a plane wave normalizable state

0u(x) = VT s (V2Ez)

* For E=0 (vacuum state), the eigenstate @n-normalizab@

d? g
T2t ¢(x) =0 / _ 1+ T+4g
2

QO

¢(x) = _1-JIidg




DFF’s proposal

Change time and Hamiltonian V(z) = L 422
i
T=tan 't —tan 't /
1 2 g 2
G=Ly==(H+K) xXp"+ = +=x _—
0 2( ) p x2 \\77{:7 - T
g
1 (K ' Viz) =5
Ly=—-|——aH 2D
2\ a
Ln? L ] (m o n)Lm+n
ectrum Lo|n) = r,|n) rn=ro4+n, n=01,2"-
1 1
o ()
ave function ¢, = R N
F(2r0)
I'n+1 1 22
an(l’) = %x_gx%oe—zljg’o—l(mZ)
/ ““\\




n'POint function ‘76 de Alfaro et al.

They assume the existence of

Hlt) = - di ), Lolt) = —% Ka+ ~
?{ |t> Dl|t) = ( )
(v

) [
. +27’0t)

Klt) =

Define [, := (t|n)

i t2\ d t
5 [(CL + E) E + QTOEI 571 — 7anﬁn

5.(8) — (1) [F(Zro +n)]% (a _ zt) ; +1t2

n!

Fy(ty, t2) = (ti]ta)
= Zﬁn(tl)ﬁ (t2)

I'(2rg)a?" 1
[22@1 — t2)]27’0 (tl — t2)27’0




‘I Chamon, Jackiw, Santos

Explicit construction of ‘t>

’t> — O(t)\n — ()> O(t) = N(t)e @Ol

N(t) = /I'(2r9) (W(t)2+ 1) 0
alt) =
. t> is almost coherent states  (L_ + wly)|t) = —rowlt)

° t> gives operator-state correspondence |U) := e 7|t = 0) = e %L+ |n = 0)

Lo|¥) = ro|¥)
|W) o< [n=0)
operator state

operator is not primary & state is not conformal inv.



11l. No-Lagrangian
Approach for CQM



Reconsider the original situation in DFF-model

l.  The energy spectrum is continuous
ll. The vacuum state is non-normalizable

¥

They rather indicate that
the quantization needs subtle treatment due to
the constraints on canonical variables

2

. K__Q; "1 6 Strocchi

The situation may not be essentially problem !



The old issues in CQM could be due to an inappropriate quantization manner
which naively assume that all variables in Lagrangian are physical variables.

Here we will skip the issue on Lagrangian CQM,
but address the Non-Lagrangian CQM as follows

Stepl

Introduce 2 ingredients which stem from conformal symmetry

Vacuum State ‘Q> Primary Operators ’O A

— Step2

Construct physical states as

On, (t1) - On, () [82)




Vacuum state | Q>

REE

Due to the constraints, vacuum is not generically physical state,
but rather the reference state

Q) & H

Hilbert space




Bra (dual states)
Def
{ (bra| : |ket) — C }

SL(Q, R) Casimir operator Co = KH + 1D — D?

imposes constraints on construction of bra

(bra| K < H |ket)
(bra|D < Dlket)
(bra| < Dlket)

We take the normalization <Q‘Q> =1

non-normalizable
) — No !
e vacuum !

such vacuum is generically not physical state,
it cannot be written as wfn of physical obserbables as in DFF.



deR
D|Q) = 1d|2) scaling dimension of vacuum

(QID|Q) = id
(QIDQ) = —(d + Cy) = —d?

Cy = d(d — 1)

Casimir characterizes the scaling dimension of vacuum of CQM !

’% Conformal boost K increases ¢ by |
D(K"|Q0)) =i(d+n)K|Q)



Energy eigenstate

H|E) = E|E)

The energy eigenstates in CQM generally have continuous spectrum.
H(e"“P|E)) = e “E(e"7|E))

Dilatation operator makes such energy eigenstate.

However, again we do not identify generic energy eigenstates ]E>
with the physical states !

We have to project out non-physical states from | F)



Thus far we have no physical input.
We have just viewed the SL(2,R) as conformal symmetry
and introduced reference states for CQM.

Q. How can we construct CQM by
imposing physical requirement?

unitary evolution of energy eigenstates ‘E>



D-function

Define 1

D(E) := —(E|D|E)

1

completeness of |F) 1= /dE\E)<E|
‘ normalization (Ey|Es) = 0(E, — E»)

B 1Z|Z\/1_|_4(CQ_E2)

D(E
(E) 2
quantum scaling dimension of |E)
Unitarity of the evolution operator for |E)
‘ can be realized when E2 =, as |E) ~ tPE)=0
for a choice of negative sign
1 —+/14+4(Cy — E?
D(E) _ \/ + ( 2 )

2



Q. When can we choose negative sign?



AdS/CFT & BF bound

AdS,,, free scalar with mass M

S = / d™z/=g (¢"0,00,6 + m*¢?)

AdS/CFT correspondence claims that
bulk mass 777 of scalar in AdS,, is related to
scaling dimension of corresponding boundary CFT, operator

'98 GKP; Witten

d 4+ d? + 4m?
Ay =
2
d2
7 +1<m? | admissible BC of wfn and quantization => AV

d2
€< m? < 7 +1 2 admissible BC of wfn and 2 quantizations => /\

’82 Breitenlohner, Freedman



For AdS, A, — d+ Va2 + 4m?2 » Ax_ L + 1+ 4m?
2

2, P o,
= =41 T emi<”
p<m<— » 7 <M<

o 1+ /14 4(Cy — E?)
- 2

quantum scaling dimension of |E)

existence of vacuum of scaling dimension (]

1 1
—1<d< ]

Bounds on dimensions
of the reference vacuum state

NI
VA
)
(\)
A
NI




C-function and C-theorem

A function of coupling constant § and energy scale F/
which is defined on the space of theory

* positive & real

decreasing energy scale
* decreasing monotonically alon

* stationary at RG-fixed pt and equ

rucial para@in CFTy

conformal anomaly in d=2k

"
/S% (1) ‘88 Cardy

\

trace of EM tensor
=> dilatation current

(D)

c-function: ¢ (2d)

d o % ok free energy: F (3d)
/2 p

dot log Z[S*"] 2k_1r v N> a-function: a (4d)

G N 62049

counting massless dof

. on that energy scale
not applicable for d=1

w/0 metric tensor



1
Actually the D-function D(E) := ;(E\D|E> follow the properties of C-function !

: . & DFF model
A function of coupling constant § and energy scale [/ && T moce
which is defined on the space of theory DE) 1—y/g—4E>+}
2
* real
dD(E) 28

* decreasing monotonically along descrease of energy scale

dE  \/1+4(C, — E?)

* stationary at RG-fixed pt and equal to crucial parameter in CQM

DE=0)=d= 1-vitih V;“LCQ
' D(F)

Unitarity <=> C-theorem

C; C+1 B2

L. - Scaling dimension of vacua



Primary Operators

To describe physical system,
we postulate the presence of primary operators

AN , 4 — at+b
Oa(t) — e Oa(t') — ct+d
1 _ a C

- (Ct+d)2A0A(t/) A ( b d) € PSL(

HO(t) = iOa(t)

DOA(t) = (—z’t% + A) Oa(t)

KOa(t) = (z‘ﬂ% — 2tA) Oa(t)

Q. What can we learn CQM from correlation function?

<OA1 (tl) - OAn (tn)> 10a,(t1) - Oa, (t,)) = Oa, (t1) -

w/o Lagrangian description

OA,L (tn> ’Q>



Weinberg-Witten Theorem goweinberg-Witten

|.  If theory has Lorentz covariant conserved current, <=> Charge conservation
massless charged spin > 1/2 particle does not exist.

ll. If theory has Lorentz covariant EM tensor, <=> Energy conservation
massless spin > | does not exist.

Given the conditions, the following matrix elements should never vanish
: : 1
' £l p, £5) =0 5>
w7 |p,x£5) =0 j>1
However, states w/ spin j transform as
p, £5) — ¢ Ip, £5) » U £ T px]) = R(O)" (0, £|T7|p, £5)
', £5) — e, ) I | T 0. £ = R(0) R(0)” (p, £5|T" |p, £5)

R(Q)“p = ¢ 7%

Although the statement is just simple group theoretical analysis,
the it gives powerful constraint d physically meaningful.

Casimir of Poincare group



No-Go Theorem in COM

Now consider similar constraints in CQM on @ dime@

We take the normalization Casimir of SL(2,R) conformal group

(OalOa) =1

[Oa,(t1) -+ On, (tn)) = Oa, (1) - - - Oa, (40) ) On := Oa(0)

Consier Crucial parameter fixed by the theory that we consider Cy — d(d — 1)
<0A<@§9A> = d(d - 1)
Co=KH +iD — D?

‘ — HK —iD — D?

(OA|HK|OA) + (d+ A)(d+ A +1) : \
=d(d—1
(OA|KH|OA) + (d+ A)(d+ A —1)

N 4 (bra| K < H|ket)

(OalKH|Ox) = [H|O4)[?

0 ositivity condition
(OA|HK|O) = K08P = P y



(A+2d)(A+1)<0
AA+2d—-1)<0

A=-2d

[N

T no




A=-2d+1

A= —-2d

|
N[

A e




Physical State
On (t1) -+ On, () |€)

\

Bounds on dimensions
of physical state

A=-2d+1

1

—— <d+ A< -
224255

1

A=-2d

DO [ =
[

Admitted

[N

VAN
DO | =




cf.)

Bounds on dimensions
of physical state

1 1

S <d+A<

2 2

— 1
d+ A = _5 free scalars
_J d+A=0 free fermions
1

d+ A= 5 auxiliary fields

The range is consistent with Lagrangian CQM

supermultiplet of SUSY QM

BEHD

#(free scalars)  #(free fermions)  #(auxiliary fields)



Furthermore consider charge operator ()

QOA — C]OA Giving charge ¢ € R to primary operator

Q ‘ Q> = O Giving no charge to reference vacuum state

[H) Q] — () non-dynamical operator (auxiliary field)

[D, Q] = ZéQQ Having scaling dimension 0Q

Consier

(OallK, QIH|Oa)
\ 4 (K, QIH = 2i6oQD — 55Q + doQ

5 L d+ A — 1 — 5@ Gauge field may have arbitrary space-
Q — + o 9 time coordinate dependence (local field)

global charge operator gauge operator



A=-2d+1

A=-2d

gauge operator A — _ 1 -9
2

Bounds on dimensions
of gauge operator

O<5Q§2 -

[N

DO |

VAN

[
DO | =




Bounds on dimensions
of gauge operator

O<5Q§2

5@ = 1 one-form gauge fields D photon, gluon etc.

5@ =2 two-form gauge fields D graviton

$ ara-1%

fermion may couple to one-form gauge fields

scalar may couple to two-form gauge fields



Main Results

i. C-functionin CQM .
. c= T+
D(E) := i(E|D|E) /Sg,f 2
Bounds on dimensions 1 1 o
of reference state _5 <d< 5 (unitarity)
A=-2d+1
Il. No-Go theorem in CQM
A=-2d
Bounds on dimensions 1 1 h— gu 1 —dq
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Bounds on dimensions 0 < 5@ S 2

of gauge operator




