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1. Basic quantizations of sl(2;C) ' o(3;C) and of its real forms o(3) ' su(2)
and o(2, 1) ' sl(2;R) ' su(1, 1)

1.1 Classical r-matrices of sl(2;C) and of its real forms:su(2), su(1, 1), sl(2;R)

Any classical skew-symmetric r-matrix of arbitrary complex or real Lie
algebra g, r ∈ g ∧ g, satisfy CYBE or mCYBE:

[[r, r]] = Ω̃ r = r(1) ∧ r(2). (1)
Here [[·, ·]] is the Schouten bracket which for any skew-symmetric two-tensors
r1 = x ∧ y and r2 = u ∧ v (x, y, u, v ∈ g) is given by

[[x ∧ y, u ∧ v]] := x ∧
(
[y, u] ∧ v + u ∧ [y, v]

)
−y ∧

(
[x, u] ∧ v + u ∧ [x, v]

)
= [[u ∧ v, x ∧ y]]

(2)

and Ω̃ is the g-invariant element, Ω̃ ∈ (
3
∧ g)g (i.e. [∆2(x),Ω̃] = 0 for ∀x∈g)

which in the case of g = sl(2;C) takes unique form

Ω̃ = γ Ω(sl(2) = γ E+ ∧H ∧ E− γ ∈ C (3)
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Cartan-Weyl basis (E±, H) :

[H,E±] = ±H [E+, E−] = 2H

One can show that any two-tensor of sl(2;C) ∧ sl(2;C) is a classical sl(2;C)
r-matrix. Indeed, let

r := β+r+ + β0r0 + β−r− (β+, β0, β− ∈ C) (4)

be arbitrary element of sl(2;C) ∧ sl(2;C), where

r+ := E+ ∧H, r0 := E+ ∧ E−, r− := H ∧ E− (5)

are basis elements of sl(2;C) ∧ sl(2;C). All basis elements (5) are classical
r-matrices, and one can calculate that

[[r, r]] = −4(β2
0 + β+β−)E+ ∧H ∧ E− ≡ γΩ. (6)

i) If the coefficients of (4) satisfy the condition γ := β2
0 + β+β− = 0 then it

satisfies the homogeneous CYBE (CYBE)
ii) If γ := β2

0 + β+β− 6= 0 then it satisfies the non-homogeneous CYBE
(mCYBE).
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One can show that the general form (4) can be reduced to one of two
monomial skew-symmetric two-tensors by using sl(2;C)-automorphisms.
i) If the parameters satisfy the condition γ2 = β2

0 + β+β− = 0 then one can
check the following relationship:

β+E+ ∧H + β0E+ ∧ E− + β−H ∧ E− = β ϕ0(E+) ∧ ϕ0(H), (7)

where ϕ is the explicite sl(2;C)-automorphism and β = κβ+ − β− (κ = ±1).
If γ = 0 we obtain Jordanian sl(2;C) r-matrix

rJ = β E+ ∧H (8)

ii) In the case of γ ≡ β2
0 + β+β− 6= 0 we have

β+E+ ∧H + β0E+ ∧ E− + β−H ∧ E− = 2
√
γ ϕγ(E+) ∧ ϕγ(E−), (9)

where ϕ is another explicite sl(2;C)-automorphism.
Thus, if the general classical r-matrix (4) satisfies the non-homogeneous
CYBE (γ 6= 0) then it can be reduced to standard Drinfeld-Jimbo form by
using the sl(2;C) automorphisms

r̂st = γ E+ ∧ E− (10)
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1.2 Complex quantized Lie algebras and universal R-matrix.

Quantization: Lie bialgebra structure−→ quantum Lie algebrasUξ(ĝ)

(classical r-matrices) −→ (quasi-triangular Hopf algebras)

Universal R-matrix R(ξ) ∈ Uξ(ĝ)⊗ Uξ(ĝ) defines flip operation
τ : (a⊗ b)τ = b⊗ a on the coproduct ∆ξ

∆τ
ξ = R(ξ) ◦∆ξ ◦R−1(ξ) (11)

and satisfies the quasitriangularity condition

(∆ξ ⊗ id)R(ξ) = R12(ξ)R23(ξ) (id⊗∆ξ)R(ξ) = R13(ξ)R12(ξ) (12)

and
R(ξ) = 1⊗ 1 + ξ r̃ +O(ξ2) r̃ = r(1) ⊕ r(2) (13)

If antisymmetric r satisfies mCYBE, r̃ is not antisymmetric.
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If r̃ satisfies classical YBE after quantization one obtains quantum YBE

R12(ξ)R13(ξ)R23(ξ) = R23(ξ)R13(ξ)R12(ξ) (14)

If r is antisymmetric (ras = −rτas) and satisfies CYBE (triangular r-matrix) it
defines the twist quantization (F ∈ U◦(ĝ)⊗ U◦(ĝ))

R(ξ) = F τ (ξ) ◦ F−1(ξ) ∆ξ = F (ξ)∆◦(ξ)F
−1(ξ) (15)

If r is antisymmetric and satisfies mCYBE one should add to r a symmetric part
rs, which is ĝ-invariant ([∆(x), rs] = 0 for ∀x ∈ ĝ), with rBD = r + rs
satisfying CYBE (Belavin-Drinfeld form of r-matrix). The resulting universal
R-matrix satisfies quantum YBE.

Therefore

– for classification purposes we use ras = −rτas satisfying CYBE or
mCYBE

– for quantization of mCYBE case we modify ras → rBD = ras + rs
(rτBD 6= −rBD), then CYBE is valid and we obtain R(ξ) satisfying
quantum YBE.
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1.3 Real quantized Lie algebras - general remarks

>-Hopf algebraic structure on complex quantized enveloping algebra Uq(g) is
represented by >-involution (a>)> = a satisfying conditions for coproducts
and antipodes

∆q(a
>) = (∆q(a))>, Sq((Sq(a

>))>) = a (∀a ∈ Uq(g) . (16)

where involution acts in standard way on tensor products

(a⊗ b)> = a> ⊗ b> (17)

One imposes two distinct reality constraints on the universal R-matrices

a) when r>⊗> = rτ ⇔ R>⊗> = Rτ (R is called τ -real);

b) when r>⊗> = −r ⇔ R>⊗> = R−1 (R is called unitary )

For triangular deformation rτ = −r both conditions for universal R-matrix
coincide.
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1.4 Standard sl(2;C) quantization

One gets quasitriangular Hopf algebra Uq(sl(2;C)) (q = exp 1
2γ)

qHE± = q±1E± q
H , [E+, E−]=

q2H − q−2H

q − q−1
=

sinh(γH)

sinh( 1
2γ)

, (18)

∆q(q
±H) = q±H ⊗ q±H , ∆q(E±) = E± ⊗ qH + q−H ⊗ E± , (19)

Sq(q
±H) = q∓H , Sq(E±) = −q±1E± , (20)

R(γ) = expq−2

(
(q − q−1)E+ q

−H ⊗ qHE−
)
q2H⊗H , (21)

corresponding to the non-skew-symmetric Belavin-Drinfeld r-matrix

rBD = γ
(
E+ ⊗ E− +H ⊗H

)
(22)
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1.5 (Jordanian) nonstandard sl(2;C) quantization

From Jordanian r-matrix one derives Jordanian twist

FJ = exp(H ⊗ σ) σ = ln(1 + βE+) (23)

which satisfies 2-cocycle condition defines RJ = F τJ F
−1
J as well as deformed

coproducts and antipodes, e.g.

∆J = FJ ◦∆o ◦ F−1
J (24)

and
∆J(H) = H ⊗ e−σ + 1⊗H
∆J(E+) = E+ ⊗ e−σ + 1⊗ E+

∆J(E−) = E− ⊗ eσ + 1⊗ E− + 2βH ⊗He−σ

− β2H(H − 1)⊗ E+ e
−2σ

(25)

The algebra sector remains classical and

R(β) = F τJ ◦ F−1
J
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1.6 Real quantizations of sl(2;C);

The complex Lie algebra o(3;C) ' sl(2;C) admits only two real forms:
o(3) ' su(2) and o(2, 1) ' su(1, 1) ' sl(2).
For q-deformed standard quantizations there are three real forms which are the
following (q = 1

2γ)

i) H∗=H, E∗± = E∓, q ∈ R⇔ γ ∈ R for oq(3)'suq(2),

ii) H∗=H, E∗± = −E∓, q ∈ R⇔ γ ∈ R for oq(2, 1)'suq(1, 1),

iii) H?=−H, E?± = −E±, |q| = 1⇔ γ ∈ ıR for o′q(2, 1)'slq(2),
(26)

In i)–iii) (H,E±) describes q-deformed CW basis. The last two (non-compact)
real forms are isomorphic in the classical limit γ 7→ 0.
For the first two cases the corresponding universal R-matrix is τ -real, in the
last case it is unitary.
For ξ-deformed Jordanian quantization one gets only one real form sl(2) with
ξ ∈ R
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Real bialgebras for su(2) ' o(3) and su(1, 1) ' sl(2;R) ' o(2, 1) are given by
real classical r-matrices.

i) Compact real form su(2) ' o(3)

There is only one real su(2) bialgebra (up to su(2) automorphisms)

rst = αE+ ∧ E− [[rst, rst]] = α2Ω α− real (27)

ii) Noncompact real form su(1, 1) ' o(2, 1)

There are three real su(1, 1) bialgebras (up to su(1, 1) automorphism)

rst = αE+ ∧ E− [[rst, rst]] = α2Ω

r̃st = α(E+ + E−) ∧H [[r̃st, r̃st]] = −α2Ω

rqJ = α
2 (i(E+ − E−) ∧H + E+ ∧ E−) [[rqJ, rqJ]] = 0

(28)

One can map su(1, 1) basis (E±, H) → sl(2;R) basis (E′+, H
′)

H = − i
2

(E′+ − E′−) E± = ∓iH ′ + 1

2
(E′+ + E′−) (29)
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One gets the following three real sl(2;R) bialgebras, isomorphic to su(1, 1)
bialgebras

r′st = iα(E′+ + E′−) ∧H ′ [[r′st, r
′
st]] = α2Ω

r̃′st = iαE′+ ∧ E′− [[r̃′st, r̃
′
st]] = −α2Ω

r′qJ = iαE′+ ∧H ′ [[r′qJ, r
′
qJ]] = 0

(30)

Important conclusion: we are able to quantize all three noncompact real
r-matrices if we choose

rst = αE+ ∧ E− r̃′st,= iαE′+ ∧ E′− r̃′qJ = iαE′+ ∧H ′ (31)

i.e. we should quantize one in su(1, 1) basis and two in sl(2;R) basis. In this
way both su(1, 1) and sl(2;R) bialgebras are needed for quantization of real
noncompact classical r-matrices su(1, 1) ' su(2;R) ' o(2, 1). Other way of
quantization is to use three real o(2, 1) bialgebras in q-deformed Cartesian
o(2, 1) basis (VN Tolstoy+JL, 2017).
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2. Basic quantizations of o(4,C) = sl(2;C)⊕ sl(2;C) and of its real forms
o(4), o(3, 1), o(2, 2), o∗(4)

2.1 Five basic skew-symmetric o(4;C) r-matrices

r1(χ) = χ(E+ + Ē+) ∧ (H + H̄) , ← CY BE

r2(χ, χ̄, ξ) = χE+ ∧H + χ̄ Ē+ ∧ H̄ + ξE+ ∧ Ē+ , ← CY BE

r3(γ, γ̄, η) = γ E+ ∧ E− + γ̄ Ē+ ∧ Ē− + η H ∧ H̄ , ← mCY BE

r4(γ, ξ) = γ
(
E+∧E−−Ē+∧Ē−−2H ∧ H̄

)
+ξE+∧Ē+,← mCY BE

r5(γ, χ̄, ρ) = γ E+ ∧ E− + χ̄ Ē+ ∧ H̄ + ρH ∧ Ē+ , ← mCY BE

(32)

(E±, H) ⊂ sl(2;C); (Ē±, H̄) ∈ sl(2,C)

rA ∈ sl(2,C) ∧ sl(2;C) + sl(2;C) ∧ sl(2;C) + sl(2,C) ∧ sl(2;C)
↑ ↑

Abelian twist generator
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2.2 Reality condition for o(4;C) Lie algebra

The decomposition
o(4;C) = sl(2;C)⊕ s̄l(2;C) (33)

we use to obtain real forms of o(4;C).
All possible seven real forms of o(4;C) are the following:

1)H∗=H, E∗±=E∓; H̄∗=H̄, Ē∗±=Ē∓ for o(4)=su(2)⊕ su(2),

2)H∗=−H̄, E∗±=−Ē±; H̄∗=−H, Ē∗±=−E± for o(3, 1)=sl(2;C)⊕(sl(2;C))∗

3)H∗=−H, E∗±=−E±, H̄∗=−H̄, Ē∗±=−Ē± for o(2, 2)=sl(2;R)⊕sl(2;R)

4)H∗=−H, E∗±=−E±; H̄∗=H̄, Ē∗±=Ē∓ for o∗(4)=sl(2;R)⊕su(2)
(34)

3′)H∗=H, E∗±=−E∓, H̄∗=−H̄, Ē∗±=−Ē∓, for o(2, 2)=su(1, 1)⊕sl(2;R),

3′′)H∗=−H̄, E∗±=−Ē∓, H̄∗=−H, Ē∗±=−E∓, for o(2, 2)=su(1, 1)⊕su(1, 1),

4′)H∗=−H, E∗±=−E∓, H̄∗=H, Ē∗±=E∓, for o∗(4)=su(1, 1)⊕su(2).
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Real form o(3, 1) describes the realification of complex sl(2;C) algebra, with
reality conditions not preserving the left/right decomposition (33)

Our aims:

- list all antisymmetric o(4;C) complex r-matrices with complex
parameters.

- impose seven reality conditions, expressed as reality conditions for the
parameters.

Remark: In order to quantize the solutions r3, r4, r5 of mCYBE one should
introduce their nonsymmetric BD forms, which satisfy CYBE, by replacement
of two expressions with added extra term

E+ ∧E− → E+ ⊕E− +H ⊗H Ē+ ∧ Ē− → Ē+ ⊗ Ē− + H̄ ⊕ H̄ (35)
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2.3 Explicite quantizations of basic five o(4;C) r-matrices:

A) Jordanian twist quantization of o(4;C)

r1(χ) = χ(E+ + Ē+) ∧ (H + H̄)

F1(χ) = exp ((H + H̄)⊗ σ), σ = ln(1 + χ(E+ + Ē+))
(36)

∆1(Ek+) = F1(χ)∆(0)(Ek)F−1
0 = Ek+ ⊗ eσ + 1⊗ Ek+

∆1(Hk) = Hk ⊗ 1 + 1⊗Hk − χ(H + H̄)⊗ Ek+e
−σ

∆1(Ek−) = Ek− ⊗ e−σ + 1⊗ Ek− + 2χ(H + H̄)⊗Hke
−σ

−χ2(H + H̄)(H + H̄ − 1)⊗ Ek+e
−2σ

(37)

The quantum R-matrix takes the form (R = F 21
1 F−1

1 )

R1(χ) = exp (σ ⊗ (H + H̄)) exp (−(H + H̄)⊗ σ) (38)

Two real quantizations: o(2, 2) ' sl(2;R)⊕ sl(2;R) χ ∈ iR
o(3, 1) ' sl(2;C)⊕ sl(2;C)∗ χ ∈ iR
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B) Product of two Jordanian quantizations intertwined by twist

r2(χ, χ̄, ξ) = χE+ ∧H + χ̄ Ē+ ∧ H̄ + ξE+ ∧ Ē+

F2(χ, χ̄, ξ) = FA(χ, χ̄, ξ)FJ,0(χ)FJ,1(χ̄)

FJ,k(χk) = exp (Hk ⊗ Σk) FA(χ, χ̄, ξ) = exp ( ξ
χχ̄Σ ∧ Σ̄) k = 0, 1

where Σk = ln(1 + χkEk+); H=H0, H̄=H1, E±=E0±, Ē±=E1±
(39)

R2 = exp (−ξχχ̄Σ ∧ Σ̄) exp (Σ⊗H) exp (−H ⊗ Σ)·
exp (Σ̄⊗ H̄) exp (−H̄ ⊗ Σ̄) exp (−ξχχ̄Σ ∧ Σ̄).

(40)

Two real quantizations:

o(2, 2) = sl(2;R)⊕ sl(2;R) χ, χ̄, ξ ∈ iR
o(3, 1) = sl(2;C)⊕ sl(2;C)

∗
χ = −χ̄∗ (χ ∈ C), ξ ∈ R
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C) Twisted pair of left and right q-analogs

r3(γ, γ̄, η) = γ (E+ ∧ E−) + γ̄
(
Ē+ ∧ Ē−

)
+ η H ∧ H̄

rBD3 = γ (E+ ⊗ E− +H ⊗H) + γ̄
(
Ē+ ⊗ Ē− + H̄ ⊗ H̄

)
+
η

2
H ∧ H̄

For η = 0 the quantization is a product of two independent standard
(Drinfeld-Jimbo) deformations (η = 0 : q = exp 1

2γ = q0 and

q̄ = exp 1
2 γ̄ = q1 ∈ C).

U(q,q̄)(o(4;C)) ∼= Uq(sl(2;C))⊗ Uq̄(sl(2;C)) (41)

and the universal R-matrix is the product of two factors R
(0)
3 , R

(1)
3

R
(k)
3 = expq−2

k

(
(qk − q

−1
k )Ek+ q

−Hk

k ⊗ qHk

k Ek−

)
q2Hk⊗Hk

k k = 0, 1

expq(x) :=
∑
n≥0

xn

(n)q ! , (n)q! := (1)q(2)q · · · (n)q, (n)q = 1−qn
1−q

(42)
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The Abelian twist is given by F3(η) := q̃H∧H̄ q̃ = exp 1
4η.

Complete universal R-matrix for η 6= 0 looks as follows

R3(q0, q1, q̃) = q̃H̄∧HR
(0)
3 (η)R

(1)
3 (η)q̃H̄∧H = R

(0)
3 (η)R

(1)
3 (η)q̃2H̄∧H (43)

where

R
(k)
3 (η)=expq−2

k
((qk−q−1

k )Ek+q
−Hk

k q̃(−)k+1Hk+1⊗ qHk

k q̃(−)k+1Hk+1Ek−)q
2Hk⊗Hk

k

(44)
Seven real quantizations generated by r3 with constrained parameters

o(4) = su(2)⊕ su(2) γ, γ̄ ∈ R, η ∈ iR (unique!)

o(3, 1) = sl(2;C)⊕ (sl(2;C))+ γ̄ = −γ∗ ∈ C (γ complex), η ∈ iR
o(2, 2) = sl(2;R)⊕ sl(2;R) γ, γ̄, η ∈ iR,

o(2, 2) = su(1, 1)⊕ su(1, 1) γ, γ̄ ∈ R, η ∈ iR
o(2, 2) = su(1, 1)⊕ sl(2;R) γ, η ∈ R, γ̄ ∈ iR
o∗(4) = su(2)⊕ su(1, 1) γ, γ̄ ∈ R, η ∈ iR,
o∗(4) = su(2)⊕ sl(2;R) γ, η ∈ R, γ̄ ∈ iR,
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D) Twisted deformation for Belavin-Drinfeld triple (q∈C, q̄=q−1)

r4(γ, ξ) = γ
(
E+ ∧ E− − Ē+ ∧ Ē− − 2H ∧ H̄

)
+ ξE+ ∧ Ē+

rBD4 = γ
(
E+ ⊗ E− +H ⊗H − Ē+ ⊗ Ē− − H̄ ⊗ H̄ −H ∧ H̄

)
+ ξ

2E+ ∧ Ē+

Belavin-Drinfeld twist factor:

F4(ξ) := expq2
(
ξE+q

H+H̄ ⊗ qH+H̄Ē+

)
(45)

The universal R-matrix for this case is the twisted product (now
γ̄ = −γ ⇔ q̄ = q−1)

R4(γ, ξ) = F τ4 (ξ)R
(0)
3 (γ)R

(1)
3 (−γ)F−1

4 (ξ) (46)

Two real quantizations generated by r4:

o(3, 1) = sl(2;C)⊕ (sl(2;C))∗ γ, ξ ∈ R
o(2, 2) = sl(2;R)⊕ (sl(2;R)) γ, ξ ∈ iR
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E) Left q-analog and right Jordanian quantization intertwined by twist

r̃5(γ, χ̄, ρ) = γ (E+ ∧ E−) + χ̄ Ē+ ∧ H̄ + ρH ∧ Ē+

r̃5(γ, χ̄, ρ) = γ (E+ ⊗ E− +H ⊗H) + χ̄ Ē+ ∧ H̄ + ρH ∧ Ē+
(47)

where first bracket describes standard quantization in first factor, second term
generates Jordanian twist FJ in second factor, and last term leads to Abelian
twist

F5(χ̄, ρ) = q̃H∧Σ̄, q̃ = exp
ρ

4χ̄
(48)

Universal R-matrix for this case takes the form

R5(γ, χ̄, ρ) = q̃Σ̄∧HR(γ)F τJ (χ̄)F−1
J (χ̄)q̃Σ̄∧H . (49)

Three real quantizations of r5:

o(2, 2) = sl(2;R)⊕ sl(2;R) γ, χ̄, ρ ∈ iR
o(2, 2) = su(1, 1)⊕ sl(2;R) γ, ρ ∈ R χ̄ ∈ iR
o∗(4) = su(2)⊕ sl(2;R) γ, ρ ∈ R χ̄ ∈ iR
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Remarks:

1) All coproducts and antipodes are presented in

A.B.+J.L.+V.N.T. arXiv:1708. ...

2) The o(4;C) r-matrices (their real forms) can be constructed as follows:

i) Summ of sl(2;C) and sl(2;C) r-matrices r and r̄ (or of their real forms)
are supplemented by Abelian twist rt

r + r̄ + rt (rt ∈ sl(2;C) ∧ sl(2;C))

ii) Using quantization for BD triples (one for o(4;C)!)

iii) Extending sl(2;C)→ sl(2;C)⊕ sl(2;C) Jordanian twist by addition:

H ∧ E+ → (H + H̃) ∧ (E+ + Ẽ+)

Example: 8 o(2, 2) matrices = 6× i) + 1× ii) + 1× iii) (o(2, 2) ' AdS3)
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Table of real o(4), o∗(4), o(2, 2) and o(3, 1) r-matrices

|r1 r2 r3 r4 r5|
su(2)⊕ su(2) 0 0 x 0 0 o(4)

su(2)⊕ sl(2) 0 0 x 0 x o∗(4)

su(2)⊕ su(1, 1) 0 0 x 0 0 o∗(4)

su(1, 1)⊕ su(1, 1) 0 0 x 0 0 o(2, 2)

su(1, 1)⊕ sl(2;R) 0 0 x 0 x o(2, 2)

sl(2;R)⊕ sl(2;R) x x x x x o(2, 2)

sl(2;C)⊕ sl(2;C) x x x x 0 o(3, 1)

↑
Cartan-Weyl

basis

↑
(Pseudo)-orthogonal

description
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3. Final Remarks

Resume of real o(4;C) quantizations:

1) one quantization of o(4) (r3)

2) four quantizations of o(3, 1) (r1, r2, r3, r4)

3) eight quantizations of o(2, 2) (r1, r2, r3(×3), r4, r5(×2))

4) three quantizations o∗(4) (r3(×2), r5)

New results in position 3),4). Possible 16 quantizations of real forms of
o(4;C)!

THANK YOU!
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