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complex homogeneous orthogonal Lie algebra o(4;C), the rotational symmetry of four-dimensional
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real forms of o(4: C): Euclidean o(4), Lorentz o(3. 1), Kleinian o(2,2) and quaternionic o*(4) Lie algebras.
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1. Introduction

In recent years due to efforts to construct quantum gravity
characterized by noncommutative space-time structures at Planck-
ian distances [1-3], the ways in which one deforms the space-
time coordinates and space-time symmetries became important.
A principal tool for the classification of quantum deformations is
provided by the classical r-matrices [4-7].

In this paper we shall consider D =4 orthogonal Lie algebras

important in present studies of gravity models and string theory, in
particular for the formulation of quantum-deformed field-theoretic
models and related gravityfgauge correspondence. Since introduc-
tion in 2002 two-dimensional Yang-Baxter deformed o-models
[10-12] there are available techniques linking classical r-matrices
of space-time symmetry algebras with various gravity solutions
describing the string theory backgrounds [13-18]. In such frame-
work the classical r-matrices are useful in description of grav-
ity/gauge correspondence for the gauge sector described by non-
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Abstract Using the isomorphism o(3; C) =~ sl(2; C) we
develop a new simple algebraic technique for complete clas-
sification of quantum deformations (the classical r-matrices)
for real forms 0(3) and 0(2, 1) of the complex Lie algebra
0(3; C) in terms of real forms of s((2; C): su(2), su(l, 1)
and sl(2; R). We prove that the D = 3 Lorentz symmetry
0(2,1) ~ su(l.1) ~ si(2: R) has three different Hopf-
algebraic quantum deformations, which are expressed in
the simplest way by two standard su(1, 1) and s((2; R) g~
analogs and by simple Jordanian s[(2; R) twist deformation.
These quantizations are presented in terms of the quantum
Cartan—Weyl generators for the quantized algebras su(l. 1)
and s[(2; R) as well as in terms of quantum Cartesian gener-
ators for the quantized algebra o(2, 1). Finally, some appli-
cations of the deformed D = 3 Lorentz symmetry are men-
tioned.

bra U(g) of a Lie algebra g, Lie bialgebras (g, §) play an
essential role (see e.g. [4-7]). Here the co-bracket § is alinear
skew-symmetric map g — g A g with the relations consistent
with the Lie bracket in g:

S(x. D =x@14+1@x,M—-[y@1+1®y 5x)].
(8 ®id)8(x) + cycle =0 (1.1)

for any x.y € g. The first relation in (1.1) is a condition
of the 1-cocycle and the second one is the co-Jacobi identity
(see [4,7]). The Lie bialgebra (g, §) is a correct infinitesimal-
ization of the quantum Hopf deformation of U(g) and the
operation § is an infinitesimal part of the difference between
a coproduct A and an opposite coproduct A in the Hopf
algebra, §(x) = h~'(A — A) mod h where h is a defor-
mation parameter. Any two Lie bialgebras (g, 8) and (g. §")
are isomorphic (equivalent) if they are connected by a g-
automorphism ¢ satisfying the condition
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In our previous paper [1] we obtained a full classification of nonequivalent quasitriangular quantum
deformations for the complex D = 4 Euclidean Lie symmetry o(4;C). The result was presented in
the form of a list isting of three th one two-] and one
nonisomorphic classical r-matrices which provide ‘directions’ of the nonequivalent quantizations of
0(4; C). Applying reality conditions to the complex o(4: C) r-matrices we obtained the nonisomorphic
classical r-matrices for all possible real forms of o(4; C): Euclidean o(4), Lorentz o(3, 1), Kleinian o(2, 2)
and quaternionic 0*(4) Lie algebras. In the case of 0(4) and o(3, 1) real symmetries these r-matrices give
the full classifications of the inequivalent quasitriangular quantum deformations, however for o(2,2)
and o*(4) the classifications are not full. In this paper we complete these classifications by adding
three new three-parameter o(2,2)-real r-matrices and one new three-parameter o*(4)-real r-matrix. All
nonisomorphic classical r-matrices for all real forms of o(4; C) are presented in the explicit form what is
convenient for providing the quantizations. We will mention also some applications of our results to the
deformations of space-time symmetries and string o -models.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Basic quantizations of s[(2; C) ~ 0(3;C) and of its real forms 0(3) ~ su(2)
and 0(2,1) ~ sl(2;R) ~ su(1,1) J

1.1 Classical rmatrices of s[(2;C) and of its real forms: su(2), su(1, 1), s[(2;R)

Any classical skew-symmetric r-matrix of arbitrary complex or real Lie
algebra g, r € g A g, satisfy CYBE or mCYBE:

[r.r]] = Q  r=rAre, (1)
Here [[-,]] is the Schouten bracket which for any skew-symmetric two-tensors
ry=xAyand ry =uAv (z,y,u,v € g) is given by
oAy, unv]] == zA([y,u] Av+uAy,v])
—y A ([, u] Ao+ uA[z,0]) (2)
= [[unv, zAy]

~ ~ 3 ~
and ) is the g-invariant element, Q € (A g), (i.e. [A%(2),Q] =0 for Vzeg)
which in the case of g = sl(2; C) takes unique form

O = yQ(sl(2) = yEL,AHAE. ~4€C (3)
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Cartan-Weyl basis (Ey, H) :

[H, E:I:] =+H [EJHE*] =2H

One can show that any two-tensor of sl(2; C) A sl(2;C) is a classical sl(2; C)
r-matrix. Indeed, let

ro= fyry +Byrg+Bor_ (B, B B €C) (4)
be arbitrary element of s((2;C) A sl(2; C), where
rp=FE_ANH, ry:=FE,NE_, r_:=HANE_ (5)

are basis elements of s1(2; C) A s[(2; C). All basis elements (5) are classical
r-matrices, and one can calculate that

7] = —4(83 + 8,6_)Es ANHAE_ = 0. (6)
i) If the coefficients of (4) satisfy the condition v := 32 + By B_ =0 then it
satisfies the homogeneous CYBE (CYBE)

ii) If v := B3 + B,.B_ # 0 then it satisfies the non-homogeneous CYBE
(mCYBE).
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One can show that the general form (4) can be reduced to one of two
monomial skew-symmetric two-tensors by using s[(2; C)-automorphisms.

i) If the parameters satisfy the condition % = 82 + B, B_ =0 then one can
check the following relationship:

BBy AH+ByEy NE- +B_HAE- = Byoo(Ey) Ago(H),  (7)

where ¢ is the explicite s[(2; C)-automorphism and § = k4 — 8-  (k = £1).
If v = 0 we obtain Jordanian s((2; C) r-matrix

ry=BEfNH (8)
ii) In the case of v = 2 + B,.8_ # 0 we have
BLEy NH+PBoEL NE_+B_HANE_ = 2\/vp (Ey) AN, (E-), (9)
where ¢ is another explicite s[(2; C)-automorphism.
Thus, if the general classical r-matrix (4) satisfies the non-homogeneous
CYBE (v # 0) then it can be reduced to standard Drinfeld-Jimbo form by

using the sl(2; C) automorphisms

?st = ’}/E+ NE_ (10)
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1.2 Complex quantized Lie algebras and universal R-matrix.

Quantization: Lie bialgebrastructure —  quantum Lie algebras Ue(§)

(classical r-matrices) ~— (quasi-triangular Hopf algebras)

Universal R-matrix R(£) € Ug(§) ® Ue(g) defines flip operation
7:(a®b)” =b® a on the coproduct A¢

A7 =R(§) o A¢o RTH(E) (11)
and satisfies the quasitriangularity condition
(Aﬁ ® id)R(§) = Ri2(§) Ra3(§) (id® A&)R@) = Ri3(§)R12(§) (12)

and
RE)=101+&74+0(£%) F=raq) ®re (13)

If antisymmetric r satisfies mCYBE, 7 is not antisymmetric.
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If 7 satisfies classical YBE after quantization one obtains quantum YBE

R12(€) Ri3(§) Ras(§) = Ra3(§) Rus(§) Rz (E) (14)
If - is antisymmetric (r,s = —r7.) and satisfies CYBE (triangular r-matrix) it
defines the twist quantization (F € Us(§) ® Us(§))
R(§) = FT(§)o F7'(¢) A¢ = F(§)A(F(¢) (15)

If r is antisymmetric and satisfies mCYBE one should add to r a symmetric part
75, which is g-invariant ([A(x),rs] = 0 for Yz € §), with rBP =r 41,
satisfying CYBE (Belavin-Drinfeld form of r-matrix). The resulting universal
R-matrix satisfies quantum YBE.

Therefore

@ — for classification purposes we use r,s = —r, satisfying CYBE or
mCYBE

@ — for quantization of mCYBE case we modify r,s — rgp = 745 + 75
(rp # —rpp), then CYBE is valid and we obtain R(§) satisfying
quantum YBE.
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1.3 Real quantized Lie algebras - general remarks

s-Hopf algebraic structure on complex quantized enveloping algebra U, (g) is
represented by x-involution (a*)* = a satisfying conditions for coproducts
and antipodes

Aga®) = (Ag@)*,  S,((S,@*)*) = a (VaeUfg). (16)
where involution acts in standard way on tensor products
(a®b)* = a* @ b* (17)
One imposes two distinct reality constraints on the universal R-matrices

a) when r*®* =7 & R*®* = R (R is called 7-real);

b) when r*®* = —r & R*®* = R=1 (R is called unitary )
For triangular deformation ™ = —r both conditions for universal R-matrix
coincide.
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1.4 Standard s((2; C) quantization
One gets quasitriangular Hopf algebra U, (sl(2; C)) (¢ = exp %7)

2H —2H . 28
H +1 H qg " —4q sinh(y )

Ei = FE , E. ., E_|= = , 18

qg Lt =q +4q [E5+ ] g —q 1 sinh(%’y) (18)

AN =¢T o, A(E:) = Exo¢"+q¢ 0B, (19)

S,y = ¢*" S,(Ex) = —¢*'Ey (20)
R(7) = expys (g = a7 B+ 7 0 g B ) o (21)

corresponding to the non-skew-symmetric Belavin-Drinfeld r-matrix

rgp = V(E+®E_-+H®H) (22)
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1.5 (Jordanian) nonstandard s[(2; C) quantization
From Jordanian r-matrix one derives Jordanian twist
F; =exp(H ® o) o=In(l+ SE;) (23)

which satisfies 2-cocycle condition defines Ry = F }Fjl as well as deformed
coproducts and antipodes, e.g.

Aj=Fjol,oF;! (24)
and
AjH) = H®e° + 1QH
Aj(Ey) = Er®e? + 1QFE; (25)
AJEBE.) = B_-®e, + 1®E_+28H®He™

— BHH-1)@E e

The algebra sector remains classical and

R(B)=FjoF;'
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1.6 Real quantizations of s[(2;C);

The complex Lie algebra o(3;C) ~ sl(2; C) admits only two real forms:

0(3) ~su(2) and 0(2,1) =~ su(1,1) = sl(2).

For g-deformed standard quantizations there are three real forms which are the
following (¢ = %’y)

iy H*=H, FE.=FE+, qc€R&a~yeR for 0,(3)~su,(2),
ii) H*=H, FE,=-FE+, qcR&~yeR  for 02 1)~su,(1,1),

iii) H*=—H, FEL=-Ei, |qg/=1&~y¢cR for o,(2,1)~sl,(2),
(26)

In i)-ii) (H, Ey) describes ¢-deformed CW basis. The last two (non-compact)
real forms are isomorphic in the classical limit v — 0.

For the first two cases the corresponding universal R-matrix is 7-real, in the
last case it is unitary.

For ¢-deformed Jordanian quantization one gets only one real form sl(2) with
EelR

Basic quantizations of the complex D=4 Lie alge 14 /28



Real bialgebras for su(2) ~ o(3) and su(1,1) ~ sl(2; R) ~ 0(2,1) are given by
real classical r-matrices.

i) Compact real form su(2) ~ 0(3)
There is only one real su(2) bialgebra (up to su(2) automorphisms)

reg =By NE_ [[rst, mst]] = @?Q a — real (27)

ii) Noncompact real form su(1,1) ~ o(2,1)
There are three real su(1,1) bialgebras (up to su(1,1) automorphism)

Tst = aE+ A Ef [[Tstu rst]] = OZ2Q
Tst = a(By + E-)ANH ([7st, Tst]] = —®Q (28)
rq)=5(i(Ey —E_)ANH+EL NE_) [[rqs,7qs]] =0

One can map su(1,1) basis (E+,H) — sl(2;R) basis (E',, H)

’ 1
H:_%(E;—EL) By =FiHl'+ 5 (B, + E.) (29)

Basic quantizations of the complex D=4 Lie alge 15 / 28



One gets the following three real sI(2;R) bialgebras, isomorphic to su(1,1)
bialgebras

rly =io(E\ + E_)NH' ([, r]] = a?9
i = iaE) AN EL ([, 7)) = —a?Q (30)
Ty = iaEL N H' [l =0

Important conclusion: we are able to quantize all three noncompact real
r-matrices if we choose

re = By AN E_ Fop, = 1B\ N B’ Foy = 1B NH' (31)

i.e. we should quantize one in su(1,1) basis and two in sl(2;R) basis. In this
way both su(1,1) and sl(2;R) bialgebras are needed for quantization of real
noncompact classical r-matrices su(1,1) ~ su(2;R) ~ 0(2,1). Other way of
quantization is to use three real 0(2,1) bialgebras in g-deformed Cartesian
0(2,1) basis (VN Tolstoy+JL, 2017).
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2. Basic quantizations of 0(4,C) = s((2;C) @ s[(2; C) and of its real forms
0(4),0(3,1),0(2,2), 0™ (4) J

2.1 Five basic skew-symmetric 0(4; C) r-matrices

r(x) =x(Ey + Ex)AN(H+H), « CYBE
ry(: X&) = XEy NH+XEL NH+EE.NE,, <+ CYBE
r3(v,%,m) =vEL NE_+3E, NE_4+nHANH, +mCYBE  (32)
r4(7,€) = v (ExAE_—ELNE_—2H A H)+(ELAE4, < mCY BE
rs(v,%,0) =YE . NE_+XE, NH+pHANE, , < mCYBE

(Ey, H) C sl(2;C); (B, H) € 51(2,C)

ra € 5l(2,C) Asl(2;C) +51(2; C) Asl(2;C) + s1(2,C) Asl(2;C)
T 1

Abelian twist generator

Basic quantizations of the complex D=4 Lie alge 17 / 28



2.2 Reality condition for 0(4; C) Lie algebra

The decomposition ~
0(4;C) =sl(2;C) @ sl(2;,C) (33)

we use to obtain real forms of o(4; C).
All possible seven real forms of 0(4;C) are the following:

1) H*= Ei=FE+; H*=H, FEj=F+ foro(4)=su(2)®s ()
2)H*=—H, E}=—Ey; H*=—H, Ei=—FEy foro(3,1)=sl(2;C)®
3)H*=—H, Ei=—Fy, H*'=H, E{=—Fy foro(2,2)=sl(2;R)®s
)

4)H*=—H, Ei=—FEs; H*=H, FEi=FE- foro*(4):5[(2;R)@su( )
L (34)
3)H*=H, Ej=—FEs, H*=—H, Ej=—FE+, foro(2,2)=su(1,1)®sl(2;R),

3"YH*=—H, Ej=—FE;, H*=—H, Ej}=—E, foro(2,2)=su(l,1)®su(1,1),
{YH*=—H, Ei=—FE+, H*=H, FEj=F+, foro*(4)=su(l,1)dsu(2).

)

)

Basic quantizations of the complex D=4 Lie alge 18 / 28



Real form 0(3,1) describes the realification of complex sl(2; C) algebra, with
reality conditions not preserving the left/right decomposition (33)

Our aims:

@ - list all antisymmetric 0(4; C) complex r-matrices with complex
parameters.

@ - impose seven reality conditions, expressed as reality conditions for the
parameters.

Remark: In order to quantize the solutions r3, 74,75 of mCYBE one should
introduce their nonsymmetric BD forms, which satisfy CYBE, by replacement
of two expressions with added extra term

EsNE- —-E,&oE_ +H®H ELNE_—-E,®FE_+H®H (35)

Basic quantizations of the complex D=4 Lie alge 19 / 28



2.3 Explicite quantizations of basic five 0(4; C) r-matrices:

A) Jordanian twist quantization of 0(4;C)

r1(x) = x(Ey + E) A (H + H)

_ _ (36)
F(x) = ep(H+H)20), o = In(l+x(Es + )
A(Eps) = Fi(x)AO(E)Fy ' =By ®e” +1® By

A(Hy) = Hy@1+10H, —x(H+H)® Ej e ? (37)

A(By) = E-®e “+1@E,_ +2x(H+ H)® Hge™®

~X2(H+H)(H+H—1)® Eppe 2
The quantum R-matrix takes the form (R = FZ'F; 1)

Ri(x) = exp(c® (H + H))exp(—(H+ H) ® o) (38)

Two real quantizations:  0(2,2) ~ sl(2;R) ®sl(2;R)  x € R
~ sl(2: 2

Basic quantizations of the complex D=4 Lie alge 20 / 28



B) Product of two Jordanian quantizations intertwined by twist

(X, X, &) =XE+ NH+XEL NH+ By NES

F(x, X, &) = Falx, X, §) Fr0(x)F1,1(X)
Fir(xx) =exp(Hy @ 3r)  Fa(x, X, §) —eXP( E/\E) k=0,1
where Y = ln(l + XkEk-‘r)v H:HO,H:H]_,Ei :Eoi;Ei:Eli
(39)

Ry = exp (5 fZ]/\Z)exp(E@H)exp( H®Y)

eXp(E®H)exp( H®S)exp (S 52/\2) (40)

Two real quantizations:
@ 0(2,2) =sl(ZR)®sl(ZR) x,x, & €iR
@ 0(3,1) =5l(2;C) ®sl(2;C) x=-x" (x€C), ¢€R
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C) Twisted pair of left and right g-analogs
r3(v:%m) =7 (By NE2)+7 (BEx NE-) +nHANH

7n;?D:»y(E+®E,+H®H)+A7(Egz@E,JrlfIQ‘@EI)JrgH/\H

For n = 0 the quantization is a product of two independent standard
(Drinfeld-Jimbo) deformations (n =0: ¢ = exp v = g and

g=exp37=q €C).
Uq.q)(0(4;C)) = Uy(sl(2;C)) ® Ug(s(2; C)) (41)

and the universal R-matrix is the product of two factors Rgo), Rél)
R = exp,s (0, — 0 ) ™ @ gl B )@ k=01

n n 42
equ(x) = ZnZO (57%! ’ (n)q' = (l)q(2)q e (n)q’ (?’L)q = 11—_qq ( )

Basic quantizations of the complex D=4 Lie alge 22 /28



The Abelian twist is given by Fs(n) := g1 G = expin.
Complete universal R-matrix for n # 0 looks as follows

Ry(qo,01,@) = "R (RS )™ = R RS (@™ (43)
where
R ) =exp, Alwx—ai ) By g e gt g e By gt
(44)
Seven real quantizations generated by rs with constrained parameters
@ 0(4) =su(2)®su(2) v,7€R, npeiR (unique!)
[(2;C) @ (sI(2;C))+ ¥ =-—v*€C (v complex),n € iR
(2R) ®SIZR) 7,71 € iR,
u(1,1) @ su(l,1) 7,7 € R,n iR
uw(l, 1) @sl(2;R)  v,m R, 5 €iR
u(2) ®su(l,1) 7,7 € R, n € iR,

= su
= su(2) ®sl(2;R) v,m € R, ¥ € iR,

)

i

)
)
)
)

5
5
su
su

)

0(3
0(2
0(2
0(2
0*(4
0*(4

1
2
.2
2
)
)
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D) Twisted deformation for Belavin-Drinfeld triple (g€ C, g=q ™)
7”4(’7,5) :’Y(E+/\E, —E+ /\Ef —2H/\I;[) +€E+ /\E+

PP =y (By @ E_+H®H-FE,®E_~-H®H-HANH)+5E; NE,
Belavin-Drinfeld twist factor:
Fi(€) = expye (§E4q" @ ¢ E, ) (45)
The universal R-matrix for this case is the twisted product (now
Y=—&q=q")
Ri(7,€) = FT(©RS ()RS (—)Fy ! 46
47, 4 3 (7)1 VEL(6) (46)
Two real quantizations generated by r4:
@ 0(3,1) =5sl(2,C) @ (sl(2;C))* ~,£€R
@ 0(2,2) =sl(2;R) & (sl(2;R)) 7,¢ €iR
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E) Left g-analog and right Jordanian quantization intertwined by twist
75(v:X,p) =7 (B+ NE-) + X Ex NH + pH N Ey (47)
(7, %,0) =7 (E+ @ FE_+H®H)+XE. NH +pHANE,

where first bracket describes standard quantization in first factor, second term
generates Jordanian twist F; in second factor, and last term leads to Abelian

twist 0
Fy ~H/\E - N 4
(X, p) = = ew o (48)

Universal R-matrix for this case takes the form
Rs(v,x,p) = @M RO FF () F; (0@ (49)

Three real quantizations of ry:
@ 0(2,2) =sl(ZR) ®sl(ZR) v, x,p€iR
0 0(2,2) =su(1,1) ®sl(2;R) ~,peR xe€iR

@ 0*(4) =su(2) ®sl(2;R) v,peR yeiR

25 / 28
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Remarks:

1) All coproducts and antipodes are presented in
A.B.+J.L.4+V.N.T. arXiv:1708. ...

2) The o(4;C) r-matrices (their real forms) can be constructed as follows:

i) Summ of s((2; C) and s((2; C) r-matrices r and 7 (or of their real forms)
are supplemented by Abelian twist r;

r+7+r (rp €51(2;C) Asl(2;C))

ii) Using quantization for BD triples (one for o(4;C)!)

iii) Extending s((2; C) — sl(2;C) @ sl(2; C) Jordanian twist by addition:
HANE, — (H+H)A(E, +E,)

Example: 8 0(2,2) matrices = 6 x i) + 1 x i) + 1 x i3¢) (0(2,2) ~ AdSs3)
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Table of real 0(4),0*(4),0(2,2) and 0(3,1) r-matrices

11 ro [ 73 [ T4 | 75]

su(2) @ su(2) 0]0 |x |0 [|0] o4
su(2) @ sl(2) 0]0 |x |0 |x]| o*(4)
su(2) @su(l,1) (0|0 [ x [0 |0 o*(4)
su(l, ) @su(1,1) 0|0 |x |0 |0]0(22)
su(1, D) @sl(2;R) |00 | x |0 |x]0(22)
sl(2;R)@sl(ZR) [ x| x | x | x | x]|0(22)
s[(2;C)@sl(2;C) | x| x | x |x 0(3,1)

T T

Cartan-Weyl (Pseudo)-orthogonal

basis description
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3. Final Remarks J

Resume of real 0(4;C) quantizations:

1) one quantization of 0(4) (r3)

2) four quantizations of 0(3,1) (r1,72,7r3,74)

3) eight quantizations of 0(2,2) (r1,72,73(x3),74,75(%x2))
4) three quantizations 0*(4) (r3(x2),rs)

New results in position 3),4). Possible 16 quantizations of real forms of
o(4;C)!

THANK YOU!
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