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The Identity for D(asp) and v(as)

The Adler D-function® is related to the cross-section of annihilation of the
electron-positron pair into hadrons (denoted as R(s)) through a dispersion

relation
_RB(s)
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where TI(Q?) is the photon polarisation operator.
Recently a formula was proposed? and then proved to all loops® connecting
the Adler D-function and the anomalous dimension
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where aso is the bare strong coupling constant.
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Regularisation by HD

The proof of this formula utilized the regularisation by higher covariant
derivatives®. Its main features that made this derivation possible include
@ retaining both gauge symmetry and supersymmetry;
@ mathematical self-consistency;
@ factorisation of contributions to the S-function into integrals of total®
and even double total derivatives®, which allows one to take the
integral explicitly with respect to a loop momentum in such a

contribution at n loops and compare it with the contribution to the
anomalous dimension at n — 1 loops.
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N=1 SQCD: the Action

Consider a gauge theory with a gauge group G x U(1), with G an arbitrary
simple group. Let chiral matter superfields ¢, o = 1... Ny, lie each in a
representation R of the group G and have charges g, with respect to U(1)
and chiral matter superfields qga lie in the complex conjugate representation
R and have charges —ga:
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Regularisation

The term with higher powers of covariant derivatives
=2
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where we introduce covariant derivatives in the chiral representation

Sa = i?trRe / d*zd’oW®
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and choose the regulator to be R(z) =1+ z".
To regularise one-loop divergences we introduce Pauli-Villars fields for matter loops
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and for loops of the non-Abelian gauge superfield and the Faddeev-Popov ghosts
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Gauge-Fixing

The gauge-fixing term:

ng:_

82
/d 2d*0D°VR <A2> D*V, (8)

Accordingly, the action for Faddeev-Popov ghosts:
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Renormalisation

Due to the explicit gauge invariance with respect to U(1) corrections to the
two-point Green function of the Abelian gauge superfield are transversal
and the corresponding part of the effective action has the form:
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where ap = e§ /41 and aso = g&/4m are bare charges corresponding to U(1)

and G respectively and I, /5 = —DaﬁQDa/éBaQ is the transversal projection
operator.

The same applies to the non-Abelian gauge superfield but this time due to
BRST-invariance and the Slavnov-Taylor identities.

Quantum corrections to the two-point Green function of the chiral matter
superfields enter the effective action as
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We then introduce renormalised charges a(ao, aso, A1), as(aso, A/p), or
equivalently, renormalisation constants

Zo = aao, Zo, = as/aso; (10)

and field strength renormalisation constants for the chiral matter
superfields:
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where R stands for renormalised.

At one loop the strong coupling a; is renormalised as follows:
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where b11 and b1z are finite constants defined through a particular
renormalisation scheme.



The RG Functions in Terms of the Bare Charges

We define our RG functions in terms of the bare coupling constant as follows.
The Adler D-function:
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and the anomalous dimension:
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One of the main goals of this work is to verify at three loops the relation
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Diagrams Contributing to the D-Function in the Three-Loop

Approximation
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The Three-Loop Adler D-Function as an Integral of a Double Total

Derivative

The contributions of these graphs to the Adler D-function are given by an
integral of a double total derivative of the form:
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where
I =IL(qM=0)—1I(gM) for i=1...4

with I;(q, M), i =1...4, Io(q) and I5(q) defined as
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Function f(k)

d*l |3 1 1 Ry, 1
f(k):_/ (2m)4 [2 <l2(l+k)2 - (12+M3)((l+k)2+M§)>_ R? ((l+’f)2_

1N 2 Riyv— R R R’ N
2—k2)  (+k2-12\(+k2-12 A2 Rl - R+ M3

+ ( Riir — B >2 ( 1 (+k)>P(CRiRix — M) > Riw —Ri
(I+k2Z-12 RiRiy (PR} + M2)((I+k)2R}?,, + M2)) " (1+k)2—12
2M2R, 1 RER?, .
T~ k)2R?,, + M2)(I2R} + M2) toe M2)(([+ k)2 + M2) 2(PR? + M2)
1 Ry — R 2 Rik? (1, k) Ry, Riyr — Ry

U+ k2R, + M2 (I+k)% — k2 2(L+ k)>RiRiwx PRI+ k)>?Riy L+ k)2 — 12
Rin—Ri Riyn—R 2(LK) (RL - Rk>2 2k2
(

- (I+k)? =Kk (+k)?—-1PRRk 12—k L+ k)2RiRiyr
kQ(l, I+ k) Ry — R Riyr — Ry _ 2 Riyr — Ry o Rk k? oy
P+ k)RRt 12—k (I1+k)2—k (I+k)?2—k \(l+k)?—k? AZ I’R;
2(1, k) R n Rtk I
R = @R @ =) (@R =) (0 = )

Ry
HGERICEG k)%)]'



After performing integration with respect to ¢ we obtain
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Diagrams Contributing to the Anomalous Dimension in the Two-Loop
Approximation







The Anomalous Dimension in the Two-Loop Approximation

Evaluating these diagrams we obtain:
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The integrals are the same as those entering the Adler D-function. In fact,
one can easily see that

D(as0) Z g2 (dim(R) — try(aso)) + O(ady).



The Final Form of the D-function at Three Loops

In the case of the simplest regulator possible R(x) = 1+ z the integrals can
be evaluated producing a complete analytical expression for v(as0):’ (and
consequently for D(aso)) in powers of aso:
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where a, = M, /A and a = M /A are arbitrary constants.



The NSVZ-like Subtraction Scheme

RG functions defined in terms of the bare coupling constant do not depend
on the subtraction scheme (although they do depend on the
regularisation)while RG functions defined in terms of renormalised
couplings are scheme-dependent”.

To fix the scheme in which the NSVZ-like relation between D and ~ holds
one has simply to impose a certain boundary condition on the
renormalisation constants.

Let us introduce for convenience a new variable
x=InA/p.
Then we require that for some arbitrary but fixed value xo of x

Z(as,x0)i’ =83 Zalayas,x0) =1;  Za,(as,x0) = 1. (18)
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Proof of existence. Suppose we are employing a scheme in which these
conditions do not hold, then

ao(a, as, o) = ala, as);  aso(as, o) = blas); Z(as,xo)ij = g(as)ij
Let us define new renormilised charges and renormalisation constants:

o (a,as) = ala, 0s); - of(as) = blaws);

7' (0%, 2) = g~ (as(al))i" Z(as(al), )i’
The boundary conditions obviously hold. Let us now demonstrate that
given that the NSVZ-like relation is valid for the RG functions defined in
terms of the bare coupling constants then it is true for the RG functions
defined in terms of the renormalised coupling constants.



Validity of the NSV Z-like relation. The definition of the Adler
D-function and the anomalous dimension in terms of the renormalised
couplings is as follows:
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Set x = xo; due to the boundary conditions as = aso and also
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which in turn means that
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that is to say the two functions are identically equivalent.



The same can be performed for the Adler D-function:
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When we set x = g, the last two terms vanish due to the boundary
conditions and we obtain

D(Ozso) = D(Ozso).

Now since we have D(as0) and y(aso) satisfy the NSVZ-like relation, then
we have D(as) and 7(as) satisfy the same relation since the latter are equal
to the former.



A Three-Loop Illustration

In the three-loop approximation with the use of the one-loop running of as we
obtain
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where the b’s, ¢’s and d’s are finite constants whose particular values are defined
by the renormalisation prescription.



From these equations we can obtain the anomalous dimension and D-function
defined in terms of the renormalised couplings:
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Unlike RG functions defined in terms of the bare couplings these depend on the
renormalisation prescription.



Now we will try to satisfy the boundary conditions. Let us choose some
value zo of x = In A/ p.
One-loop renormalisation of as:

ag —al = % [302 (m% + b11> — 2N;T(R) (m% + buﬂ +O(a).

One can see that to satisfy the boundary conditions for as one has to choose

bi1 = bi2 = —xo,
and for Z;

g1 = —Zo,

and for «

d1 = d2 = —X0.
But in this case

g1 = b1 =bia; d2 = b1 = big,

which ensures identical equality between D, v and D, ¥ respectively and
the validity of the NSVZ-like relation for the latter.



In thus chosen subtraction scheme (the NSVZ-like scheme) the Adler
D-function defined in terms of the renormalised charges has the form
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Conclusions

@ We have calculated the Adler D-function at three loops and the
anomalous dimension at two loops using their definition in terms of the
bare charges for N=1 SQCD regularised by higher covariant derivatives
in the complete form for matter lying in an arbitrary representation of
the gauge group.

@ We have verified the validity of the NSVZ-like relation for the RG
functions defined in terms of the bare couplings.

@ We have also found the renormalisation scheme in which the NSVZ-like
relation is valid for the RG-functions defined in terms of the
renormalised coupling constants.



