Algebraic structures in exceptional geometry

Martin Cederwall

Based on:

- D. Berman, MC, A. Kleinschmidt, D. Thompson, JHEP 1301 (2013) 64 [arXiv:1208.5884];
- MC, J. Edlund, A. Karlsson, JHEP 1307 (2013) 028 [arXiv:1302.6736];
- MC, JHEP 1307 (2013) 025 [arXiv:1302.6737];
- MC, J. Palmkvist, JHEP 1508 (2015) 036 [arXiv:1503.06215]; MC, JHEP 1606 (2016) 006 [arXiv:1603.04684];
- L. Carbone, MC, J. Palmkvist, to appear:
- G. Bossard, MC, A. Kleinschmidt, J. Palmkvist, H. Samtleben, to appear;
- D. Berman, MC, C. Strickland-Constable, work in progress;

and work by others (Hull, Hohm, Zwiebach,...)

SQS 2017 Dubna, July 31, 2017

Background

Duality symmetries in string theory/M-theory mix gravitational and non-gravitational fields. Manifestation of such symmetries calls for a generalisation of the concept of geometry.

It has been proposed that the compactifying space (torus) is enlarged to accommodate momenta (representing momenta and brane charges) in modules of a duality group.

This leads to double geometry in the context of T-duality and exceptional geometry in the context of U-duality.

[Hull et al.; Hitchin;...]

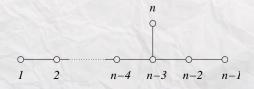
[Hull; Berman et al.; Coimbra et al.;...]

In the present talk, I will

- Describe the basics of extended geometry, with focus on the gauge transformations;
- Describe the appearance of Borcherds superalgebras and Cartantype superalgebras (tensor hierarchy superalgebras);
- Indicate why L_{∞} algebras provide a good framework for describing the gauge symmetries.

Compactify from 11 to 11 - n dimensions on T^n . As is well known, all fields and charges fall into modules of $E_{n(n)}$.

n	$E_{n(n)}$	
3	$SL(3) \times SL(2)$	
4	SL(5)	
5	Spin(5,5)	
6	$E_{6(6)}$	
7	$E_{7(7)}$	
8	$E_{8(8)}$	
9	$E_{9(9)}$	



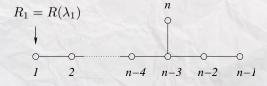
Compactify from 11 to 11 - n dimensions on T^n . As is well known, all fields and charges fall into modules of $E_{n(n)}$.

n	$E_{n(n)}$	
3	$SL(3) \times SL(2)$	
4	SL(5)	
5	Spin(5,5)	
6	$E_{6(6)}$	
7	$E_{7(7)}$	
8	$E_{8(8)}$	
9	$E_{9(9)}$	

I will focus on diffeomorphisms, and how they generalise. The ordinary diffeomorphisms go together with gauge transformations for the 3-form and (dual) 6-form fields (and for high enough n also gauge transformations for dual gravity) in an $E_{n(n)}$ module R_1 . This is the "coordinate module". The derivative transforms in \overline{R}_1 .

Compactify from 11 to 11 - n dimensions on T^n . As is well known, all fields and charges fall into modules of $E_{n(n)}$.

n	$E_{n(n)}$	R_1
3	$SL(3) \times SL(2)$	(3, 2)
4	SL(5)	10
5	Spin(5,5)	16
6	$E_{6(6)}$	27
7	$E_{7(7)}$	56
8	$E_{8(8)}$	248
9	$E_{9(9)}$	fund
1/10/20		



The situation for T-duality is simpler.

Compactification from 10 to 10-d dimensions give the (continuous) T-duality group O(d,d). The momenta are complemented with string windings to form the 2d-dimensional module.

The situation for T-duality is simpler.

Compactification from 10 to 10 - d dimensions give the (continuous) T-duality group O(d, d). The momenta are complemented with string windings to form the 2d-dimensional module.

Note that the duality group is not to be seen as a global symmetry.

Discrete duality transformations in $O(d, d; \mathbb{Z})$ or $E_{n(n)}(\mathbb{Z})$ should arise as symmetries in certain backgrounds, just as the mapping class group $SL(n; \mathbb{Z})$ arises as discrete isometries of a torus.

The rôle of the continuous versions of the duality groups should be analogous to that of GL(n) in ordinary geometry (gravity).

Generalised diffeomorphisms

One has to decide how tensors transform.

The generic recipe is to mimic the Lie derivative for ordinary diffeomorphisms:

$$L_U V^m = U^n \partial_n V^m - \frac{\partial_n U^m}{} V^n$$
 transport term \mathfrak{gl} transformation

Generalised diffeomorphisms

One has to decide how tensors transform.

The generic recipe is to mimic the Lie derivative for ordinary diffeomorphisms:

$$L_U V^m = U^n \partial_n V^m - \frac{\partial_n U^m}{\uparrow} V^n$$
 transport term \mathfrak{gl} transformation

In the case of U-duality, the role of GL is assumed by $E_{n(n)} \times \mathbb{R}^+$, and

$$\mathcal{L}_{U}V^{M}$$

$$= U^{N}\partial_{N}V^{M} + Z^{MN}{}_{PQ}\partial_{N}U^{P}V^{Q}$$

$$\uparrow \qquad \uparrow$$

$$\text{transport term} \qquad \mathfrak{e}_{n(n)} \oplus \mathbb{R} \text{ transformation}$$

where
$$Z^{MN}{}_{PQ} = -\alpha_n P^M_{\mathrm{adj}Q}{}_{,}{}^{N}{}_{P} + \beta_n \delta^M_Q \delta^N_P$$
.

Generalised diffeomorphisms

One has to decide how tensors transform.

The generic recipe is to mimic the Lie derivative for ordinary diffeomorphisms:

$$L_U V^m = U^n \partial_n V^m - \frac{\partial_n U^m}{\partial_n V^n}$$
 transport term \mathfrak{gl} transformation

In the case of U-duality, the role of GL is assumed by $E_{n(n)} \times \mathbb{R}^+$, and

$$\mathcal{L}_{U}V^{M} = L_{U}V^{M} + Y^{MN}{}_{PQ}\partial_{N}U^{P}V^{Q}$$

$$= U^{N}\partial_{N}V^{M} + Z^{MN}{}_{PQ}\partial_{N}U^{P}V^{Q}$$

$$\uparrow \qquad \uparrow$$
transport term $\mathfrak{e}_{n(n)} \oplus \mathbb{R}$ transformation

where
$$Z^{MN}{}_{PQ} = -\alpha_n P^M_{\text{adj}Q}{}^N{}_P + \beta_n \delta^M_Q \delta^N_P = Y^{MN}{}_{PQ} - \delta^M_P \delta^N_Q$$
.

The transformations form an "algebra" for $n \leq 7$:

$$[\mathcal{L}_U, \mathcal{L}_V]W^M = \mathcal{L}_{[U,V]}W^M$$

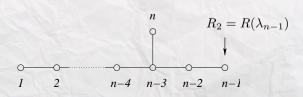
where the "Courant bracket" is $[U, V]^M = \frac{1}{2}(\mathcal{L}_U V^M - \mathcal{L}_V U^M)$, provided that the derivatives fulfil a "section condition".

The section condition ensures that fields locally depend only on an n-dimensional subspace of the coordinates, on which a GL(n) subgroup acts. It reads $Y^{MN}{}_{PQ}\partial_M\ldots\partial_N=0$, or

$$(\partial \otimes \partial)|_{\overline{R}_2} = 0$$

$$(\partial\otimes\partial)|_{\overline{R}_2}=0$$

		No. 10 Television
n	R_1	R_2
3	(3, 2)	$(\overline{f 3},{f 1})$
4	10	5
5	16	10
6	27	27
7	56	133
8	248	1 ⊕ 3875



The interpretation of the section condition is that the momenta locally are chosen so that they may span a linear subspace of cotangent space with maximal dimension, such that any pair of covectors p, p' in the subspace fulfil $(p \otimes p')|_{\overline{R}_2} = 0$.

The interpretation of the section condition is that the momenta locally are chosen so that they may span a linear subspace of cotangent space with maximal dimension, such that any pair of covectors p, p' in the subspace fulfil $(p \otimes p')|_{\overline{R}_2} = 0$.

The corresponding statement in T-duality is $\eta^{MN}\partial_M\otimes\partial_N=0$, where η is the O(d,d)-invariant metric. The maximal linear subspace is a d-dimensional isotropic subspace, and it is determined by a pure spinor Λ . Once a Λ is chosen, the section condition can be written $\Gamma^M \Lambda \partial_M = 0$.

An analogous linear construction can be performed in the exceptional setting.

Generalised geometry

I will skip the detailed description of the generalised gravity. It effectively provides the local dynamics of gravity and 3-form, which are encoded by a vielbein $E_M{}^A$ in the coset $(E_{n(n)} \times \mathbb{R})/K(E_{n(n)})$.

n	$E_{n(n)}$	$K(E_{n(n)})$
3	$SL(3) \times SL(2)$	$SO(3) \times SO(2)$
4	SL(5)	SO(5)
5	Spin(5,5)	$(Spin(5) \times Spin(5))/\mathbb{Z}_2$
6	$E_{6(6)}$	$USp(8)/\mathbb{Z}_2$
7	$E_{7(7)}$	$SU(8)/\mathbb{Z}_2$
8	$E_{8(8)}$	$Spin(16)/\mathbb{Z}_2$
9	$E_{9(9)}$	$K(E_{9(9)})$

The T-duality case is described by a generalised metric or vielbein in the coset $O(d,d)/(O(d)\times O(d))$, parametrised by the ordinary metric and B-field.

With some differences from ordinary geometry, one can go through the construction of connection, torsion, metric compatibility &c., and arrive at generalised Einstein's equations encoding the equations of motion for all fields. (Done for $n \leq 8$.)

For n = 8, 9, the coset $E_{n(n)}/K(E_{n(n)})$ contains higher mixed tensors that do not carry independent physical degrees of freedom. They are removed by "extra" local transformations that arise in the commutator between gen. diffeomorphisms.

[Hohm, Samtleben 2014; MC, Rosabal 2015]

[Bossard, MC, Kleinschmidt, Palmkvist, Samtleben 2017 (in prep.)]

One may introduce (local) supersymmetry. In the case of T-duality, the superspace is based on the fundamental representation of an orthosymplectic supergroup OSp(d,d|2s). The exceptional cases are unexplored, but will be based on ∞ -dimensional superalgebras.

Reducibility and Borcherds superalgebras

The generalised diffeomorphisms do not satisfy a Jacobi identity. On general grounds, it can be shown that the "Jacobiator"

$$[[U,V],W]+\mathrm{cycl}\neq 0$$
 ,

but is proportional to ([U, V], W) + cycl, where $(U, V) = \frac{1}{2}(\mathcal{L}_U V + \mathcal{L}_V U)$.

It is important to show that the Jacobiator in some sense is trivial. It turns out that $\mathcal{L}_{(U,V)}W = 0$ (for $n \leq 7$), and the interpretation is that it is a gauge transformation with a parameter representing reducibility (for $n \leq 6$).

In double geometry, this reducibility is just the scalar reducibility of a gauge transformation: $\delta B_2 = d\lambda_1$, with the reducibility $\delta \lambda_1 = d\lambda_0'$.

In exceptional geometry, the reducibility turns out to be more complicated, leading to an infinite (but well defined) reducibility, containing the modules of tensor hierarchies, and providing a natural generalisation of forms (having connection-free covariant derivatives).

The reducibility continues, and there are ghosts at all levels > 0. The representations are those of a "tensor hierarchy", the sequence of representations R_n of n-form gauge fields in the dimensionally reduces theory.

$$R_1 \stackrel{\partial}{\longleftarrow} R_2 \stackrel{\partial}{\longleftarrow} R_3 \stackrel{\partial}{\longleftarrow} \dots$$

Example, n = 5:

$$\mathbf{16} \xleftarrow{\partial} \mathbf{10} \xleftarrow{\partial} \overline{\mathbf{16}} \xleftarrow{\partial} \mathbf{45} \xleftarrow{\partial} \overline{\mathbf{144}} \xleftarrow{\partial} \dots$$

The reducibility continues, and there are ghosts at all levels > 0. The representations are those of a "tensor hierarchy", the sequence of representations R_n of n-form gauge fields in the dimensionally reduces theory.

$$R_1 \stackrel{\partial}{\longleftarrow} R_2 \stackrel{\partial}{\longleftarrow} R_3 \stackrel{\partial}{\longleftarrow} \dots$$

Example, n = 5:

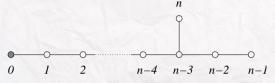
$$\mathbf{16} \xleftarrow{\partial} \mathbf{10} \xleftarrow{\partial} \overline{\mathbf{16}} \xleftarrow{\partial} \mathbf{45} \xleftarrow{\partial} \overline{\mathbf{144}} \xleftarrow{\partial} \dots$$

$$16 - 10 + 16 - 45 + 144 - \ldots = 11$$
,

(suitably regularised) which is the number of degrees of freedom of a pure spinor.

The representations $\{R_n\}_{n=1}^{\infty}$ agree with

- The ghosts for a "pure spinor" constraint (a constraint implying an object lies in the minimal orbit);
- The positive levels of a Borcherds superalgebra $\mathcal{B}(E_n)$.



Indeed, the denominator appearing in the denominator formula for $\mathcal{B}(E_n)$ is identical to the partition function of a "pure spinor".

 $[\mathrm{MC,\ Palmkvist\ }2015]$

$$\mathscr{B}(D_n) \approx \mathfrak{osp}(n, n|2)$$

$$\mathscr{B}(A_n) \approx \mathfrak{sl}(n+1|1)$$

$$\dots \stackrel{\partial}{\longleftarrow} R_{-1} \stackrel{\partial}{\longleftarrow} R_0 \stackrel{\partial}{\longleftarrow} \underbrace{R_1 \stackrel{\partial}{\longleftarrow} R_2 \stackrel{\partial}{\longleftarrow} \dots \stackrel{\partial}{\longleftarrow} R_{8-n}}_{\text{covariant}} \stackrel{\partial}{\longleftarrow} R_{9-n} \stackrel{\partial}{\longleftarrow} R_{10-n} \stackrel{\partial}{\longleftarrow} \dots$$

The modules R_1, \ldots, R_{8-n} behave like forms. The "exterior derivative" is connection-free (for a torsion-free connection), and there is a wedge product.

[MC, Edlund, Karlsson 2013]

$$\dots \stackrel{\partial}{\longleftarrow} R_{-1} \stackrel{\partial}{\longleftarrow} R_0 \stackrel{\partial}{\longleftarrow} \underbrace{R_1 \stackrel{\partial}{\longleftarrow} R_2 \stackrel{\partial}{\longleftarrow} \dots \stackrel{\partial}{\longleftarrow} R_{8-n}}_{\text{covariant}} \stackrel{\partial}{\longleftarrow} R_{9-n} \stackrel{\partial}{\longleftarrow} R_{10-n} \stackrel{\partial}{\longleftarrow} \dots$$

The modules R_1, \ldots, R_{8-n} behave like forms. The "exterior derivative" is connection-free (for a torsion-free connection), and there is a wedge product.

[MC, Edlund, Karlsson 2013]

"Symmetry": $R_{9-n} = \overline{R}_n$.

There is another extension to negative levels that respects this symmetry, and seems more connected to geometry: tensor hierarchy algebras.

[Palmkvist 2013]

Cartan-type superalgebras

In the classification of superalgebras by Kac, there is a special class, "Cartan-type superalgebras".

The Cartan-type superalgebra W(n), which I prefer to call $W(A_{n-1})$, is asymmetric between positive and negative levels, and (therefore) not defined through generators corresponding to simple roots and Serre relations.

 $W(A_{n-1})$ is the superalgebra of derivations on the superalgebra of (pointwise) forms in n dimensions.

Any operation $\omega \to \Omega \wedge \iota_V \omega$, where Ω is a form and V a vector, belongs to $W(A_{n-1})$. A basis is given by

level = 1	\imath_a
0	$e^b \imath_a$
-1	$e^{b_1}e^{b_2}\imath_a$
-2	$e^{b_1}e^{b_2}e^{b_3}\imath_a$

A subalgebra $S(A_{n-1})$ contains traceless tensors.

The positive levels agree with $\mathscr{B}(A_{n-1}) \approx \mathfrak{sl}(n|1)$

In spite of the absence of a Cartan involution, there is a way to give a systematic Chevalley–Serre presentation of the superalgebra, based on the same Dynkin diagram as the Borcherds superalgebra.

 $[{\rm Carbone},\,{\rm MC},\,{\rm Palmkvist}\,\,2017\,\,({\rm in}\,\,{\rm prep.})]$

Note that the representations of torsion and torsion Bianchi identity appear at levels -1 and -2.

The construction can be extended to $W(D_n)$, and, most interestingly, $W(E_n)$ (and the corresponding $S(\mathfrak{g})$).

The statements about torsion and Bianchi identities remain true (but we still lack a geometric argument).

Back to the Jacobi identity. Expressed in terms of a fermionic ghost in R_1 ,

$$[[c,c],c] \neq 0$$

How is this remedied? The most general formalism for gauge symmetries is the Batalin–Vilkovisky formalism, where everything is encoded in the master equation (S, S) = 0.

If transformations are field-independent, one may consider the ghost action consistently. An L_{∞} algebra is a (super)algebraic structure which provides a perturbative solution to the master equation.

If C denotes all ghosts, then the master equation states the nilpotency of a transformation

$$\delta C = (S, C) = \partial C + [C, C] + [C, C, C] + [C, C, C, C] + \dots$$

The identities that need to be fulfilled are:

$$\begin{split} \partial^2 C &= 0 \ , \\ \partial [C,C] &+ 2[\partial C,C] = 0 \ , \\ \partial [C,C,C] &+ 2[[C,C],C] + 3[\partial C,C,C] \ , \\ ... \end{split}$$

Assuming $\partial c = 0$, the non-vanishing of [[c,c],c] can be compensated by the derivative of an element in R_2 (representing reducibility). One needs to introduce a 3-bracket

$$[c,c,c] \in R_2$$
.

Then, there are more identities to check.

For double field theory, a 3-bracket is enough. [Hohm, Zwiebach 2017]
For exceptional field theory, there are signs, that one will in fact obtain arbitrarily high brackets. There are also other issues concerning the non-covariance outside the "form window". I will not go into detail. [Berman, MC, Strickland-C, in progr.]

Open questions

- Can the formalism be continued to n > 9? The transformations work for E_9 , and there seems to be no reason (other than mathematical difficulties) that it stops there. Is there a connection to the " E_{10} proposal" with emergent space?
- Geometry from algebra? What is the precise geometric relation between the tensor hierarchy algebra and the generalised diffeomorphisms?
- Superspace/supergeometry? And some formalism generalising that of pure spinor superfields, that manifests supersymmetry?
- The section condition: Can it be lifted, or dynamically generated?

• ...

Thank you!