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Part I. General facts.
Two-dimensional σ-models serve as the theoretical underpinning of string
theory. In this talk we will describe a new wide class of models, which
are likely to be integrable (in the sense of the inverse scattering method,
S-matrix factorization, etc.).
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σ-models

The action of a σ-model describing maps X from a 2D worldsheet C to a
target space M with metric h is given by

S = 1
2

∫
C

d2z hij(X) ∂µXi ∂µX
j (1)

We will assume M homogeneous:
M = G/H, G compact and semi-simple. We will use the following
standard decomposition of the Lie algebra g of G:

g = h⊕m, (2)

where m ⊥ h with respect to the Killing metric on g.
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Symmetric target spaces

For a reductive homogeneous space one has the following relations:

[h, h] ⊂ h ⇒ h is a subalgebra
[h,m] ⊂ m ⇒ m is a representation of h

A homogeneous space G/H is called symmetric if

[m,m] ⊂ h (3)

Equivalently, there exists a Z2-grading on g,
i.e. a Lie algebra homomorphism σ of g, such that σ(a) = a for a ∈ h

and σ(b) = −b for b ∈ m.
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Equations of motion. 1

The action of a σ-model with homogeneous target space G/H is globally
invariant under the Lie group G. Therefore, there exists a conserved
Noether current Kµ ∈ g:

∂µK
µ = 0 (4)

Since the group G acts transitively on its quotient space G/H, the equa-
tions of motion are in fact equivalent to the conservation of the current.
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Equations of motion. 2

It was observed by Pohlmeyer (’76) that in the case when the target space
is symmetric, the current K is, moreover, flat (with proper normalization):

dK −K ∧K = 0 (5)

To get an idea, why this can be the case, recall that the Maurer-Cartan
equation has the solution

K = −g−1dg, g ∈ G (6)

What is the relation between g and a point in the configuration space
[g̃] ∈ G/H? The answer is given by Cartan’s embedding G/H ↪→ G:

g = σ̂(g̃)g̃−1 (7)

σ̂ is a Lie group homomorphism induced by the Lie algebra involution σ.

Dmitri Bykov | MPI für Gravitationsphysik & Steklov Mathematical Institute 6/27



Equations of motion. 3

Another observation of Pohlmeyer was that the two conditions

d ∗K = 0 (Conservation) (8)
dK −K ∧K = 0 (Flatness)

may be rewritten as an equation of flatness of a connection

Au = 1 + u

2 Kzdz + 1 + u−1

2 Kz̄dz̄, (9)

where we have decomposed the current K = Kzdz +Kz̄dz̄. We have

dAu −Au ∧Au = 0 (10)

This leads to an associated linear system (Lax pair)

(d−Au)Ψ = 0 (11)
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Integrability

The existence of a linear system described above implies the existence of
an infinite number of conserved charges and is often a sufficient condition
for the classical integrability of the model.

The linear system was used by Zakharov & Mikhaylov (’79) to solve
the equations of motion for the principal chiral model (target space G),
with worldsheet CP1. A more rigorous approach was developed by
Uhlenbeck (’89). Solutions of the e.o.m. for σ-models with symmetric
target spaces may be obtained by restricting the solutions of the principal
chiral model.

These constructions could not be directly generalized to the case of
homogeneous, but not symmetric target spaces (no Cartan involution).
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Part II. The new models.
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Target spaces

We will consider a different class of models, with target spacesM of the
following type:

• M = G/H is a homogeneous space; for simplicity we take G
compact and semi-simple

g = h⊕m, [h, h] ⊂ h, [h,m] ⊂ m

• M has an integrable G-invariant complex structure I

m = m+ + m−, [h,m±] ⊂ m±, [m±,m±] ⊂ m±

• The Killing metric h is Hermitian (i.e. of type (1, 1)) w.r.t. I

h(m±,m±) = 0
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Target spaces. 2

Complex homogeneous spaces were classified by Wang (’54) a long time
ago. They are toric bundles over flag manifolds.

Consider for simplicity the case of G = SU(N). Then the relevant
manifolds are of the form

M = SU(N)
S(U(n1)× . . .× U(nm)) ,

m∑
i=1

ni ≤ N ,

If
m∑
i=1

ni = N , this is the manifold of partial flags in CN . Otherwise it is

a U(1)2s-bundle over a flag manifold, where 2s = N −
m∑
i=1

ni.
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The action

Given a homogeneous space of the type just described, one can introduce
the action of the model: [DB, ’16]

S =
∫
C

d2z ‖∂X‖2 +
∫
C

X∗ω =

=
∫
C

d2z
(
hij∂µX

i∂µX
j + εµνωij∂µX

i∂νX
j
)
,

where ω = h ◦I is the Kähler form. Note, however, that, in general, the
metric h is not Kähler, hence the form ω is not closed: dω 6= 0. Therefore
the second term in the action contributes to the e.o.m.!
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The action

Let K be the Noether current constructed using the above action. As we
already discussed, the e.o.m. are equivalent to its conservation:

d ∗K = 0

The key observation is that, for the models considered, it is also flat:

dK −K ∧K = 0

These two equations mean, in essence, that the described models are sub-
models of the principal chiral model (PCM). In particular, the solutions
of these models are a subset of solutions of the PCM. The Lax pair
representation can be constructed in parallel with the Pohlmeyer procedure.
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Relation to the case of symmetric spaces

Complex symmetric spaces fall in our category, with characteristic property
[m+,m+] = 0. In fact, this implies [m+,m−] ⊂ h. Symmetric spaces of
the group SU(N) are the Grassmannians

Gn|N := SU(N)
S(U(n)× U(N − n))

In this case the canonical one-parametric family of flat connections is

Ãλ = 1− λ
2 K̃zdz + 1− λ−1

2 K̃z̄dz̄,

where K̃ is the canonical Noether current, i.e. the one constructed using
the standard action

S = 1
2

∫
C

d2z hij(X) ∂µXi ∂µX
j (12)
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Relation to the case of symmetric spaces. 2

The models, which we described above, feature an additional term in their
action:

∫
C
X∗ω , the integral of the Kähler form. Therefore the Noether

current K defined using this action will be different from K̃, the difference
being a ’topological’ current:

K = K̃ + ∗dM

Nevertheless both K and K̃ are flat. The one-parametric family of
connections that we constructed earlier has the form

Au = 1 + u

2 Kzdz + 1 + u−1

2 Kz̄dz̄,

A natural question arises: How are Ãλ and Au related?
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Relation to the case of symmetric spaces. 3

The answer is: Ãλ and Au are related by a gauge transformation Ω:

Ãλ = ΩAuΩ−1 − ΩdΩ−1

Ω can be written out explicitly (g̃ is the ’dynamical’ group element):

Ω = g̃Λg̃−1, where Λ = diag(λ−1/2, . . . , λ−1/2︸ ︷︷ ︸
n

, λ1/2, . . . , λ1/2︸ ︷︷ ︸
N−n

)

Rather important is the nontrivial relation between the spectral parameters:

λ = u1/2

This relation may be confirmed by analyzing the limiting behavior of the
holonomies of the connection as u → 0 (such analysis can be borrowed
from Hitchin (’90)).
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Part III. Relation to
η-deformations.

Dmitri Bykov | MPI für Gravitationsphysik & Steklov Mathematical Institute 17/27



η-deformed models.

The action of the η-deformed (η ∈ C) principal chiral model has the
following form (J := −g−1dg, g ∈ G): [Klimcik, ’02, ’09]

Sη = 1
2

∫
d2x 〈J+,

1 + η2

1− ηR
◦ J−〉, (13)

where R is a linear operator on the Lie algebra g, satisfying two equations:
1) “Modified classical Yang-Baxter equation” (MCYBE)

[R ◦ a,R ◦ b]−R ◦ ([R ◦ a, b] + [a,R ◦ b])− [a, b] = 0 ∀ a, b ∈ g

2) Anti-symmetry condition

〈R ◦ a, b〉 = −〈a,R ◦ b〉
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η-deformed models. 2.

There are zero-curvature representations for the e.o.m. of these models.
In recent years many attempts were made to apply the deformation to the
AdS5 × S5 (super)-σ-model [Delduc, Magro, Vicedo; Arutyunov, Borsato,
Frolov; van Tongeren; Hoare, Tseytlin; ..., ’13+]

Our principal observation in this direction [DB, ’16] is that there is a simple
geometric class of solutions to the above two equations: simply take for
R an integrable complex structure J on the Lie group G, compatible
with the Killing metric (for compact simple even-dimensional groups it
always exists).
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η-deformed models. 3.

We set R = J . This means R2 = −1. Then:

1) MCYBE ⇒ Vanishing of the Nijenhuis tensor (integrability of J )

2) Anti-symmetry condition ⇒ Compatibility of J with the metric

As a result, one obtains the deformation of the principal chiral model by a
term proportional to the Kähler form on the group G (which is not closed,
so it is not a topological term!):

Sη =
∫
C

d2x ‖∂X‖2 + η

∫
C

X∗ω
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η-deformed models. 4.

For a different choice of R (when R3 = −R, and the null space of R is
the Cartan subalgebra of g), some of the models discussed before (in Part
II) may be seen as limits of the η-deformed models as η → ±i.

This limit is somewhat degenerate, as it changes the target space of the
model (and even its dimension): G→ G/H.

As a result of such a limit, however, one can only obtain target-spaces of
the type G/H with abelian ‘gauge group’ H. In our original approach,
there is no such constraint on H.
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Part IV. Models with graded
target spaces.
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Zm-graded spaces. 1.

A Zm-graded (m-symmetric) space G/H is characterized by the relations

g = ⊕m−1
k=0 gk, [gi, gj ] ⊂ gi+j mod m (14)

There exists a Lax representation for Zm-graded models with the action
[Young, ’06]

S =
∫
C

d2z ‖∂X‖2 +
∫
C

X∗ω̃, (15)

where the B-field is expressed in terms of the Zm-graded components J (k)

of the current:

ω̃ = 1
2

m∑
k=0

(m− k)− k
m

tr(J (k) ∧ J (m−k)) (16)
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Zm-graded spaces. 2.

But: In general, there are many Zm-gradings on a given Lie algebra g.

Example: su(3)

Z2 :

 0 0 1
0 0 1
1 1 0

 , Z3 :

 0 1 2
2 0 1
1 2 0

 ,
 0 0 1

0 0 1
2 2 0

 ,

Z4 :

 0 1 2
3 0 1
2 3 0

 , Z5 :

 0 1 3
4 0 2
2 3 0

 ,
 0 1 2

4 0 1
3 4 0

 ,

Z6 :

 0 1 3
5 0 2
3 4 0

 , Z7 :

 0 1 3
6 0 2
4 5 0


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Zm-graded spaces. 3.

A question arises: Are the models different for different choices of gradings?

Answer: At least in the present case [A(1)
N−1 gradings on g = suN ] they

can all be reduced to our model, with an appropriate choice of complex
structure (up to a topological term). [DB, ’16]

In general, the two classes of models are different: for instance, con-
sider the target space S6 = G2

SU(3) , which is 3-symmetric but carries no
integrable homogeneous complex structure.
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Outlook

• Zero-curvature representations were known for σ-models with sym-
metric target spaces

• We have considered modified σ-models with complex homogeneous
target spaces, for which there exist Lax pairs

• A concrete example of such model has been put forward, when the
target space is the flag manifold U(3)

U(1)3 . When the worldsheet is a
sphere CP1, all solutions of the e.o.m. have been constructed [DB,
’15-’16]

• Crucial test of integrability: construct solutions, when the worldsheet
is a torus S1 × S1 (as in Hitchin (’90) forM = SU(2))
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What is the space of integrable σ-models?
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An example: the flag manifold

We will consider the simplest homogeneous, but non-symmetric target
space – the flag manifold

F3 = U(3)
U(1)3 (17)

It is the space of ordered triples of lines through the origin in C3, and can
be parametrized by three orthonormal vectors

ui, i = 1, 2, 3
ūi ◦ uj = δij , modulo phase rotations: uk ∼ eiαkuk.
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Complex structures on the flag manifold

To formulate the model, we need to pick a particular complex structure
on F3. The (co)tangent space to F3 is spanned at each point by the
one-forms

Jij := ui ◦ dūj , i 6= j (18)

One can pick any three non-mutually conjugate one-forms and define the
action of the complex structure operator I on them:

I ◦ J12 = ±iJ12, I ◦ J23 = ±iJ23, I ◦ J31 = ±iJ31 (19)

Altogether there are 23 = 8 possible choices, so that there are 8 invariant
almost complex structures. However, only 6 of them are integrable.
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The action simplified

Pick the integrable complex structure I , in which J12, J13, J23 are holo-
morphic one-forms. Then the action can be written as (DB ’14)

S =
∫
d2z

(
|(J12)z̄|2 + |(J13)z̄|2 + |(J23)z̄|2

)
(20)

The e.o.m. are:

Dz(J12)z̄ = 0, Dz(J31)z̄ = 0, Dz(J23)z̄ = 0 (21)

From the action (20) it is clear that the holomorphic curves defined by
(J12)z̄ = (J13)z̄ = (J23)z̄ = 0 minimize the action, hence are solutions
of the e.o.m. From (21) it follows that (J12)z̄ = (J31)z̄ = (J23)z̄ = 0
is a solution as well. This defines a curve, holomorphic in a different,
non-integrable almost complex structure I.
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Holomorphic curves. 1

We have seen that the curves, holomorphic in at least two different almost
complex structures, satisfy the e.o.m. As we discussed, there are 8 almost
complex structures on the flag manifold. Are there any other holomorphic
curves that still solve the e.o.m.?
The answer is YES. The relevant complex structures are:

1

2

3

2 2

J12 J23
J13

J12 J32
J31

J21 J23
J31

1

2

3

J12 J23
J31

1

2

3

J13 J32
J21

1 3 1 3

Q1 Q2 Q3

QI Q-I
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Holomorphic curves. 2

We have already discussed why the QI -holomorphic curves and Q1-
holomorphic curves satisfy the e.o.m.

To see why the Q2- and Q3-holomorphic curves satisfy the e.o.m., one
should note that the differences between the respective Kähler forms are
closed forms, i.e. for example ω1 − ω2 = Ωtop with dΩtop = 0. Therefore
the two actions S1 and S2 differ by a topological term:

S1 − S2 =
∫
C

Ωtop (22)
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Holomorphic curves. 3

This leads to an interesting bound on the instanton numbers of the
holomorphic curves. To see this, note that the flag manifold may be
embedded as

i : F3 ↪→ CP2 × CP2 × CP2 (23)

The second cohomology H2(F3,R) = R2 can be described via the pull-
backs of the Fubini-Study forms of the CP2’s, and the corresponding
instanton numbers are ni =

∫
C
i∗(Ω(i)

FS), i = 1, 2, 3.

These are subject to the condition

n1 + n2 + n3 = 0. (24)
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Holomorphic curves. 4

The bounds on the topological numbers ni for the holomorphic curves,
which follow from the non-negativity of the actions Si, are:

n1

n3

n2

I1

I2

I3

n1 n2 n3+ + =0

Dmitri Bykov | MPI für Gravitationsphysik & Steklov Mathematical Institute 34/27



Solutions for C = CP1

The main point of introducing the action (20) is that, as it turns out, the
corresponding Noether current is flat, in full analogy with what happens
for σ-models with symmetric target-spaces.

The full consequences of this fact still remain to be investigated, but for
the moment we can provide a complete description of the solutions of the
e.o.m. for the case when the worldsheet C = CP1. To describe these
solutions, one should recall that there exist three fibrations

πi : F3 → (CP2)i, i = 1, 2, 3, (25)

each with fiber CP1.
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Solutions for C = CP1. 2

All solutions to the e.o.m. are parametrized by the following data:

• One of the projections πi : F3 → (CP2)i, i = 1, 2, 3

• A harmonic map vhar : CP1 → (CP2)i to the base of the projection

• A holomorphic map whol : CP1 → CP1 to the fiber of the projection,
.

For every triple (i, vhar, whol) there exists a solution of the e.o.m., and all
solutions are obtained in this way. (DB ’15)

The crucial point is that the harmonic maps to the base manifold CP2

are known explicitly (Din, Zakrzewski ’80) (and the holomorphic maps
CP1 → CP1 are just rational functions).
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