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Chandrasekhar’s Nobel prize talk

The mathematical theory of black holes is a subject of immense
complexity; but its study has convinced me of the basic truth of the
ancient mottoes, and

The simple is the seal of the true

Beauty is the splendour of truth.
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Hypermassive black holes are elsewhere!
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LETTER
doi:10.1038/ nature14241

An ultraluminous quasar w ith a twelve- billion-
solar- mass black hole at redshift 6.30
Xue- Bing Wu1,2, Feige Wang1,2, Xiaohui Fan2,3, Weimin Yi4,5,6, Wenwen Zuo7, Fuyan Bian8, Linhua Jiang2, Ian D. McGreer3,
Ran Wang2, Jinyi Yang1,2, Qian Yang1,2, David Thompson9 & Yuri Beletsky10

Sofar, roughly40quasarswith redshiftsgreater than z5 6havebeen
discovered1–8.Eachquasar containsablack holewithamassof about
onebillion solar masses(109M[ )2,6,7,9–13. Theexistenceof such black
holeswhen theUniversewaslessthan onebillion yearsold presents
substantial challengestotheoriesof theformation andgrowthof black
holesand thecoevolution of black holesand galaxies14.Herewereport
thediscoveryof anultraluminousquasar,SDSSJ010013.021 280225.8,
at redshift z5 6.30. I t hasan optical and near-infrared luminositya
fewtimesgreater than thoseof previouslyknown z. 6quasars.On the
basisof thedeepabsorption trough15on thebluesideof theLyman-a
emission linein thespectrum,weestimatetheproper sizeof theion-
izedproximityzoneassociatedwith thequasar tobeabout 26million
light years, larger than found with other z . 6.1quasarswith lower
luminosities16.Weestimate(on thebasisof anear-infraredspectrum)
that theblack holehasamassof 1.23 1010M[ ,which isconsistent
with the1.33 1010 M[ derived by assuming an Eddington-limited
accretion rate.

High-redshift quasarshavebeen efficiently selected using acombi-
nation of optical and near-infrared colours3,4. We have carried out a
systematicsurvey of quasarsat z. 5usingphotometry from theSloan
Digital SkySurvey(SDSS)17, thetwoMicron All SkySurvey (2MASS)18

and theWide-field Infrared Survey Explorer (WISE)19, resultingin the
discoveryof asignificant populationof luminoushigh-redshift quasars.
SDSSJ010013.021 280225.8(hereafter J01001 2802) wasselected asa
high-redshift quasar candidate owing to its red optical colour (with
SDSSABmagnitudesiAB5 20.846 0.06andzAB5 18.336 0.03) and
aphotometricredshift of z< 6.3. It hasbright detectionsin the2MASS
J,H and Ksbandswith Vegamagnitudesof 17.006 0.20,15.986 0.19
and15.206 0.16,respectively;it isalsostronglydetected inWISE,with
Vega magnitudes in W1 to W4 bands of 14.456 0.03, 13.636 0.03,
11.716 0.21 and 8.986 0.44, respectively (seeExtended Data Figs 1
and 2for imagesin different bands). Itscolour in thetwobluest WISE
bands,W1andW2,clearlydifferentiatesit from thebulk of starsin our
Galaxy20.Theobject waswithin theSDSS-III imagingarea. It iscloseto
thecolour selection boundaryof SDSSz< 6quasars1,but wasassigned
to lowpriorityearlier becauseof itsrelatively red zAB2 Jcolour and its
bright apparent magnitudes. It isundetected in both radio and X-ray
bandsby thewide-area, shallow survey instruments.

Initial optical spectroscopy on J01001 2802 was carried out on 29
December 2013 with the Lijiang 2.4-m telescope in China. The low-
resolution spectrum clearly showsasharpbreak at about 8,800A

�
, con-

sistent with aquasar at aredshift beyond 6.2. Two subsequent optical
spectroscopic observationswereconducted on 9 and 24 January 2014
respectivelywith the6.5-m MultipleMirror Telescope(MMT) and the
twin 8.4-m mirror LargeBinocular Telescope(LBT) in theUSA. The
Lyman-a (Lya) lineshown in thespectraconfirmsthat J01001 2802is
aquasar at aredshift of 6.306 0.01(seeFig.1andMethodsfor details).

Weusethemultiwavelengthphotometrytoestimatetheoptical lumi-
nosityat rest-framewavelength3,000A

�
(L3,000),which isconsistent with

that obtained fromK-bandspectroscopy(seebelow).Thelatter givesa
morereliablevalueof (3.156 0.47) 3 1047ergs2 1, adoptingaL CDM
cosmologywith Hubbleconstant H05 70km s2 1Mpc2 1,matter den-
sityparameter VM 5 0.30anddarkenergydensityparameter VL 5 0.7.
Assuminganempirical conversionfactor fromtheluminosityat 3,000A

�
to thebolometricluminosity21, thisgivesLbol 5 5.153 L3,0005 1.623
1048ergs2 15 4.293 1014L[ (whereL[ isthesolar luminosity). We
obtainasimilar result whenestimatingthebolometricluminosity from
the Galactic extinction corrected absolute magnitude at rest-frame
1,450A

�
, which is M1450,AB5 2 29.266 0.20. The luminosity of this
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Figure 1 | Theoptical spectra of J01001 2802. From top to bottom, spectra
taken with theLijiang 2.4-m telescope, theMMT and theLBT (in red, blue
and black colours), respectively. For clarity, two spectraareoffset upward by
oneand two vertical units. Although thespectral resolution variesfrom very
low to medium, in all spectra theLya emission line, with a rest-frame
wavelength of 1,216A

�
, isredshifted toaround8,900A

�
, givingaredshift of 6.30.

J01001 2802isaweak-linequasar withcontinuum luminosity about four times
higher than that of SDSSJ11481 5251 (in green on thesameflux scale)1,
which waspreviously themost luminoushigh-redshift quasar known at
z5 6.42.
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Figure 1: Hypermassive black hole with mass M = 12×109 M¯ at redshift
z = 6.3 (Nature, February 2015). More than 40 SMBHs with masses
M ∼ 109 M¯ at redshifts z > 6.
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Introduction

The Universe at scales less than 100 Mpc shows a spongy structure
where together with regions with structure of galaxies there are void regions
where there are underdense distribution of galaxies or where they are totally
absent.

The existence of these cosmological voids, discovered first in the 80s
of the last century, set the question of their actual extension and of their
shape. And of their origin.

The analysis of their physical properties has been done using Void
finders, i.e. by using codes which defined their shapes and their actual
extensions. The most recent results assign and average radius of 25 Mpc
and an approximately spherical shape. There is a galaxy underdensity in the
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borders of the voids, but the central part is apparently without any visible
matter, i.e. optically void.

As follows from an analysis reported by (Peebles 2001), the small
dispersion of galaxy peculiar velocities indicates that there must be more
matter in voids than expected. Then the problem is to establish the nature
of this dark matter.

A simple model to explain contemporarily the presence of this dark matter
and void formation is to admit that there have been large perturbations,
eventually produced by a long inflationary period, that collapsed into black
holes (CBH) and that voids have been created by the cosmological expansion
around these CBHs. To describe the resulting model, in previous papers, the
Einstein-Straus Swiss cheese model has been used. In this case dark matter
can totally be identified with the CBHs, i.e. ”ordinary” black holes with
huge dimensions. In order to compensate the void region these black holes
must have a mass of the order of 1014M¯ (the mass value is consistent
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with density fluctuations (Tegmark & Zaldarriaga 2002,Tegmark 2004).

In a perfect Swiss Cheese model, a CBH will not have any direct
interaction with the other structures except for contributing to the energy
density of the universe and participating to the collective cosmological
expansion. To explain some deviations from this scenario which are in the
actual observations, one has to consider the presence of peculiar velocities
for galaxies and some perturbation of this scenario. Otherwise the CBHs
can be detected only through their lensing properties.

Lensing properties of CBHs have been discussed previously by simulating
them numerically, but in this paper we go deeper in the theoretical analysis
looking for the signature of the presence of a CBH.

An existence of a number supermassive black holes with redshifts z > 6
with black hole masses 109M¯ is a real challenge for existing theoretical
models (Volonteri 2012, Wu et al. 2015) and there is an opinion that it
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looks like an anomaly and one has to introduce a non-standard accretion
physics or assume a formation of massive seeds (Melia 2014). Therefore, in
principle, such seeds could exist not only in centers of quasars and galaxies
where an accreting baryonic matter is shining and indicating their locations,
but also in voids, which could have a complex internal structure (Zeldovich
et al. 1982, Kopylov et al. 2002, Aragon-Calva & Szalay 2013), so voids
could be a key player in this game similarly to vacuum in quantum field
theory and cosmology.
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Schwarzschild lens model
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Basic Relations

The Schwarzschild lens model was studied by Einstein (1936). Here we
will remind basic notations and relations which we will use in our studies.
The gravitational lens equation can be written in the following form (see
also (Schneider, Ehlers, Falco, 1992) for reference)

~η = Ds
~ξ/Dl −Dls

~Θ(~ξ), (1)

where η, ξ are vectors determining positions of sources and images in the
source and image planes, respectively, Ds, Dl, Dls are angular diameter
distances between source and observer, lens and observer, lens and source
respectively. For the Schwarzschild lens we have (Schneider, Ehlers, Falco,
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1992)

~Θ(~ξ) = 4GM~ξ/c2|~ξ|2. (2)

If a source is located at the origin (~η = 0) we have a definition for the
Einstein – Chwolson radius (Chwolson 1924; Schneider, Ehlers, Falco, 1992)

ξ0 =
√

4GMDlDls/(c2Ds). (3)

If Ds À Dl (Ds ≈ Dls) then

ξ0 =
√

4GMDl/c2 (4)

We will introduce also the Einstein – Chwolson angle θ0 = ξ0/Dl.
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If we can re-write the gravitational lens equation in the dimensionless
form with dimensionless variables

~x = ~ξ/ξ0, ~y = Ds~η/(ξ0Dl), ~α = ~ΘDlsDl/(Dsξ0) (5)

then we have

~y = ~x− ~α(~x) (6)

or

~y = ~x− ~x/x2. (7)

The gravitational lens equation has two solutions

~x± = ~y
[
1/2±

√
1/4 + 1/y2

]
(8)
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or

x+ = y

[
1
2

+
√

1
4

+
1
y2

]
, (9)

x− = y

[
1
2
−

√
1
4

+
1
y2

]
, (10)

l = x+ + |x−| = 2y

√
1
4

+
1
y2

, (11)

where l is a dimensionless distance between these two solutions. Clearly that
one image is located outside of the Einstein – Chwolson ring x+, another
one is located inside the Einstein – Chwolson ring x−. We select orientation
of axis to have ~y = (|y|, 0). For small y ≈ 0 we can write solutions in the
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form

x± = ±1 +
1
2
y + O(y2), (12)

therefore, for sources with a small impact parameter y, an image size in
radial direction is squeezing in 2 times (see Figs. 2, 3). More precisely,
squeezing in radial direction is determined by the derivative

dx±

dy
=

1
2
± y√

4 + y2
=

1
2
± y

2
+ O(y2). (13)
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Figure 2: Image of a circular source for the Schwarzschild lens. Radius of
source r = 0.1, impact parameter y = 0.11. It is clear that radius of source
is roughly in 2 times larger than widths of images in radial direction.
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Figure 3: Image of a circular source for the Schwarzschild lens. Radius of
source r = 0.1, impact parameter y = 0.3. It is also clear that radius of
source is larger than widths of images in radial direction.

We will remind also relations for amplification of the Schwarzschild lens.
Let us introduce angles describing positions of images and a source in the
Einstein – Chwolson angle units, namely, ~θ = ~ξ/Dl, ~β = ~η/Ds. In these
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case amplification of gravitational lens is the Jacobian describing a ratio
between an solid angles of image area and a source area, or more formally

µ =
∆ω

∆ω0
=

∣∣∣∣∣det
d~β

d~θ

∣∣∣∣∣

−1

=
∣∣∣∣det

d~y

d~x

∣∣∣∣
−1

. (14)

So, we have

~y = ~β/θ0, ~x = ~θ/θ0. (15)

For the case of the mapping

~x± 7→ ~y (~y = (y1, 0)), (16)
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we evaluate Jacobians

µ± =
∣∣∣∣det

d~x±

d~y

∣∣∣∣ . (17)

Since only diagonal terms of the Jacobian are non-vanishing, we calculate

∂x1
±

∂y1

∣∣∣∣
(y1,0)

=
1
2

(
1± y1√

4 + y1
2

)
, (18)

∂x2
±

∂y2

∣∣∣∣
(y1,0)

=
1
2

(
1±

√
4 + y1

2

y1

)
, (19)

or

µ± =
1
4

(
y1√

4 + y1
2

+

√
4 + y1

2

y1
± 2

)
, (20)
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for ratio of amplifications we have

µ+

µ−
=

(√
4 + y1

2 + y1√
4 + y1

2 − y1

)2

, (21)

We can calculate an asymptotic behavior if y1 → 0 (Schneider, Ehlers,
Falco, 1992)

µ+ =
1

2y1
+

1
2

+ O(y1), (22)

µ− =
1

2y1
− 1

2
+ O(y1), (23)

µ+

µ−
= 1 + y1 + O(y1

2). (24)
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If y1 →∞, then

µ+ = 1 + y1
−4 + O(y1

−6), (25)

µ− = y1
−4 + O(y1

−6), (26)
µ+

µ−
= y1

4 + O(y1
0). (27)
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Blinded region and relative brightness of images

Gravitational lensing leads to shifts of image positions (in respect to
positions of sources) and changes visible brightness of images. As it was
noted earlier, if an angular distance between a position of source and
position of lens increases the secondary image is fainter and its position
approaches a position of lens. Since primary images are always located
outside of the Einstein–Chwolson ring, a blinded region is formed inside the
ring, where only secondary images could be but they are too faint to be
detectable.

One can introduce different definitions for radius of blinded region
(compare with a definition of the region done by (Stornaiolo et al. 2007)).
We will evaluate a critical position of a source for the case if a secondary
image has the same brightness as a source, namely, we will calculate ycr
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from the condition (it means that for y > ycr a secondary image is fainter
than a source and its position is closer to the center)

µ− =
1
4

(
ycr√

y2
cr + 4

+

√
y2

cr + 4
ycr

− 2

)
= 1. (28)

It is easy to find that in this case

ycr =

√
(2−√2)(

√
2− 1)

2
≈ 0.35. (29)

Substituting ycr into Eq. (10), we obtain

|x−cr| = ycr

∣∣∣∣∣
1
2
−

√
1
4

+
1

y2
cr

∣∣∣∣∣ =

√
(2−√2)(

√
2− 1)

2
(1 +

√
2) ≈ 0.84. (30)
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We can define ycr in another way, for example, from the relation

µ− =
1
2
µ+, (31)

but in this case we arrive at the same relation (29) for ycr.

Practically, a physical meaning of the blinded region is the following. If
we could observe a distant galaxy behind a void in absence of the black hole
and if the angular position of the galaxy from a center of the black hole is
y < ycr, then even a secondary image is not fainter than the source and we
could observe a pair of images with a distance between them according to
Eq. (11).
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Ellipticity of images

It is well-know that for weak gravitational lensing evaluation of shear
from ellipticity of background images is used to reconstruct surface mass
density distribution (Mellier 1999, Amendola et al. 1999). However, if a
gravitational lens model is known we can evaluate ellipticity as a function
of a position of an image. Below we will give simple formulas for a brighter
image assuming impact parameter y and size of circular source r are small
in comparison with the Einstein – Chwolson radius ξ0. In the framework of
these approximation we have

r

y
=

R1

x+
, (32)
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where R1 is the semi-major axis of the bright image. Since x+ ≈ 1 + y/2,

R1 =
r

y
(1 + y/2), (33)

and we have for semi-minor axis of the bright image

R2 ≈ r/2, (34)

therefore, an ellipticity of the image as a function of a source position y
and a position of the image x+

ε =
R2

R1
=

y

2(1 + y/2)
= 1− 1/x+. (35)

If an average ellipticity evaluated in a standard way for suspected region for
cosmological black hole may be fitted with Eq. (35), it could be a signature
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of Schwarzschild black hole, because other gravitational lens models have
different dependence of ellipticity on a a position of the image x+.
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Bulk distribution of lens mass

In this section we will consider the singular isothermal sphere model
as a reference approach for a comparison with the Schwarzschild lens
model (Schneider, Ehlers, Falco, 1992). As a probable alternative for a
cosmological black hole a bulk concentration of dark matter could act as a
gravitational lens.

We will use a mass density distribution in the form

ρ(r) = ρ0
a0

2

r2
, (36)

where r is a current distance from the center, ρ0 is a density at a distance
a0 from the center, a0 is a radius of the lens (practically, we assume that the
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relation for mass density distribution is valid for impact parameters ξ < a0.
The Eq. (36) is applicable to describe flat rotation curves in galaxies.

We can evaluate a surface mass density from Eq. (36).

ΣDM(~ξ) = 2ρ0

∫

0

√
a0

2−ξ2
a0

2

ξ2 + h2
dh =

2ρ0
a0

2

ξ
arctan

√
a0

2 − ξ2

ξ
. (37)

In the case if a0 À ξ, Σ(~ξ) −→ πρ0
a0

2

ξ .

In this case we can re-write the gravitational lens equation in the
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following form

~η =
Ds

Dl

~ξ −Dls
~̂
θDM(~ξ), (38)

where

~̂
θDM(~ξ) =

∫

R2
d2ξ′

4GΣDM(~ξ′)
c2

~ξ − ~ξ′

|~ξ − ~ξ′|2
. (39)

It is known (Schneider, Ehlers, Falco, 1992) that the gravitational lens
model (36) has two drawbacks: there is a singularity at r = 0 (an infinite
density is clearly not too appropriate point of the model). However, one
can see that a mass does not become infinite. 2) The second drawback is
infinite mass of the lens if we consider infinite values of a0. However, for
a consideration of the gravitational lens effect mass in a region outside a
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selected impact parameter ξ′ > ξ To write the equation lens equation in
dimensionless form, we use a characteristic distance a0, which corresponds
to the lens mass,

M = 4πρ0a0
3, (40)

If we introduce dimensionless variables

~x =
~ξ

a0
, ~y =

~η

η0
,

where η0 = a0
Ds
Dd

, Σcr = c2Ds
4πGDdDds

~̂α(~x) =
1
π

∫

R2
d2x′k(~x′)

~x− ~x′

|~x− ~x′|2
.
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and

k(~x) =
Σ(a0~x)

Σcr
.

Then the surface mass density can be written in the form

Σ(~ξ) = πρ0
a0

2

ξ
(41)

Since surface mass density is axisymmetric, the equation of gravitational
lens can be written in the scalar form (Schneider, Ehlers, Falco, 1992)

y = x− α(x) = x− m(x)
x

, (42)
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where

m(x) = 2
∫

0

x

x′dx′k(x′).

We remind that the k(x) has the form

k(x) =
k0

x
, (43)

where

k0 =
πρ0a0

Σcr
=

M

a0
2

4πGD

c2
, (44)

and

D =
DlDls

Ds
. (45)
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So, the lens equation is the form

y = x−R0
x

|x|, (46)

where R0 = 2k0. If we normalized all distances in the lens and the source
plane to R0, namely if we introduce variables ŷ = y/R0, x̂ = x/R0, then
lens equation has a rather simple form

ŷ = x̂− x̂

|x̂|, (47)

In subsequent analysis the symbol ∧ is omitted. It is easy to see that Eq.
(47) coincides with the lens equation for a singular isothermal sphere model
(Schneider, Ehlers, Falco, 1992).

We will remind basic properties lens equation (47). First we remind
solutions for the gravitational lens equation. Without a losses of generality
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we assume that y > 0. If y < 1, then the Eq. (47) has two solutions
x+ = y + 1, x− = y − 1. If y > 1, there is only one solution x = y + 1. As
usual amplification of gravitational lens is reversely proportional Jacobian
for the gravitational lens mapping (47),namely,

A(~x) =
∂~y

∂~x
, (48)

or

Aij =
∂yi

∂xj
, (49)

Then an amplification factor is determined from the relation

µ(~x) =
1

det A(~x)
. (50)
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Since we have spherically symmetric distribution then we have the following
relation for the Jacobian

detA(~x) = 1− 1
|x|, (51)

therefore, an amplification is equal

µ =
|x|

|x| − 1
. (52)

Clearly, the critical curve is determined by the relation |x| = 1 (i.e. unit
circumference). Remind if critical curves are circumferences they called like
tangential (Schneider, Ehlers, Falco, 1992). A caustic curve degenerates
into one point y = 1.

It is easy to understand distortions of images with the gravitational lens.
Clearly that images are not stretching (or squeezing) in radial direction,
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but there is stretching in tangential direction according to (52). Remind
that for the Schwarzschild lens for y ¿ 1, we have squeezing of images
approximately in 2 times in radial direction and similar stretching (≈ 1/y)
in a tangential direction. One can understand it from formal geometrical
analysis. If we consider the case y > 1, then

µ(y) = µ(x+) =
y + 1

y
= 1 +

1
y
. (53)

If we consider the case 0 < y < 1, then

µ(x+) =
|x+|

|x+| − 1
=

y + 1
y

= 1 +
1
y
, (54)

µ(x−) =
|x−|

|x−| − 1
=

y − 1
y

. (55)
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In this case since µ(x−) < 0, then amplification for second image is

|µ(x−)| = 1
y
− 1, and the total amplification for two images is

µ(y) = µ(x+) + |µ(x−)| = 2
y
. (56)
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Figure 4: Image of a circular source for the transparent lens. Radius of
source r = 0.1, impact parameter y = 0.11. It is clear that radius of source
is the same as widths of images in radial direction.
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Figure 5: Image of a circular source for the transparent lens. Radius of
source r = 0.1, impact parameter y = 0.3. It is also clear that radius of
source is the same as widths of images in radial direction.
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Ellipticity of images

We can evaluate ellipticity as a function of a position of an image.
Below we will give simple formulas for a brighter image assuming impact
parameter y and size of circular source r are small in comparison with the
a0. Therefore, we have

r

y
=

R1

x+
, (57)

where R1 is the semi-major axis of the bright image. Since x+ = 1 + yDM ,

R1 =
r

y
(1 + yDM), (58)
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and we have for the semi-minor axis of the bright image

R2 = r/2, (59)

therefore, an ellipticity of the image as a function of a source position y
and a position of the image x+

ε =
R2

R1
=

yDM

(1 + yDM)
= 1− 1/x+. (60)

Therefore, in spite of different dependence of ellipticity on a position of
source, we have the same dependence on x+ with a position of source
yDM = y/2 (it means that a source is in 2 times closer to the center of
lens, in this case it mimics an ellipticity for the Schwarzschild lens).

But clearly, if we use weak gravitational lensing technique (Mellier 1999,
Amendola et al. 1999), then contours with a constant mass density may
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help to reconstruct a mass density distribution which are definitely different
for the Schwarzschild lens and a transparent lens with a bulk distribution of
mass (Leclercq et al. 2015).
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Non-singular model for non-compact lens

We approximate the density of mass distribution of a DM (neutralino)
in the following form

ρNe(r) = 2ρ0
rc

2

r2 + r2
c

, (61)

where r is the current value of a distant from the stellar center, ρ0 is a mass
density for a boundary of a core (or for a distance rc from a center), rc is
the radius of the core. So we use the non-singular isothermal sphere model
(or the model of an isothermal sphere with a core) The dependence is the
approximation of the dependence which has been considered (Gurevich et
al, 1995, 1996, 1997; Zakharov & Sazhin 1996, 1997), where the authors
considered the model of noncompact object with a core. It is clear that the
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singular (degenerate) dependence (36) is the limiting dependence of (61)
for rc → 0. Gravitational lensing for the mass density distribution (61) have
been considered by (Hinshaw & Krauss 1987), where they used a different
approach.

So, it is not difficult to obtain surface density mass, according to
expression (61)

Σ(~ξ) = 4ρ0r
2
c

∫

0

√
Rx

2−ξ2
a0

2

ξ2 + h2 + r2
c

dh = 4ρ0
rc

2

√
ξ2 + r2

c

atan

√
Rx

2 − ξ2

√
ξ2 + r2

c

. (62)

In the case, if R0 À ξ, then Σ(~ξ) −→ 2πρ0
rc

2√
ξ2+r2

c

. In that case the

lens equation has the following form
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~η =
Ds

Dd

~ξ −Dds
~̂αNeS(~ξ), (63)

where Ds is the distance from the source to the observer, Dd is the distance
from the gravitational lens to the observer, Dds is the distance from the
source to the gravitational lens, vectors (~η, ~ξ) define a deflection on the
plane of the source and the lens respectively and

~̂αNeS(~ξ) =
∫

R2
d2ξ′

4GΣ(~ξ′)
c2

~ξ − ~ξ′

|~ξ − ~ξ′|2
. (64)

We calculate the lens mass

Mx = 8πρ0r
2
c

∫ Rx

0

r2dr

r2 + r2
c

= 8πρ0r
2
c(Rx − rcatan

Rx

rc
) ≈ 8πρ0r

2
cRx. (65)
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We use the characteristic value of a radius rc, corresponding the
lens ”mass” Mx = 8πρ0r

2
cRx, thus we obtain the lens equation in the

dimensionless form. We introduce the dimensionless variables by the

following way ~x =
~ξ
rc

, ~y = ~η
η0

, η0 = rc
Ds
Dd

,

Σcr =
c2Ds

4πGDdDds
, k(~x) =

Σ(a0~x)
Σcr

, ~̂α(~x) =
1
π

∫

R2
d2x′k(~x′)

~x− ~x′

|~x− ~x′|2
.

As we supposed that surface density is an axial symmetric function then
the equation of the gravitational lens may be written in the scalar form
(Schneider, Ehlers, Falco, 1992)

y = x− α(x) = x− m(x)
x

, m(x) = 2
∫

0

x

x′dx′k(x′).
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We recall that we have the following expression for the function k(x)

k(x) =
k0√

1 + x2
,

k0 =
2πρ0r0

Σcr
=

2πMx

rcRx

G

c2

DdDds

Ds
=

π

4rcRx

4GMx

c2

DdDds

Ds
=

π

4
R2

E

rcRx
. (66)

Hence, the lens equation has the following form (Zakharov, 1998, 1999)

y = x−D

√
x2 + 1− 1

x
, (67)

where D = 2k0.
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A qualitative analysis of the gravitational lens equation

We will show that the gravitational lens equation has only one solution
if D < 2 and have three solutions if D > 2 and y > ycr (we consider the
gravitational lens equation for y > 0), where ycr is a local maximal value
of right hand of Eq. (67). It is possible to show that we determine the
value xcr which corresponds to ycr using the following expression

x2
cr =

2D − 1−√4D + 1
2

, (68)

It is easy to see that according to (68) x2
cr > 0 if and only if D > 2 (the
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same idea has been used qualitatively in Fig. 6 by Young et al. (1980)

ycr = xcr −D

√
1 + x2

cr − 1
xcr

, (69)

If we choose xcr < 0 then ycr > 0. We suppose that y > 0. So, if
D ≤ 2 then gravitational lens equation has only one solution; if D > 2
then gravitational lens equation has single solution (if y > ycr), three
distinct solutions (if y < ycr), one single solution and one double solution
(if y = ycr). The right hand side of gravitational lens equation is shown in
Fig. 6.
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Figure 6: The right hand side of the gravitational lens equation for different
values of the parameters D = 1.8, 2, 2.2.

It is possible to show that the gravitational lens equation is equivalent
to the following equation

x3 − 2yx2 − (D2 − y2 − 2D)x− 2yD = 0, (70)
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jointly with the inequality

x2 − yx + D > 0. (71)

Thus it is possible to obtain the analytical solutions of the gravitational lens

equation by the well-known way. We perform z = x − 2y

3
and obtain the

incomplete equation of third degree

z3 + pz + q = 0, (72)

where p = 2D −D2 − y2

3
and q =

2y

3

(
y2

9
−D(D + 1)

)
, so we have the

following expression for the discriminant

Q =
(p

3

)3

+
(q

2

)2

=
D2

27
[−y4 + y2(2D2 + 10D − 1) + D(2−D)3

]
. (73)
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If Q ≥ 0 then Eq. (72) has the unique real solution (therefore the
gravitational lens equation (67) has the unique real solution). We use
Cardan expression for the solution

x = 3

√
−q/2 +

√
Q + 3

√
−q/2−

√
Q + 2y/3. (74)

We suppose the case D > 2. If y > ycr then the gravitational lens
equation has a single solution. If Q ≥ 0 then we use the expression (74) for
the solution. If Q < 0 then we have the following expression

xk = 2
√
−p

3
cos

α + 2kπ

3
+

2y

3
, (k = 0, 1, 2) (75)
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where

cos α = − q

2
√
−(p/3)3

, (76)

and we select only one solution which corresponds to the inequality (71)
which corresponds to k = 0 in (75) because if the gravitational lens equation
has only one solution then we have a positive solution x for a positive value
of impact parameter y therefore there is the inequality x > y which is easy
to see from (69). It is possible to check that maximal solution of (70)
corresponds to k = 0 therefore the solution is the solution of (69).

If y < ycr then the gravitational lens equation has three distinct solutions
and we use the Eqs. (75 – 76) to obtain the solutions.

We consider now the case D < 2. We know that the gravitational
lens equation has the single solution for the case. If Q ≥ 0 then we use

– Typeset by FoilTEX – 52



the expression (74) for the solution. If Q < 0 then we have the following
expressions (75 – 76) and we select only one solution which corresponds to
the inequality (71) which also corresponds to k = 0 as in the previous case.

It is known that the magnification for the gravitational lens solution xk

is defined by the following expression

µk =

(
1− D(

√
1 + x2

k − 1)
xk

)(
1 + D

√
1 + x2

k − 1
x2

k

−D
1√

1 + x2
k

)
, (77)

so the absolute value total magnification is equal

µtot(y) =
∑

|µk|, (78)

where the summation is taken over all solutions of gravitational lens equation
for a fixed value y.
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Similarly to the gravitational lens equation near cusp singularity we
have three solutions of the gravitational lens equation, however, asymptotic
behavior of algebraic sum of magnifications is different. Near the cusp type
singularity we have asymptotically the so-called sum rule for magnifications
(Schneider & Weiss 1992, Zakharov 1995, Mao & Schneider 1998)

µ1 + µ2 + µ3 = 0, (79)

meanwhile near the fold singularity, we have clearly

µ0 + µ1 + µ2 = µ0, (80)

since for fusing solutions (x1, x2) of the gravitational lens equation
corresponding magnifications have the the same absolute value and the
opposite parities near the fold singularity (Schneider, Ehlers, Falco, 1992).
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Possible observational features

If a cosmological black hole exists in a void, there are two stages
in studying it as a strong gravitational lens. The first stage is to find
gravitational lens systems in the void region. The second one is to confirm
that it is a point-like gravitational lens (i.e. a Schwarzschild lens), and t
not an extended distribution of dark matter.

Since a region, where a secondary image is not demagnified, is rather
large (Eq.29) for hypermassive black holes there is a high probability to find
pairs of images formed by the black hole. If only one pair of images will be
found it will be hard to prove that we a Schwarzschild lens (a hypermassive
black hole), because, practically two parameters are observing: a ratio of
brightness µ+/µ− and distance between images l and if a lens model is
known as for our case (a Schwarzschild lens) we can evaluate its mass
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and position of a source and position of images. But if several pairs with
different distances between images will be found and for all of these systems
it is obtained the same mass it will be a serious support that we have a
Schwarzschild lens in this case because for bulk distribution of mass it would
be very hard to expect that we will fit these data with a bulk density and
with a small number of parameters. Besides, if there is a transparent lens in
the void we expect that in general transparent gravitational lenses have to
be asymmetric and the formation of an odd number of images (Schneider,
Ehlers, Falco, 1992).
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Typical parameters for CBH lensing

Following Stornaiolo et al. (2007) we adopt CBH mass M = 1014M¯
and the distance to the void Dvoid = 50Mpc (or we assume ΩCBH = 0.1
and Rvoid ∼ 20Mpc, then Einstein – Chwolson ring is around is a few
angular minutes, while shadow diameter (Falcke et al. 2000, Melia & Falcke
2001, Zakharov et al. 2005, 2012; Falcke & Markoff 2013, Zakharov 2014)
is around a few 10−2 angular seconds and we do not discuss an opportunity
to find the small dark shadow inside a huge void.
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Thank you very much for
your kind attention
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