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New Physics

We say that we find New Physics when either we find a phenomenon which
is forbidden by SM in principal - this is the qualitative level of New physics
- or we find significant deviation between precision calculations in SM of an
observable quantity and corresponding experimental value.
In 1900, the British physicist Lord Kelvin is said to have pronounced:
”There is nothing new to be discovered in physics now. All that remains is
more and more precise measurement.” Within three decades, quantum
mechanics and Einstein’s theory of relativity had revolutionized the field.
Today, no physicist would dare assert that our physical knowledge of the
universe is near completion. To the contrary, each new discovery seems to
unlock a Pandora’s box of even bigger, even deeper physics questions.
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New Physics

In the Universe, matter has manly two geometric structures, homogeneous,
[Weinberg,1972] and hierarchical, [Okun, 1982] .
The homogeneous structures are naturally described by real numbers with
an infinite number of digits in the fractional part and usual archimedean
metrics. The hierarchical structures are described with p-adic numbers with
an infinite number of digits in the integer part and non-archimedean
metrics, [Koblitz, 1977].

A discrete, finite, regularized, version of the homogenous structures are
homogeneous lattices with constant steps and distance rising as arithmetic
progression. The discrete version of the hierarchical structures is
hierarchical lattice-tree with scale rising in geometric progression.

There is an opinion that present day theoretical physics needs (almost) all
mathematics, and the progress of modern mathematics is stimulated by
fundamental problems of theoretical physics.
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Quantum field theory and Fractal calculus -
Universal language of fundamental physics

In QFT existence of a given theory means, that we can control its behavior
at some scales (short or large distances) by renormalization theory
[Collins, 1984].
If the theory exists, than we want to solve it, which means to determine
what happens on other (large or short) scales. This is the problem (and
content) of Renormdynamics.
The result of the Renormdynamics, the solution of its discrete or continual
motion equations, is the effective QFT on a given scale (different from the
initial one).
We can invent scale variable λ and consider QFT on D + 1+ 1 dimensional
space-time-scale. For the scale variable λ ∈ (0, 1] it is natural to consider
q-discretization, 0 < q < 1, λn = qn, n = 0, 1, 2, ... and p - adic,
nonarchimedian metric, with q−1 = p - prime integer number.
The field variable ϕ(x, t, λ) is complex function of the real, x, t, and p -
adic, λ, variables. The solution of the UV renormdynamic problem means,
to find evolution from finite to small scales with respect to the scale time
τ = lnλ/λ0 ∈ (0,−∞). Solution of the IR renormdynamic problem means
to find evolution from finite to the large scales, τ = lnλ/λ0 ∈ (0,∞).
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This evolution is determined by Renormdynamic motion equations with
respect to the scale-time.
As a concrete model, we take a relativistic scalar field model with
lagrangian (see e.g. [Makhaldiani, 1980])

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − g

n
ϕn, µ = 0, 1, ...,D − 1 (1)

The mass dimension of the coupling constant is

[g] = dg = D − n
D − 2

2
= D + n− nD

2
. (2)

In the case

n =
2D

D − 2
= 2 +

4

D − 2
= 2 + ǫ(D)

D =
2n

n− 2
= 2 +

4

n− 2
= 2 + ǫ(n) (3)

the coupling constant g is dimensionless, and the model is renormalizable.
We take the euklidean form of the QFT which unifies quantum and
statistical physics problems. In the case of the QFT, we can return (in)to
minkowsky space by transformation: pD = ip0, xD = −ix0.
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The main objects of the theory are Green functions - correlation functions - correlators,

Gm(x1, x2, ..., xm) =< ϕ(x1)ϕ(x2)...ϕ(xm) >

= Z−1
0

∫
dϕ(x)ϕ(x1)ϕ(x2)...ϕ(xm)e−S(ϕ) (4)

where dϕ is an invariant measure,

d(ϕ + a) = dϕ. (5)

For gaussian actions,

S = S2 =
1

2

∫
dxdyϕ(x)A(x, y)ϕ(y) = ϕ ·A · ϕ (6)

the QFT is solvable,

Gm(x1, ..., xm) =
δm

δJ(x1)...J(xm)
lnZJ |J=0,

ZJ =

∫
dϕe−S2+J·ϕ = exp(

1

2

∫
dxdyJ(x)A−1(x, y)J(y))

= exp(
1

2
J · A−1 · J) (7)

This solution is based on the solution of the linear motion equations with sources

A(x, y)ϕ(y) = j(x) (8)

Nontrivial problem is to calculate correlators for non gaussian QFT.
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Effective action

Generating functional for connected correlators is

F (J) = lnZJ ,
δF (J)

δJ(x)
=

1

ZJ

δZJ

δJ(x)
≡< ϕ(x) >J≡ φ(x)− (9)

is observable value of the field, generated by source J. We have

δ

δJ
(F (J)− J · φ)|φ=const = 0, (10)

so

J · φ− F (J) = Sq(φ) = S(φ) +R(φ)

=
∑
n≥1

1

n!

∫
dx1dx2...dxnΓn(x1, x2, ..., xn)φ(x1)φ(x2)...φ(xn),

δSq

δφ(x)
= J(x);

δ2Sq

δφ(x1)δφ(x2)
=
δJ(x2)

δφ(x1)
=
δJ(x1)

δφ(x2)
= Γ2(x1, x2) (11)

R(φ) - is quantum corrections to the classical action.
The connected part of the two point correlator - propagator, is

< ϕ(x1)ϕ(x2) >c=< ϕ(x1)ϕ(x2) > − < ϕ(x1) >< ϕ(x2) >

=
1

Z(J)

δ2Z(J)

δJ(x1)δJ(x2)
− 1

Z(J)

δZ(J)

δJ(x1)

1

Z(J)

δZ(J)

δJ(x2)
= Γ2(x1, x2) (12)
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p-adic convergence of perturbative series

Perturbative series have the following qualitative form

f(g) = f0 + f1g + ...+ fng
n + ..., fn = n!P (n)

f(x) =
∑

n≥0
P (n)n!xn = P (δ)Γ(1 + δ)

1

1 − x
, δ = x

d

dx
(13)

In usual sense these series are divergent, but with proper nomalization of
the expansion parametre g, the coefficients of the series are rational
numbers and if experimental dates indicates for some rational value for g,
e.g. in QED

g =
e2

4π
=

1

137.0...
(14)

then we can take corresponding prime number and consider p-adic
convergence of the series. In the case of QED, we have

f(g) =
∑

fnp
−n, fn = n!P (n), p = 137,

|f |p ≤
∑

|fn|ppn (15)
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The Youkava theory of strong interections

In the Youkava theory of strong interections (see e.g. [Bogoliubov,1959]),
we take g = 13,

f(g) =
∑

fnp
n, fn = n!P (n), p = 13,

|f |p ≤
∑

|fn|pp−n <
1

1− p−1
(16)

So, the series is convergent. If the limit is rational number, we consider it
as an observable value of the corresponding physical quantity. Note also,
that the inverse coupling expansions, e.g. in lattice(gauge) theories,

f(β) =
∑

rnβ
n, (17)

are also p-adically convergent for β = pk. We can take the following
scenery. We fix coupling constants and masses, e.g in QED or QCD, in low
order perturbative expansions. Than put the models on lattice and
calculate observable quantities as inverse coupling expansions, e.g.

f(α) =
∑

rnα
−n,

αQED(0) = 1/137; αQCD(mZ) = 0.11... = 1/32 (18)
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The Minimal Supersymmetric Standard Model (MSSM)

In MSSM (see [M.Muehlleitner, CALC 2012], [D.I.Kazakov, 2004])
coupling constants of the SM unifies at α−1u = 26.3 ± 1.9± 1.
So,

23.4 < α−1u < 29.2 (19)

Question: how many primes are in this interval?

24, 25, 26, 27, 28, 29 (20)

Only one!
Proposal: take the value α−1u = 29.0... which will be two orders of
magnitude more precise prediction and find the consequences for the SM
scale observables.
Remind that for low energy limit of the fine structure constant
α, α−1 = 137.036...
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An example of the summation of the factorial series

Let us consider the formal representation of (13)

f(x) =
∑

n≥0
P (n)n!xn = P (δ)Γ(1 + δ)

1

1− x
,

= P (δ)

∫ ∞

0
dte−ttδ

1

1− x
= P (δ)

∫ ∞

0
dt

e−t

1 + (−x)t , δ = x
d

dx
(21)

This integral is well defined for negative values of x. The Mathematica
answer for the corresponding integral is

I(x) =

∫ ∞

0
dt

e−t

1 + xt
= e1/xΓ(0, 1/x)/x, Im(x) 6= 0, Re(x) ≥ 0,

I(0) = 1 (22)

For x = 0.001, I(x) = 0.999, Γ(a, z) is the incomplete gamma function

Γ(a, z) =

∫ ∞

z
dtta−1e−t (23)
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The Goldberger-Treiman relation and the pion nucleon coupling constant

The Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958]
plays an important role in theoretical hadronic and nuclear physics. GTR
relates the Meson-Nucleon coupling constants to the axial-vector coupling
constant in β-decay:

mNgA(0) = fπgπN (24)

where mN is the nucleon mass, gA(0) is the axial-vector coupling constant
in nucleon β-decay at vanishing momentum transfer, fπ is the π decay
constant and gπN is the π −N coupling constant.
If we take

απN =
g2πN
4π

= 13, gπN = 12.78 (25)

experimental value for fπ from pion decay

fπ =
130√
2
= 91.9MeV, (26)

Neutron mass,

mN = 940MeV, (27)
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The Goldberger-Treiman relation and the pion nucleon coupling constant

from (24), we find

gA(0) =
fπgπN
mN

=
91.9×

√
52π

940
= 1.2496 ≃ 1.25, (28)

which coincides with the experimental value from β-decay

gA(0) = 1.25 (29)

So, we can say that using GTR we measured the pion-nucleon fine structure
constant and find the value

απN =
g2πN
4π

= 13 (30)
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The Goldberger-Treiman relation and the pion nucleon coupling constant

Note that, determination of gπN from NN,NN̄ and πN data by the
Nijmegen group [Rentmeester et al, 1999] gave the following value

gπN = 13.05 ± .08, ∆ = 1− gAmN

gπNfπ
= .014 ± .009,

13.39 < απN < 13.72 (31)

This value is consistent with assumption gπN = 13.
Due to the smallness of the u and d quark masses, ∆ is necessarily very
small, and its determination requires a very precise knowledge of the gπN
coupling (gA and fπ are already known to enough precision, leaving most of
the uncertainty in the determination of ∆ to the uncertainty in gπN ).
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The pion nucleon coupling constant in an old unified field theory

Note that in an old version of the unified theory [Heisenberg 1966], for the
απN the following value were found

απN = 4π(1− m2
π

3m2
p

) = 12.5 (32)
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Vector meson dominance

Following the pion, the rho is the most prominent meson. Vector mesons
play an important role when considering the interaction of hadrons with
electromagnetic fields. In the vector meson dominance model the hadrons
couple to photons exclusively through intermediate vector mesons. The
equality of the ρ meson self-coupling g and the coupling to nucleons gρN
and pions gρπ, the universality of the ρ meson coupling, plays an important
role in vector meson dominance [Sakurai, 1969] and is a consequence of the
existence of a consistent EFT with ρ mesons, pions, and nucleons. Indeed,
one can rewrite the Lagrangian of [Weinberg, 1968] in terms of
renormalized fields and couplings, thereby introducing the basic Lagrangian

LR = N̄(iγ∂ −M)N − 1

2
π(∂2 +m2)π − 1

4
(∂µρ

a
ν − ∂νρ

a
µ)

2 +
1

2
M2
ρρ

2

+gN̄γµtaNρ
a
µ + gπρǫ

abcπa∂µπbρcµ − g(ρµ × ρν) · ∂µρν

−g
2

4
(ρµ × ρν)

2 (33)

Requiring that the results are UV finite introduces relations between the
couplings of the theory [Djukanovic et al, 2004], gπρ = g. The coupling g is
directly related to the width of the ρ meson.
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Pion-ρ-meson-nucleon coupling constant

In the previous πρN model of pion-nucleon interaction
[Di Giacomo, Paffuti, Rossi, 1992]

LπN = g(N̄γµtaN + ǫabcπb∂µπc)ρaµ, (34)

pion interacts with nucleon through the exchange of the vector meson
ρ(mρ = 750 MeV, T = 1), the amplitude of ρ0 → π+π− decay is

M = gεµ(kπ− − kπ+)µ, (35)

the decay width is

Γ =
1

2mρ
|M |2(1− 4m2

π

m2
ρ

)
1
2
1

8π
=

g2

48π
mρ(1−

4m2
π

m2
ρ

)
3
2 (36)

and for fine structure coupling constant we have

απρN =
g2

4π
=

Γ

mρ

12

(1− 4m2
π

m2
ρ
)
3
2

=
12.

5(1 − 4×142
752

)
3
2

= 3.006 = 3.0.. (37)

for Γ = Γρππ = 150MeV,mπ = 140MeV,mρ = 750MeV. So, in this
strong coupling model the expansion parameter is a prime number, αg = 3.
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Neutral Pion to two Photon decay

After integrating out all heavy and trapped particles, we would expect the
effective Lagrangian for

π0 → 2γ (38)

to be given by the unique gauge and Lorentz-invariant term with no more
than two derivatives:

Lπγγ = gπ0εµνρσFµνFρσ (39)

where g is an unknown constant with the mass dimension m−1.

The rate for π0 → 2γ is

Γ(π0 → 2γ) =
g2m3

π

π
(40)

One might naively expect g to be of order

g =
a2

Fπ
, a =

e

4π
, (41)

where Fπ = 190MeV is used as a typical strong interaction mass scale.
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Neutral Pion to two Photon decay

In 1949, using the pre-QCD theory of pions and nuclons with interaction
lagrangian

LπNN = iGπNπ
aN̄2taγ5N, (42)

Steinberger calculated the contribution to g from triangle graphs with a
single proton loop

g =
e2GπN
32π2mN

= a2
GπN
2mN

, a =
e

4π
. (43)

From Goldberger-Treiman relation we have

GπN
2mN

=
gA
Fπ
, (44)

so,

g =
a2

Fπ
gA, gA = 1.257, Fπ = 184MeV (45)
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Neutral Pion to two Photon decay

Using

g =
a2

Fπ
, a =

e

4π
, (46)

Γ(π0 → 2γ) =
g2m3

π

π
=
a4m3

π

πF 2
π

=
α2m3

π

16π3F 2
π

= 1.1 × 1016s−1 (47)

The observed rate is

Γ(π0 → 2γ)exp = (1.19 ± 0.08) × 1016s−1, (48)

which is in good agreement with the (naive rough) estimation.
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Real, p - adic and q - uantum fractal calculus

Every (good) school boy/girl knows what is

dn

dxn
= ∂n = (∂)n, (49)

but what is its following extension

dα

dxα
= ∂α , α ∈ ℜ ? (50)
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Euler, ... Liouville, ... Holmgren, ...

Let us consider the integer derivatives of the monomials

dn

dxn
xm = m(m− 1)...(m− (n− 1))xm−n, n ≤ m,

=
Γ(m+ 1)

Γ(m+ 1− n)
xm−n. (51)

L.Euler (1707 - 1783) invented the following definition of the fractal
derivatives,

dα

dxα
xβ =

Γ(β + 1)

Γ(β + 1− α)
xβ−α. (52)

J.Liouville (1809-1882) takes exponents as a base functions,

dα

dxα
eax = aαeax. (53)
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The following Cauchy formula

In0,xf =

∫ x

0
dxn

∫ xn−1

0
dxn−2...

∫ x2

0
dx1f(x1) =

1

Γ(n)

∫ x

0
dy(x− y)n−1f(y)(54)

permits analytic extension from integer n to complex α,

Iα0,xf =
1

Γ(α)

∫ x

0
dy(x− y)α−1f(y) (55)

J.H. Holmgren invented (in 1863) the following integral transformation,

D−αc,x f =
1

Γ(α)

x
∫

c

|x− t|α−1f(t)dt. (56)
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It is easy to show that

D−αc,x x
m =

Γ(m+ 1)

Γ(m+ 1 + α)
(xm+α − cm+α),

D−αc,x e
ax = a−α(eax − eac), (57)

so, c = 0, when m+ α ≥ 0, in Holmgren’s definition of the fractal calculus,
corresponds to the Euler’s definition, and c = −∞, when a > 0,
corresponds to the Liouville’s definition.
Holmgren’s definition of the fractal calculus reduce to the Euler’s definition
for finite c, and to the Liouvill’s definition for c = ∞,

D−αc,x f = D−α0,xf −D−α0,c f,

D−α∞,xf = D−α−∞,xf −D−α−∞,∞f. (58)
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We considered the following modification of the c = 0 case [Makhaldiani, 2003],

D−α
0,x f =

|x|α
Γ(α)

1∫

0

|1− t|α−1f(xt)dt, =
|x|α
Γ(α)

B(α, ∂x)f(x)

= |x|α Γ(∂x)

Γ(α+ ∂x)
f(x), f(xt) = tx

d
dx f(x). (59)

As an example, consider Euler B-function,

B(α, β) =

∫ 1

0
dx|1− x|α−1|x|β−1 = Γ(α)Γ(β)D−α

01 D1−β
0x 1 =

Γ(α)Γ(β)

Γ(α + β)
(60)

We can define also FC as

Dαf = (D−α)−1f =
Γ(∂x+ α)

Γ(∂x)
(|x|−αf), ∂x = δ + 1, δ = x∂ (61)

For the Liouville’s case,

Dα
−∞,xf = (D−∞,x)

αf = (∂x)
αf, (62)

∂−α
x f =

1

Γ(α)

∫ ∞

0
dttα−1e−t∂xf(x) =

1

Γ(α)

∫ ∞

0
dttα−1f(x− t)

=
1

Γ(α)

∫ x

−∞

dt(x− t)α−1f(t) = D−α
−∞,xf. (63)
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The integrals can be calculated as

D−nf = (D−1)nf, (64)

where

D−1f = x
Γ(∂x)

Γ(1 + ∂x)
f = x

1

∂x
f = x(∂x)−1f = (∂)−1f =

∫ x

0
dtf(t). (65)

Let us consider Weierstrass C.T.W. (1815 - 1897) fractal function

f(t) =
∑
n≥0

anei(b
nt+ϕn), a < 1, ab > 1. (66)

For fractals we have no integer derivatives,

f(1)(t) = i
∑

(ab)nei(b
nt+ϕn) =∞, (67)

but the fractal derivative,

f(α)(t) =
∑

(abα)nei(b
nt+πα/2+ϕn), (68)

when abα = a′ < 1, is another fractal (66).
Question: what if ab = p is prime number? Can we define integer derivatives in this case?
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p - adic fractal calculus

p-adic analog of the fractal calculus (56) ,

D−αx f =
1

Γp(α)

∫

Qp

|x− t|α−1p f(t)dt, (69)

where f(x) is a complex function of the p-adic variable x, with p-adic
Γ–function

Γp(α) =

∫

Qp

dt|t|α−1p χ(t) =
1− pα−1

1− p−α
, (70)

was considered by V.S. Vladimirov [Vladimirov,1988].
The following modification of p-adic FC is given in [Makhaldiani, 2003]

D−αx f =
|x|αp
Γp(α)

∫

Qp

|1− t|α−1p f(xt)dt

= |x|αp
Γp(∂|x|)

Γp(α+ ∂|x|)f(x). (71)
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p - adic fractal calculus

Last expression is applicable for functions of the type f(x) = f(|x|).
For a functions of the form

f(x) =
∑

an|x|np , (72)

we have

D−αx f =
∑

an
Γp(n+ 1)

Γp(n + 1 + α)
|x|n+αp . (73)
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Fractal qalculus

The basic object of q-calculus [Gasper, Rahman, 1990] is q-derivative

Dqf(x) =
f(x) − f(qx)

(1 − q)x
=

1− qx∂
(1− q)x

f(x), (74)

where either 0 < q < 1 or 1 < q <∞. In the limit q → 1, Dq → ∂x.
Now we define the fractal q-calculus,

Dα
q f(x) = (Dq)

αf(x)

= ((1 − q)x)−α(f(x) +
∑
n≥1

(−1)n α(α− 1)...(α− n+ 1)

n!
f(qnx)). (75)

For the case α = −1, we obtain the integral

D−1
q f(x) = (1− q)x(1− qx∂)−1f(x) = (1− q)x

∑
n≥0

f(qnx). (76)

In the case of 1 < q <∞, we can give a good analytic sense to these expressions for prime
numbers q = p = 2, 3, 5, ..., 29, ...,137, ... This is an algebra-analytic quantization of the
q-calculus and corresponding physical models. Note also, that p-adic calculus is the natural tool
for the physical models defined on the fractal( space)s like Bete lattice ( or Brua-Tits trees, in
mathematical literature).
Note also a symmetric definition of the calculus

Dqsf(x) =
f(q−1x)− f(qx)

(q−1 − q)x
f(x). (77)
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Fractal finite - difference calculus

Usual finite difference calculus is based on the following (left) derivative
operator

D−f(x) =
f(x)− f(x− h)

h
= (

1− e−h∂

h
)f(x). (78)

We define corresponding fractal calculus as

Dα
−f(x) = (D−)

αf(x). (79)

In the case of α = −1, we have usual finite difference sum as regularization
of the Riemann integral

D−1− f(x) = h(f(x) + f(x− h) + f(x− 2h) + ...). (80)

(I believe that) the fractal calculus (and geometry) are the proper language
for the quantume (field) theories, and discrete versions of the fractal
calculus are proper regularizations of the fractal calculus and field theories.
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Hypergeometric functions

A hypergeometric series, in the most general sense, is a power series in
which the ratio of successive coefficients indexed by n is a rational function
of n,

f(x) =
∑

n≥0
anx

n, an+1 = R(n)an, R(n) =
P (α, n)

Q(β, n)
(81)

so

P (α, δ)f(x) = Q(β, δ)(f(x) − f(0))/x,
f(x)− f(0) = xR(δ)f(x), f(x) = (1− xR(δ))−1f(0), δ = x∂x(82)

Hypergeometric functions have many particular special functions as special
cases, including many elementary functions, the Bessel functions, the
incomplete gamma function, the error function, the elliptic integrals and the
classical orthogonal polynomials, because the hypergeometric functions are
solutions to the hypergeometric differential equation, which is a fairly
general second-order ordinary differential equation.
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In a generalization given by Eduard Heine ( 1821 - 1881 ) in the late nineteenth century, the ratio
of successive terms, instead of being a rational function of n, are considered to be a rational
function of qn

f(x) =
∑
n≥0

anx
n, an+1 = R(qn)an, R(n) =

P (α, qn)

Q(β, qn)
,

P (α, qδ)f(x) = Q(β, qδ)(f(x) − f(0))/x,
f(x)− f(0) = xR(qδ)f(x), f(x) = (1 − xR(qδ))−1f(0), δ = x∂x (83)

Another generalization, the elliptic hypergeometric series, are those series where the ratio of
terms is an elliptic function (a doubly periodic meromorphic function) of n.
There are a number of new definitions of hypergeometric series, by Aomoto, Gelfand and others;
and applications for example to the combinatorics of arranging a number of hyperplanes in
complex N-space.
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Hypergeometric field theory (HFT)

Formal solutions for the the hypergeometric functions (82,83), we put in
the fieldtheoretic form,

f(x) = G(x)f(0),

G(x) =< ψ(x)φ(0) >=
δ2 lnZ

δJ(x)δI(0)
= (1− xR)−1,

Z =

∫

dψdφe−S+Iφ+Jψ = eI(1−xR)
−1J ,

S =

∫

ψ(1 − xR)φ =

∫

ψ(Q− xP )ϕ, φ = Qϕ. (84)

When we invent interaction terms, we obtain nontrivial HFT. In terms of
the fundamental fields, ψ,ϕ, we have local field model.
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Lauricella Hypergeometric functions (LFs)

For LFs (see, e.g. [Miller,1977]), we find the following formulas [Makhaldiani, 2011]

FA(a; b1, ..., bn; c1, ..., cn; z1, ..., zn) =
(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c1)δ1 ...(cn)δn
ez1+...+zn

=
(a)δ1+...+δn

(a1)δ1 ...(an)δn
F (a1, b1; c1; z1)...F (an, bn; cn; zn)

= T−1(a)Fn = Σm≥0
(a)m1+...+mn(b1)m1

...(bn)mn

(c1)m1
...(cn)mn

zm1

1

m1!
...
zmn
n

mn!
, |z1|+ ...+ |zn| < 1;

FB(a1, ..., an; b1, ..., bn; c; z1, ..., zn) =
(a1)δ1 ...(an)δn (b1)δ1 ...(bn)δn

(c)δ1+...+δn

ez1+...+zn

=
(c1)δ1 ...(cn)δn
(c)δ1+...+δn

F (a1, b1; c1; z1)...F (an, bn; cn; zn) = T (c)Fn

= Σm≥0
(a1)m1

...(an)mn (b1)m1
...(bn)mn

(c)m1+...+mn

zm1

1

m1!
...
zmn
n

mn!
, |z1| < 1, ..., |zn| < 1; (85)
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FC(a; b; c1, ..., cn; z1, ..., zn) =
(a)δ1+...+δn(b)δ1+...+δn

(c1)δ1 ...(cn)δn
ez1+...+zn

=
(a)δ1+...+δn(b)δ1+...+δn

(a1)δ1 ...(an)δn (b1)δ1 ...(bn)δn
F (a1, b1; c1; z1)...F (an, bn; cn; zn)

= T−1(a)T−1(b)Fn = T−1(b)FA

= Σm≥0
(a)m1+...+mn (b)m1+...+mn

(c1)m1
...(cn)mn

zm1

1

m1!
...
zmn
n

mn!
, |z1|1/2 + ...+ |zn|1/2 < 1;

FD(a; b1, ..., bn; c; z1, ..., zn) =
(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c)δ1+...δn

ez1+...+zn

=
(a)δ1+...+δn(c1)δ1 ...(cn)δn
(a1)δ1 ...(an)δn (c)δ1+...δn

F (a1, b1; c1; z1)...F (an, bn; cn; zn)

= T−1(a)T (c)Fn = T (c)FA = T−1(a)FB

= Σm≥0
(a)m1+...+mn (b1)m1

...(bn)mn

(c1)m1
...(cn)mn

zm1

1

m1!
...
zmn
n

mn!
, |z1| < 1, ..., |zn| < 1. (86)
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Lomidze Bn function (LBn)

In the paper ([Lomidze, 1994]) the following formula were proposed

det[xi−1
j

∫ 1

xj−1/xj

ui−1(1− u)rj−1
n∏

k=0,k 6=j

(
xju− xk
xj − xk

)rk−1du]/det[xi−1
j ]

=
Γ(r0)Γ(r1)...Γ(rn)

Γ(ro + r1 + ...+ rn)
, 0 = x0 < x1 < x2 < ... < xn, n ≥ 1. (87)

Let us put the formula in the following factorized form

LBn(x, r) ≡ det[xi−1
j

∫ 1

xj−1/xj

duui+r0−2(1− u)rj−1
n∏

k=1,k 6=j

(
xju− xk
xj − xk

)rk−1]

= detVn(x)Bn(r), Vn(x) = [xi−1
j ], Bn(r) =

Γ(r0)Γ(r1)...Γ(rn)

Γ(r0 + r1 + ...+ rn)
(88)

Now, it is enough to proof this formula for general values of xi and particular values of ri, e.g.,
ri = 1, and for general values of ri and particular values of xi, e.g. xi = pi, 1 ≤ i ≤ n. In the
case of ri = 1, right hand side of the formula is equal to the Vandermonde determinant divided
by n! The left hand side is the determinant of the matrix with elements
Aij = xi−1

j (1− (xj−1/xj)i)/i

When we calculate determinant of this matrix, from the row i, we factorize 1/i, 2 ≤ i ≤ n which
gives the 1/n! the rest matrix we calculate transforming the matrix to the form of the
Vandermonde matrix.
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This is the half way of the proof. Let us take the concrete values of xi = pi, 1 ≤ i ≤ n, where p
is positive integer and general complex values for ri, 0 ≤ i ≤ n, and calculate both sides of the
equality. For Vandermonde determinant we find for high values of p the following asymptotic

detV = pN , N =
n∑

k=2

k(k − 1) =
n(n2 − 1)

3
(89)

The matrix elements are

Bij = xi−1
j

∫ 1

xj−1/xj

ui+r0−2(1− u)rj−1
n∏

k=1,k 6=j

(
xju− xk
xj − xk

)rk−1du]

= xi−1
j (

∏
1≤k<j

(
xj

xj − xk
)rk−1

∏
j<k≤n

(
xk

xk − xj
)rk−1

∫ 1

xj−1/xj

ui+r0−2(1 − u)rj−1

·
∏

1≤k<j

(u− xk/xj)rk−1
∏

j<k≤n

(1− xj/xku)rk−1du

= p(i−1)j(

∫ 1

0
ui+r0−2+

∑j−1

k=1
(rk−1)(1− u)rj−1du

= p(i−1)jB(i+

j−1∑
k=0

(rk − 1), rj) (90)
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For n = 2 we have

B11 =

∫ 1

0
ur0−1(1 − u)r1−1du =

Γ(r0)Γ(r1)

Γ(r0 + r1)
,

B22 = p2
∫ 1

0
ur0+r1−1(1− u)r2−1du =

Γ(r0 + r1)Γ(r2)

Γ(r0 + r1 + r2)
,

LB2/V2 = B11B22/p
2 =

Γ(r0)Γ(r1)Γ(r2)

Γ(r0 + r1 + r2)
(91)

For n = 3,

B11 =

∫ 1

0
ur0−1(1 − u)r1−1 =

Γ(r0)Γ(r1)

Γ(r0 + r1)
= B(r0, r1),

B22 = p2
∫ 1

0
ur0+r1−1(1− u)r2−1 = p2

Γ(r0 + r1)Γ(r2)

Γ(r0 + r1 + r2)
,

B33 = p6
∫ 1

0
ur0+r1+r2−1(1− u)r3−1 = p6

Γ(r0 + r1 + r2)Γ(r3)

Γ(r0 + r1 + r2 + r3)

LB3/V3 = B11B22B33/p
8 =

Γ(r0)Γ(r1)Γ(r2)Γ(r3)

Γ(r0 + r1 + r2 + r3)
(92)

Now it is obvious the last step of the proof [Makhaldiani, 2011]

LBn(x, r) = detVn(x)B(r0, r1)...B(r0 + r1 + ...+ rn−1, rn)
= detVn(x)Bn(r)

Vn(x) = [xi−1
j ], Bn(r) =

Γ(r0)Γ(r1)..Γ(rn)

Γ(r0 + r1 + ...+ rn)
(93)

Note that this proof is based on the factorization assumption (88). The proof without this
assumption given by I.R.Lomidze is given in [Lomidze, Makhaldiani, 2012].
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Field theory applications of FC

Let us consider the following action

S =
1

2

∫

Qv

dxΦ(x)Dα
xΦ, v = 1, 2, 3, 5, ..., 29, ..., 137, ... (94)

Q1 is real number field, Qp, p - prime, are p-adic number fields. In the
momentum representation

S =
1

2

∫

Qv

duΦ̃(−u)|u|αv Φ̃(u), Φ(x) =
∫

Qv

duχv(ux)Φ̃(u),

D−αχv(ux) = |u|−αv χv(ux). (95)

The statistical sum of the corresponding quantum theory is

Zv =

∫

dΦe
− 1

2

∫
ΦDαΦ

= det−1/2Dα = (
∏

u

|u|v)−α/2. (96)
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String theory applications

For (symmetrized, 4-tachyon) Veneziano amplitude we have (see, e.g.
[Kaku, 2000])

Bs(α, β) = B(α, β) +B(β, γ) +B(γ, α) =

∫ ∞

−∞
dx|1− x|α−1|x|β−1,

α+ β + γ = 1 (97)

For the p-adic Veneziano amplitude we take

Bp(α, β) =

∫

Qp

dx|1 − x|α−1p |x|β−1p =
Γp(α)Γp(β)

Γp(α+ β)
(98)

Now we obtain the N-tachyon amplitude using fractal calculus. We consider
the dynamics of particle given by multicomponent generalization of the
action (110), Φ → xµ.
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For the closed trajectory of the particle passing through N points, we have

A(x1, x2, ..., xN ) =

∫
dt

∫
dt1...

∫
dtN δ(t − Σtn)

v(x1, t1; x2, t2)v(x2, t2;x3, t3)...v(xN , tN ; x1, t1)

=

∫
dx(t)Π(

∫
dtnδ(x

µ(tn)− xµn))exp(−S[x(t)])

=

∫
Π(dkµnχ(knxn))Ã(k), (99)

where

Ã(k) =

∫
dxV (k1)V (k2)...V (kN )exp(−S),

V (kn) =

∫
dtχ(−knx(t)) (100)

is vertex function.
Motion equation

Dαxµ − iΣkµnδ(t − tn) = 0, (101)

in the momentum representation

|u|αx̃µ(u)− iΣnk
µ
nχ(−utn) = 0 (102)

have the solution

x̃µ(u) = iΣkµn
χ(−utn)
|u|α , u 6= 0, (103)
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the constraint

Σnkn = 0, (104)

and the zero mod x̃µn(0), which is arbitrary. Integration in (99) with respect
to this zero mod gives the constraint (104). On the solution of the
equation (101)

xµ(t) = iD−αt Σnk
µ
nδ(t− tn) =

i

Γ(α)
Σnk

µ
n|t− tn|α−1, (105)

the action (110) takes value

S = − 1

Γ(α)
Σn<mknkm|tn − tm|α−1,

Ã(k) =

∫

ΠNn=1dtnexp(−S) (106)

In the limit, α→ 1, for p-adic case we obtain

xµ(t) = −ip− 1

p lnp
Σnk

µ
nln|t− tn|,

S[x(t)] =
p− 1

p lnp
Σn<mknkm ln|tn − tm|,

Ã(k) =

∫

ΠNn=1dtnΠn<m|tn − tm|
p−1
p lnp

knkm . (107)
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Now in the limit p = q−1 → 1 we obtain the proper expressions of the real
case

xµ(t) = −iΣnkµnln|t− tn|,
S[x(t)] = Σn<mknkm ln|tn − tm|,
Ã(k) =

∫

ΠNn=1dtnΠn<m|tn − tm|knkm . (108)

By fractal calculus and vector generalization of the model (110),
fundamental string amplitudes were obtained in [Makhaldiani, 1988].
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Adeles and Cosmological constant

The ring of (rational) adeles can be defined as the restricted product

AQ = R

′
∏

p

Qp (109)

of all the real numbers and the p-adic completions Qp, or in other words as
the restricted product of all completions of the rationals. In this case the
restricted product means that for an adele a = (a1, a2, a3, a5, ) all but a
finite number of the ap are p-adic integers.
The group of invertible elements of the adele ring is the idele group. As a
locally compact abelian group, the adeles have a nontrivial translation
invariant measure. Similarly, the group of ideles has a nontrivial translation
invariant measure.
Let us consider the following action

S =
1

2

∫

Qv

dxΦ(x)Dα
xΦ, v = 1, 2, 3, 5, ... (110)
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Adeles and Cosmological constant

In the momentum representation

S =
1

2

∫

Qv

duΦ̃(−u)|u|αv Φ̃(u), (111)

where

Φ(x) =

∫

Qv

duχv(ux)Φ̃(u),

D−αχv(ux) = |u|−αv χv(ux). (112)

The statistical sum of the corresponding quantum theory is

Zv =

∫

dΦe
− 1

2

∫
ΦDαΦ

= det−1/2Dα = (
∏

u

|u|v)−α/2. (113)
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Adeles and Cosmological constant

Adels a ∈ A are constructed by real a1 ∈ Q1 and p-adic ap ∈ Qp numbers
(see e.g. [Gelfand et al, 1966])

a = (a1, a2, a3, a5, ..., ap, ...), (114)

with restriction that ap ∈ Zp = {x ∈ Qp, |x|p ≤ 1} for all but a finite set F
of primes p.
A is a ring with respect to the componentwise addition and multiplication.
A prinsipal adel is a sequence r = (r, r, ..., r, ...), r ∈ Q-rational number.
Norm on adels is defined as

|a| =
∏

p≥1
|ap|p. (115)

Note that the norm on principal adels is trivial.
In the adelic generalization of the model (110),

Φ(x) =
∏

p≥1
Φp(xp), dx =

∏

p≥1
dxp, Dα

x =
∑

p≥1
Dα
xp , (116)

where by Dα
x1 we denote fractal derivative (257), x1 is real and | |1 is real

norm.
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Adeles and Cosmological constant

If
∫

dxp|Φ(xp)|2 = 1, (117)

then
∫

dx|Φ(x)|2 = 1, S =
∑

p≥1
Sp, (118)

so

Z =
∏

p≥1
Zp =

∏

p≥1
(
∏

u

|u|p)−α/2 = (
∏

u

∏

p≥1
|u|p)−α/2 = 1,

λ ∼ lnZ = 0, (119)

if u ∈ Q.
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Renormdynamics of QCD

QCD is the theory of the strong interactions with, as only inputs, one mass
parameter for each quark species and the value of the QCD coupling
constant at some energy or momentum scale in some renormalization
scheme. This last free parameter of the theory can be fixed by ΛQCD, the
energy scale used as the typical boundary condition for the integration of
the Renormdynamic equation for the strong coupling constant. This is the
parameter which expresses the scale of strong interactions, the only
parameter in the limit of massless quarks. While the evolution of the
coupling with the momentum scale is determined by the quantum
corrections induced by the renormalization of the bare coupling and can be
computed in perturbation theory, the strength itself of the interaction, given
at any scale by the value of the renormalized coupling at this scale, or
equivalently by ΛQCD, is one of the above mentioned parameters of the
theory and has to be taken from experiment.
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Renormdynamics of QCD

The RD equations play an important role in our understanding of Quantum
Chromodynamics and the strong interactions. The beta function and the
quarks mass anomalous dimension are among the most prominent objects
for QCD RD equations. The calculation of the one-loop β-function in QCD
has lead to the discovery of asymptotic freedom in this model and to the
establishment of QCD as the theory of strong interactions
[Gross,Wilczek,1973, Politzer,1973, ’t Hooft, 1972].
The MS-scheme [’t Hooft, 1972 2] belongs to the class of massless schemes
where the β-function does not depend on masses of the theory and the first
two coefficients of the β-function are scheme-independent.
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The Lagrangian of QCD with massive quarks in the covariant gauge

L = −1

4
F aµνF

aµν + q̄n(iγD −mn)qn

− 1

2ξ
(∂A)2 + ∂µc̄a(∂µc

a + gfabcAbµc
c)

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν

(Dµ)kl = δkl∂µ − igtaklA
a
µ, (120)

Aaµ, a = 1, ..., N2
c − 1 are gluon; qn, n = 1, ..., nf are quark; ca are ghost

fields; ξ is gauge parameter; ta are generators of fundamental
representation and fabc are structure constants of the Lie algebra

[ta, tb] = ifabctc, (121)

we will consider an arbitrary compact semi-simple Lie group G. For QCD,
G = SU(Nc), Nc = 3.
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The RD equation for the coupling constant is

ȧ = β(a) = β2a
2 + β3a

3 + β4a
4 + β5a

5 +O(a6),

a =
αs
4π

= (
g

4π
)2,

∫ a

a0

da

β(a)
= t− t0 = ln

µ

µ0
, (122)

µ is the ’t Hooft unit of mass, the renormalization point in the MS-scheme.
To calculate the β-function we need to calculate the renormalization
constant Z of the coupling constant, ab = Za, where ab is the bare
(unrenormalized) charge.
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The expression of the β-function can be obtained in the following way

0 = d(abµ
2ε)/dt = µ2ε(εZa+

∂(Za)

∂a

da

dt
)

⇒ da

dt
= β(a, ε) =

−εZa
∂(Za)
∂a

= −εa+ β(a),

β(a) = a
d

da
(aZ1) (123)

where

β(a, ε) =
D − 4

2
a+ β(a), D = 4− 2ε (124)

is D−dimensional β−function and Z1 is the residue of the first pole in ε
expansion

Z(a, ε) = 1 + Z1ε
−1 + ...+ Znε

−n + ... (125)

Since Z does not depend explicitly on µ, the β-function is the same in all
MS-like schemes, i.e. within the class of renormalization schemes which
differ by the shift of the parameter µ.
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For quark anomalous dimension, RD equation is

ḃ = γ(a) = γ1a+ γ2a
2 + γ3a

3 + γ4a
4 +O(a5),

b = lnmq,

b(t) = b0 +

∫ t

t0

dtγ(a(t)) = b0 +

∫ a

a0

daγ(a)/β(a). (126)

To calculate the quark mass anomalous dimension γ(g) we need to
calculate the renormalization constant Zm of the quark mass
mb = Zmm, mb is the bare (unrenormalized) quark mass. Than we find
the function γ(g) in the following way

0 = ṁb = Żmm+ Zmṁ = Zmm((lnZm)
· + (lnm)·)

⇒ γ(a) = −d lnZm
dt

= −d lnZm
da

da

dt
= −d lnZm

da
(−εa+ β(a)) = a

dZm1

da
, (127)

where RD equation in D−dimension is

ȧ = −εa+ β(a) = β1a+ β2a
2 + ... (128)
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and Zm1 is the coefficient of the first pole in the ε−expantion of the Zm in
MS-scheme

Zm(ε, g) = 1 + Zm1(g)ε
−1 + Zm2(g)ε

−2 + ... (129)

Since Zm does not depend explicitly on µ and m, the γm-function is the
same in all MS-like schemes, i.e. within the class of renormalization
schemes which differ by the shift of the parameter µ.
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Reparametrization and general method of solution of the RD equation

RD equation,

ȧ = β1a+ β2a
2 + ... (130)

can be reparametrized,

a(t) = f(A(t)) = A+ f2A
2 + ...+ fnA

n + ... =
∑
n≥1

fnA
n,

Ȧ = b1A+ b2A
2 + ... =

∑
n≥1

bnA
n, (131)

ȧ = Ȧf ′(A) = (b1A+ b2A
2 + ...)(1 + 2f2A+ ...+ nfnA

n−1 + ...)
= β1(A+ f2A

2 + ...+ fnA
n + ...) + β2(A

2 + 2f2A
3 + ...) + ...

+βn(A
n + nf2A

n+1 + ...) + ...
= β1A+ (β2 + β1f2)A

2 + (β3 + 2β2f2 + β1f3)A
3+

...+ (βn + (n− 1)βn−1f2 + ...+ β1fn)A
n + ...

=
∑

n,n1,n2≥1

Anbn1
n2fn2

δn,n1+n2−1

=
∑

n,m≥1;m1 ,...,mk≥0

Anβmf
m1

1 ...f
mk
k f(n,m,m1, ...,mk),

f(n,m,m1, ...,mk) =
m!

m1!...mk!
δn,m1+2m2+...+kmk

δm,m1+m2+...+mk
, (132)
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b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,
b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f22 − f3)β1,
b4 = β4 + 3f2β3 + f22β2 + 2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, ...
bn = βn + ...+ β1fn − 2f2bn−1 − ...− nfnb1, ... (133)

so, by reparametrization, beyond the critical dimension (β1 6= 0) we can change any coefficient
but β1.
We can fix any higher coefficient with zero value, if we take

f2 =
β2

β1
, f3 =

β3

2β1
+ f22 , ... , fn =

βn + ...

(n− 1)β1
, ... (134)

In this case we have exact classical dynamics in the (external) space-time and simple scale
dynamics,

g = (µ/µ0)
−2εg0 = e−2ετg0;

ϕ(τ, t, x) = e−(D−2)/2τϕ0(t, x),

ψ(τ, t, x) = e−(D−1)/2τψ0(t, x) (135)

We will consider in applications the case when only one of higher coefficient is nonzero.
In the critical dimension of space-time, β1 = 0, and we can change by reparametrization any
coefficient but β2 and β3.
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From the relations (133), in the critical dimenshion (β1 = 0), we find that, we can define the
minimal form of the RD equation

Ȧ = β2A
2 + β3A

3, (136)

e.g. b4 = 0 when

f3 =
β4

β2
+
β3

β2
f2 + f22 , (137)

f2 remains arbitrary and we can make choice f2 = 0. We can solve (136) as implicit function,

uβ3/β2e−u = ceβ2t, u =
1

A
+
β3

β2
(138)

than, as in the noncritical case, explicit solution will be given by reparametrization representation.
If we know somehow the coefficients βn, e.g. for first several exact and for others asymptotic
values (see e.g. [Kazakov,Shirkov,1980]) than we can construct reparametrization function (131)
and find the dynamics of the running coupling constant. This is similar to the action-angular
canonical transformation of the analytic mechanics (see e.g. [Faddeev, Takhtajan, 1990]).
Statement: The series for a is p-adically convergent, when βn and A are rational numbers.
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Reparametrization of the anomalous dimensions

Let us take the the anomalous dimension of some quantity

γ(a) = γ1a+ γ2a
2 + γ3a

3 + ... (139)

and make reparametrization

a = f(A) = A+ f2A
2 + f3A

3 + ... (140)

γ(a) = γ1(A+ f2A
2 + f3A

3 + ...) + γ2(A
2 + 2f2A

3 + ...) + γ3(A
3 + ...)

= Γ1A+ Γ2A
2 + Γ3A

3 + ...
Γ1 = γ1, Γ2 = γ2 + γ1f2, Γ3 = γ3 + 2γ2f2 + γ1f3, ... (141)

When γ1 6= 0, we can take Γn = 0, n ≥ 2, if we define fn as

f2 = −γ2
γ1
, f3 = −γ3 + 2γ2f2

γ1
= −γ3 − 2γ22/γ1

γ1
, ... (142)

So, we get the exact value for the anomalous dimension

γ(A) = γ1A = γ1f
−1(a) = γ1(a+ γ2/γ1a

2 + γ3/γ1a
3 + ...) (143)

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) August 7 58 / 247



Renormdynamic functions (RDF)

We will call RDF functions gn = fn(t), which are solutions of the RD
motion equations

ġn = βn(g), 1 ≤ n ≤ N. (144)

In the simplest case of one coupling constant, the function g = f(t), is
constant g = gc when β(gc) = 0, or is invertible (monotone). Indeed,

ġ = f ′(t) = f ′(f−1(g)) = β(g). (145)

Each monotone interval ends by UV and IR fixed points and describes
corresponding phase of the system.
Note that, the simplest case of the classical dynamics, the hamiltonian
system with one degree of freedom, is already two dimensional, so we have
not an analog of one charge renormdynamics. Than the regular hamiltonian
systems of the classical mechanics are defined on the even dimensional
phase space, so there is not an analog of the three dimensional
renormdynamics for the coupling constants of the SM.
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Nonperturbative Renormdynamic Functions (RDF)

Based on real experiments and computer simulations, quantum gauge
theory in four dimensions is believed to have a mass gap. This is one of the
most fundamental facts that makes the Universe the way it is.
In the lattice (gauge) theory approach to the renormdynamics (see, e.g.
[Makhaldiani, 1986]), recently running coupling constant dynamics were
calculated for SU(3) Yang-Mills model [Bogolubsky et al,2009]. The result
is in agreement with perturbative calculations at small scales; at an
intermediate scale the coupling constant reaches its maximum(≃ 1.); than
decrease. So, at the maximum, we may have nontrivial zero of the
β−function, which corresponds to the conformal invariance of the
gluodynamics at this point. Beyond this point we have another phase,
strong coupling phase with decreasing coupling constant similar
(identical?!) to the abelian (monopole?) theory.
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Note that, in the case of the two coupling constants,

ġ1 = β1(g1, g2),
ġ2 = β2(g1, g2), (146)

we can reformulate RD as

g1 ≡ g; g2 = f2(t) ≡ τ,
dg1
dg2

=
dg

dτ
≡ ġ = β(g, τ) =

β1(g, τ)

β2(g, τ)
(147)

and RDF must fulfil corresponding restrictions. E.g. if

g1 = f1(t) = g = f(τ) = f(f2(t)), g2 = f2(t) = τ (148)

So, if we approximate the form of the curve near maximum as

a(t) = ac − b|t− tc|n, (149)

for the β−function we obtain

ȧ = β(a, t) = sign(tc − t)bn(
ac − a

b
)
n−1
n . (150)

Of course this is not usual β−function, function of a only. It depends also
on t. For t > tc we have perturbative phase. For n > 1, β(ac, t) = 0.
Explicit dependence on time variable in one coupling case indicates on
implicit two coupling case.
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Dynamics and Renormdynamics

We have seen that the quantitative values and qualitative content of the
given field theory depends on the scale (parameter, e.g. µ−renormalization
point, g = g(µ), A = A(µ)). In QCD e.g. the effective action have the
following form

S(µ) =
1

g2(µ)

∫

dDxL(A(µ)), (151)

so variation with respect the change of scale gives

δS = −2
β(g)

g3
δgS +

1

g2

∫

dDx
δL
δA

δA (152)

and the following two statements are equivalent,

δS = 0, β(g) = 0 ⇔ δS = 0,
δL
δA

= 0 (153)
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Dynamics and Renormdynamics

So, from renorminvariance of the effective action, δS = 0, follows that at
the conformal symmetric points, fixed points of RD, (β(g) = 0), the motion
equations for fields are satisfied. Generalization for the several coupling
constants and other models is obvious. The solutions of the motion
equations are selfsimilar, their are generally fractals. In string theory, the
connection between conformal invariance of the effective theory on the
parametric world sheet and the motion equations of the fields on the
embedding space is well known [Green, Schwarz, Witten,1987]. More
recent topic in this direction is AdS/CFT Duality [Maldacena, 1998].
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Nonperturbative Renormdynamics, AdS/CFT duality

Based on real experiments and computer simulations, quantum gauge
theory in four dimensions is believed to have a mass gap. This is one of the
most fundamental facts that makes the Universe the way it is.
The AdS/CFT duality provides a gravity description in a (d +
1)-dimensional AdS space-time in terms of a flat d-dimensional
conformally-invariant quantum field theory defined at the AdS asymptotic
boundary [Maldacena, 1998],
[Gubser,Klebanov,Polyakov, 1998],[Witten, 1998]. Thus, in principle, one
can compute physical observables in a strongly coupled gauge theory in
terms of a classical gravity theory. The β-function for the nonperturbative
effective coupling obtained from the LF holographic mapping in a positive
dilaton modified AdS background is [Brodsky, de Tèramond, Deur, 2010]

β(αAdS) =
dαAdS
lnQ2

= − Q2

4k2
αAdS(Q

2)

= αAdS(Q
2) ln

αAdS(Q
2)

α(0)
≤ 0 (154)

where the physical QCD running coupling in its nonperturbative domain is

αAdS(Q
2) = α(0)e−Q

2/4k2 (155)

So, this renormdynamics of QCD interpolates between IR fixed point α(0),
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Nonperturbative renormdynamics with massive gluons

For the QCD running coupling [Diakonov, 2003]

α(q2) =
4π

9 ln(
q2+m2

g

Λ2 )
(156)

where mg = 0.88GeV, Λ = 0.28GeV, the β−function of renormdynamics is

β(α) = −α
2

k
(1− c exp(− k

α
)) = −α

2

k
+
cα2

k
exp(− k

α
),

k =
4π

9
= 1.40, c =

m2
g

Λ2
= (3.143)2 = 9.88 (157)

for nontrivial (IR) fixed point we have

αIR =
k

ln c
= 0.61 (158)

For α(0) = 2, we predict the gluon mass as

mg = Λe
k

2α(0) = 1.42Λ = mN/3, Λ = 220MeV. (159)
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Nonperturbative renormdynamics with massive gluons

The ghost-gluon interaction in Landau gauge has been determined either
from DSEs [Zwanziger, 2002],[Lerche,von Smekal, 2002], or the Exact
Renormalization Group Equations (ERGEs)
[Pawlowski et al, 2004],[Fischer,Gies, 2004] and yield an IR fixed point

α(0) =
2π

3Nc

Γ(3− 2k)Γ(3 + k)Γ(1 + k)

Γ(2− k)2Γ(2k)
=

8.9115

Nc
= 2.970,

Nc = 3, k = (93 −
√
1201)/98 = 0.5954 (160)

Note that, from this formula for k = 0.6036 we have α(0) = 3 and for
k = 0.36 we have α(0) = 2.
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QCD, parton model, valence quarks and αs = 2

While it has been well established in the perturbative regime at high
energies, QCD still lacks a comprehensive solution at low and intermediate
energies, even 40 years after its invention. In order to deal with the wealth
of non-perturbative phenomena, various approaches are followed with
limited validity and applicability. This is especially also true for lattice
QCD, various functional methods, or chiral perturbation theory, to name
only a few. In neither one of these approaches the full dynamical content of
QCD can yet be included. Basically, the difficulties are associated with a
relativistically covariant treatment of confinement and the spontaneous
breaking of chiral symmetry, the latter being a well-established property of
QCD at low and intermediate energies. As a result, most hadron reactions,
like resonance excitations, strong and electroweak decays etc., are nowadays
only amenable to models of QCD. Most famous is the constituent-quark
model (CQM), which essentially relies on a limited number of effective
degrees of freedom with the aim of encoding the essential features of low-
and intermediate-energy QCD.
The CQM has a long history, and it has made important contributions to
the understanding of many hadron properties, think only of the fact that
the systematization of hadrons in the standard particle-data base follows
the valence-quark picture.
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QCD, parton model, valence quarks and αs = 2

It was noted [Voloshin, Ter-Martyrosian,1984]that parton densities given by
the following solution

M2(Q
2) =

3

25
+

2

3
ω−32/81 +

16

75
ω−50/81,

M̄2(Q
2) =M s

2 (Q
2) =

3

25
− 1

3
ω−32/81 +

16

75
ω−50/81,

MG
2 (Q2) =

16

25
(1− ω−50/81),

ω =
αs(m

2)

αs(Q2)
, Q2 ∈ (5, 20)GeV 2, b = 9, αs(Q

2) ≃ 0.2 (161)
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QCD, parton model, valence quarks and αs = 2

of the Altarelli-Parisi equation

Ṁ = AM, Ṁ = Q2 dM

dQ2
, a = (

g

4π
)2,

MT = (M2, M̄2,M
s
2 ,M

G
2 ),

M2 =

∫ 1

0
dxx(u(x) + d(x)), M̄2 =

∫ 1

0
dxx(ū(x) + d̄(x)),

M s
2 =

∫ 1

0
dxx(s(x) + s̄(x)), MG

2 =

∫ 1

0
dxxG(x),

A = −a(Q2)







32/9 0 0 −2/3
0 32/9 0 −2/3
0 0 32/9 −2/3

−32/9 −32/9 −32/9 2






, (162)

with the following ”valence quark” initial condition at a scale m

M2(m
2) = 1, M̄2(m

2) =M s
2 (m

2) =MG
2 (m2) = 0, αs(m

2) = 2, (163)

gives the experimental values

M2 = 0.44, M̄2 =M s
2 = 0.04, MG

2 = 0.48 (164)
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QCD, parton model, valence quarks and αs = 2

So, for valence quark VQCD, αs(m
2) = 2. We have seen, that for πρN

model απρN = 3, and for πN model απN = 13. It is nice that
α2
s + α2

πρN = απN . This relation can be seen, e.g., by considering pion
propagator in the low energy πN model and in superposition of higher
energy VQCD and πρN models.
Note that g2 = 25, g = 5, corresponds to the

αg =
g2

4π
= 1.989 ≃ 2 (165)

To αs = 2 corresponds

g =
√
4παs =

√
8π = 5.013 = 5+ (166)
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String-field duality

In the relativistic string-gauge field duality [Maldacena, 1998] (see review
[Aharony et al, 2000]), the string coupling constant gs and the gauge field
fine structure constant αs are related: gs = αs. The statement that the
later is (prime) integer means (prime) integer quantization of the string
coupling constant.
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Higgs Particles

There are many motivations to think that the SM is not the ultimate and
complete theory of Nature, among which the naturalness argument plays a
predominant role. The instability of the Higgs mass with respect to
radiative corrections requires in fact an incredible high level of fine tuning in
the precision of their cancellation in the SM in order to have an Higgs mass
at the EW scale. Beside the supersymmetric solution to this problem,
another possibility is to postulate the Higgs boson as a composite state
arising as a bound state from a strongly interacting sector at the TeV scale
[Kaplan, Georgi 1984]. Being composite the Higgs will be insensitive to
radiative corrections above the composite scale.
With the discovery of the Higgs particle with mass 125 GeV, a nice number
mW/mH ≃ 2/3 appear, which, at least for me, indicates for composed
nature of W and H, with a same mass of about 40 GeV two and three
valence constituents correspondingly. The fermion constituents ψan of W
and scalar constituents ϕan of H compose scalar super multiplet (ϕan, ψ

a
n)

with a flavor index n and color index a.
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Quarkonia, potential and space dimension renormdynamics

Phenomenological approach to the nonrelativistic potential-model study of
Υ and ψ spectra leads to a static Coulombic Power-law potential of the
form

V (r) = a(r)r2−d(r) ∼ 1/r, r ∼ 0.1fm
r, r ∼ 1.fm

(167)

E.g. in the case of the Υ and small r

V (r) =
4

3

αs
r
, αs =

2π

b ln rΛ
, b = 9. (168)

This behavior corresponds not only to the running fine structure constant
but also to the running space dimension. Confinement-the point-like
hadrons on the scales higher than hadronic, corresponds to the zero
dimensional space for hadron constituents.
RD equations of QCD beyond the critical dimention has explicit
dependence on the space dimension. When the dimension becomes running
we should consider two dimensional renormdinamics

ȧ1 = β1(a1, a2), a1 = a,
ȧ2 = β2(a1, a2), a2 = d (169)
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Stability of the states of dynamical systems

If we have a solution xn = x0n (a state) of the following system of motion
equations (of the corresponding dynamical system)

ẋn = fn(x), 1 ≤ n ≤ N, (170)

we can consider the question of stability of the solution, the existence of
the solutions of the type xn = x0n + gn, for small values of gn. If there are
solutions with rising gn, of the corresponding motion equations

ġn = βn(g),
βn(g) = fn(x0 + g)− fn(x0) = β1nmgm + β2nmkgmgk + ...,

βkn...m = f (n...m)(x0) (171)

we say that the solution x0n is not stable.
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Stability of the states of dynamical systems

The linear approximation, we transform into diagonal form,

ġn = β1nmgm, hn = Anmgm,
ḣn = λnhn, λnδnm = (Aβ1A

−1)nm, (172)

if all of the λn are purely imaginary λn = iωn, we have stable solution (in
the linear approximation): small deviations remain small. If real parts of all
λn are negative, we have asymptotic stability: deviations decrease. If some
λn are zero, we have undefined case. In regular case, when the matrix β1
has inverse, by reparametrization trick we can construct the formal solution
of the nonlinear equation for gn, and try to investigate its convergence
properties.
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Nambu - Poisson formulation of Renormdynamics

In the case of several integrals of motion, Hn, 1 ≤ n ≤ N, we can
formulate Renormdynamics as Nambu - Poisson dynamics (see e.g.
[Makhaldiani, 2007])

ϕ̇(x) = [ϕ(x),H1,H2, ...,HN ], (173)

where ϕ is an observable as a function of the coupling constants
xm, 1 ≤ m ≤M.
In the case of Standard model [Weinberg,1995], we have three coupling
constants, M = 3.
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Hamiltonian extension of the Renormdynamics

The renormdynamic motion equations

ġn = βn(g), 1 ≤ n ≤ N (174)

can be presented as nonlinear part of a hamiltonian system with linear part

Ψ̇n = −∂βm
∂gn

Ψm, (175)

hamiltonian and canonical Poisson bracket as

H =

N
∑

n=1

β(g)nΨn, {gn,Ψm} = δnm (176)

In this extended version, we can define optimal control theory approach
[Pontryagin, 1983] to the unified field theories. We can start from the
unified value of the coupling constant, e.g. α−1(M) = 29.0... at the scale
of unification M, put the aim to reach the SM scale with values of the
coupling constants measured in experiments, and find optimal threshold
corrections to the RD coefficients [Makhaldiani, 2010].
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Renormdynamic equation for effective action

For connected vertex functions Γn, (11)

Γn(x1, x2, ..., xn; g,m, µ) = Zn/2(µ)Γ0n(x1, x2, ..., xn; g0,m0),

(D − n

2
γ)Γn(x; g,m, µ) = 0; (177)

For effective action Sq,

(D − 1

2
γ

∫

dxφ(x)
δ

δφ(x)
)Sq(φ) = 0,

(D − 1

2
γφ

∂

∂φ
)V (φ) = 0, V (φ) = Sq(φ(x))|φ(x)=φ=const, (178)

where V (φ) is effective potential.
For the effective potential in the RD (conformal) fixed point,
γ(g) = γ(gc) ≡ γc we have the following wave equation and corresponding
(auto model) solution

(∂t −
γc
2
∂z)V = 0,

V (φ, µ) = f(z + vt) = F (
φ

µv
), t = ln

µ

µ0
, z = ln

φ

φ0
, v =

γc
2
(179)
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Finite temperature and density QCD

The fundamental quark and gluon degrees of freedom are the relevant ones
at high temperatures and/or densities. Since these degrees of freedom are
confined in the low temperature and density regime there must be a quark
and/or gluon (de)confinement phase transition.
It is difficult to describe the phase transition because there is not known a
local parameter which can be linked to confinement. We consider the
fractal dimension of the hadronic/quark-gluon space as order parameter of
(de)confinement phase transition. It has value less than 3 in the abelian,
hadronic, phase, and more than 3, in nonabelian, quark-gluon, phase.
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Ultraviolet (Infrared) fixed point for QCD (QED)

Perturbation theory results for QCD (QED) give negative (positive)
β−function, in one loop approximation

ȧ = β2a
2,

QCD : β2 = (
nf
6

− 11

4
),

QED : β2 =
1

3
(180)

So, running coupling constant vanishes at higher (low) energy. For QCD
this property named as asymptotic freedom gives the scaling behavior of
observable quantities in good agreement with experimental data. Small
value of the coupling constant may describe small deviation from the
scaling. Infrared zero value of the QED coupling constant contradicts with
experiments. Small value of the coupling constant equal to the observable
value of the fine structure constant α−1 = 137.036, in the infrared (low
energy) limit, will be good solution of the zero-charge problem. For this, we
will consider the QCD (QED) beyond the critical dimension of the
space-time.
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Corresponding β−function

β(a, ε) = −εa+ β(a), (181)

has stable ultraviolet (infrared) fixed point for negative (positive) value of ε,

ε = β(a)/a. (182)

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) August 7 81 / 247



Two TeV scale unification of the standard model coupling constants

According to the LEP and Tevatron data, the standard model coupling
constants at the Z-boson mass scale take the values (see, e.g.
[D.I.Kazakov, 2004])

α1(mZ) = 0.017, α1(mZ)
−1 = 58.8

α2(mZ) = 0.034, α2(mZ)
−1 = 29.4

α3(mZ) = 0.118, α3(mZ)
−1 = 8.47 (183)

Our aim is to consider RD equation in critical dimension for weak
interaction part of the SM (ε2 = 0); RD equations for the electromagnetic
and strong interaction parts beyond critical dimension (ε1, ε3 6= 0); reach
unification (equality) of the three couplings at the TeV scale in the point
α−1u = 31.0
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The solution of the one loop RD equation beyond critical dimension

ȧ = −εa+ ka2,

a =
α

4π
= (

g

4π
)2, t = ln

Q2

m2
Z

, (184)

is

an(t)
−1 =

kn
ε

+ cne
εnt, n = 1, 3

cn = an(mZ)
−1 − kn

εn
,

kn = (
41

10
,−7). (185)
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The solution of the RD equation in critical dimension

ȧ2 = k2a
2
2, k2 = −19

6
(186)

is

a−12 (t) = a−12 (mZ) + k2t (187)

From the last expression, having unification value, α−12 (tu) = α−1u = 31.0
we define the unification scale

tu = (a−12 (tu)− a−12 (mZ))/k2

= 4π × 1.6× 6

19
= 6.35,

Qu = 23.9mZ = 2182GeV,
mZ = 91.2GeV (188)
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Solution of the RD equation beyond the critical dimension for
electrodynamic constant,

ȧ = −εa+ ba2, b =
41

10
, (189)

is

a−1(t) =
b

ε
+ (a−1(mZ)−

b

ε
)eεt (190)

The condition of the unification

(bε−1 − a−1(tu)) = (bε−1 − a−1(mZ))e
εtu (191)

defines the value ε1 = −0.093 Unification takes place in dimension
d = 4− 2ε1 = 4.186
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For the strong coupling constant beyond the critical dimension,

ȧ = −εa− ba2, b = 7, (192)

the solution is

a−1(t) = − b
ε
+ (

b

ε
+ a−1(mZ))e

tε, (193)

the unification condition

(bε−1 + a−1(tu)) = (bε−1 + a−1(mZ))e
εtu (194)

defines ε = 0.168 Unification takes place in the dimension
d = 4− 2ε = 3.66
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Let us consider unification at the point α−1(tu) = 29.0, the low energy
unification,

tul = (α−12 (tul)− a−12 (mZ))/k2

= −4π × 0.4 × 6

19
= −1.59,

Qul = 0.45mZ = 41.2GeV (195)

For electrodynamic case unification condition

41

10
− 4π29ε = (

41

10
− 4π58.8ε)e−1.59ε, (196)

gives the values ε1 = 0.453, del = 3.09 = 2.09 + 1 dimensional space-time.
For strong coupling constant unification condition

7 + 4πε× 29 = (7 + 4πε× 8.47)e−1.59ε (197)

gives ε3 = −0.8121, dsl = 5.624
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At what scale α−1 = 137?

The low energy value of the QED α−1 = 137.036...
Let us find the scale at which α−1 = 137 if

α−1(mZ) =
5

3 cos2 θW
α−11 (mZ) = 128.978 ± 0.027 ≃ 129,

sin2 θW = 0.23146 ± 0.00017 ≃ 0.2315,
α−11 (mZ) = 58.8,

α−1(mZ) =
5

3× 0.7685
× 58.8 = 127.52 ≃ 128 (198)

Now take one loop RD evolution to the 137,

tl = (a−11 (tl)− a−11 (mZ))/k1

= −4π × 8.× 10

41
= −24.5,

Ql ≃ 5× 10−6mZ ≃ 5× 10−4mp ≃ me (199)
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The Theory Space (TS) and Fundamental Constants

Theoretical equations describing the physical world deal with dimensionless
quantities and their solutions depend on dimensionless fundamental
parameters, like α−1 ≃ 137. But experiments, from which these theories are
extracted and by which they could be tested, involve measurements, i.e.
comparisons with standard dimensionful scales. Without standard
dimensionful units and hence without certain conventions physics is
unthinkable.
According to the high school physics, there are three basic quantities in
Nature: Length, Mass and Time. All other quantities, such as electric
charge or temperature, occupied a lesser status since they could all be
re-expressed in terms of these basic three. As a result, there are three basic
units: centimeter (cm), gram (g) and second (s), reflected in the
three-letter name ”CGS” system (or perhaps meter, kilogram and second in
the alternative, but still three-letter, ”MKS” system).
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The Theory Space (TS) and Fundamental Constants

In quantum mechanics, there is a minimum quantum of action given by
Planck’s constant ~; in special relativity there is a maximum velocity given
by the velocity of light c; in classical gravity the strength of the force
between two objects is determined by Newton’s constant of gravitation G.
In terms of length, time and mass their dimensions are

[c] = LT−1,

[~] = L2T−1M

[G] = L3T−2M−1 (200)
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The Theory Space (TS) and Fundamental Constants

Max Planck identified a century ago three basic units, the Planck length lp,
the Planck time tp and Planck mass mp:

lp =

√

G~

c3
= 1.616 × 10−35m

tp =

√

G~

c5
= 5.390 × 10−44s

mp =

√

c~

G
= 2.177 × 10−8kg (201)
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The Theory Space (TS) and Fundamental Constants

Note that, unlike ~ and c, the dimension of G depends on dimension of
space-time D:

F = G
mM

rD−2
= ma,⇓

[GD] = LD−1T−2M−1 (202)
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The Theory Space (TS) and Fundamental Constants

so,

~GD = lD+1
pD t−3pD,

c = lpDt
−1
pD,⇓

lD−2pD =
~GD
c3

,

tD−2pD =
~GD
cD+1

,

mD−2
pD =

c5−D~D−3

GD
(203)

After compactification to four dimensions,

GD = vG4 (204)

where v - the volume of the compactifying manifold has the
four-dimensional interpretation as the vacuum expectation value of scalar
modulus fields coming from the internal components of the metric tensor, it
depends on the choice of vacuum but does not introduce any more
fundamental constants into the lagrangian.
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The Theory Space (TS) and Fundamental Constants

Note that in the gravity coupling constant and corresponding unites (203),
the dimention D can takes also non integer-fractal values.
In the 1870’s G.J. Stoney [Stoney, 1881], the physicist who coined the term
”electron” and measured the value of elementary charge e, introduced as
universal units of Nature for L, T,M :

lS =
e

c2

√
G,

tS =
e

c3

√
G

=
lS
c
,

mS =
e√
G
,

lSmS =
e2

c2
(205)
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The Theory Space (TS) and Fundamental Constants

The expression for mS has been derived by equating the Coulomb and
Newton forces,

e2 = Gm2 ⇒ mS =
e√
G

(206)

The expressions for lS and tS has been derived from mS , c and e on
dimensional grounds,

[
e2

r2
] = [ma] =MLT−2 ⇒ e2 = mSL

3T−2 = mSlSc
2

⇒ lS =
e2

c2mS
=
e
√
G

c2
(207)

Note that, we can define the units of Nature from fundamental length-l,
charge-e and speed of light-c

t = l/c, m = (
e

c
)2/l, G = (

lc2

e
)2 (208)
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When M. Planck discovered in 1899 h he introduced [Planck, 1899] as
universal units of Nature for L, T, M:

mP =

√

hc

G
=
mS√
α
,

lP =
h

cmP
=

lS√
α

= 11.7lS ,

tP =
lP
c

=
tS√
α
,

(209)

Max Planck invented the system of fundamental unites c, h,G and k.
G. Gamov, D. Ivanenko and L. Landau [Gamov, Ivanenko, Landau, 1928]
considered the system without the parameter k, as fundamental one.
Bronshtein [Bronshtein, 1933] and Zelmanov [Zelmanov, 1967], developed
the idea of the cube of theories. The cube is located along three orthogonal
axes marked by c (actually by 1/c), ~, G. The vertex (000) corresponds to
nonrelativistic mechanics, (c00) - to special relativity, (0~0) - to
non-relativistic quantum mechanics, (c~0) - to quantum field theory, (c0G)
- to general relativity, (c~G ) - to futuristic quantum gravity and
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the Theory of Everything, TOE, modern version of which is M-theory.
There is a hope that in the framework of TOE the values of dimensionless
fundamental parameters will be ultimately calculated. Note that
3-dimensional TS-c~G where invented for 3-dimensional space models,
d-dimensional theory may need d-dimensional TS, but, as we have seen,
when extra dimensions are compactified the TS remain 3-dimensional;
Stoney’s fundamental constants are more fundamental just because they
are less than Planck’s constants :)
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Practical Meaning of Units

The meter was defined in 1791 as a 1/40 000 000 part of Paris
meridian.The gram is the mass of one cubic cm of water. The cm and sec
are connected with the size and rotation of the earth. An important step
forward was made in the middle of XX century, when the standards of cm
and sec were defined in terms of of wave-length and frequency of a certain
atomic line.
Enormously more universal and fundamental are c and ~ given to us by
Nature herself as units of velocity [v] = [L/T ] and angular momentum
[J ] = [MvL] = [ML2/T ] or action [S] = [ET ] = [Mv2T ] = [ML2/T ].
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It is important that c is not only the speed of light in vacuum. What is
much more significant is the fact that it is the maximal velocity of any
object in Nature, the photon being only one of such objects. The
fundamental character of c would not be diminished in a world without
photons. The fact that c is the maximal v leads to new phenomena,
unknown in newtonian physics and described by relativity. Therefore Nature
herself suggests c as fundamental unit of velocity.
c is more fundamental than α because it is the basis of relativity theory
which unifies space and time, as well as energy, momentum and mass.
The quantity ~ is also fundamental: it is the quantum of the angular
momentum J and a natural unit of the action S. When J or S are close to
~, the whole realm of quantum mechanical phenomena appears. Particles
with integer J (bosons) tend to be in the same state (i.e. photons in a
laser, or Rubidium atoms in a drop of Bose-Einstein condensate). Particles
with half-integer J (fermions) obey the Pauli exclusion principle which is so
basic for the structure of atoms, atomic nuclei and neutron stars.
Symmetry between fermions and bosons, dubbed supersymmetry or SUSY,
is badly broken at low energies, but many theorists believe that it is
restored near the Planck mass in particular in superstrings and M-theories.
It is natural when dealing with quantum mechanical problems to use ~ as
the unit of J and S.
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The status of G and its derivatives, m , l , t , is at present different from
that of c and ~, because the quantum theory of gravity is still under
construction. The majority of experts connect their hopes with extra spatial
dimensions and superstrings. The characteristic length of a superstring

ls(M
2
GUT ) = lP /

√

α(M2
GUT ). Possible modifications of Newton’s potential

at sub-millimetre distances demonstrates that the position of G is not as
firm as that of c and ~. If the theory of gravity reduce to more fundamental
structures, like old theory of weak interections with its coupling constant G
reduce to SM, than gravitation coupling constant become calculable in
terms of the fundamental theory.
The Newtonian potential around the sun is for non-vanishing Λ modified to
[Axenides, Floratos, Perivolaropoulos, 2000], [Gibbons, Hawking, 1977]

V (r) =
GM

r
+

Λc2

6
r2 (210)

where M is the mass of the sun and r the distance from the sun.
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Mathematically temperature T is defined as a derivative of internal energy
E of a system over its entropy S:

Z(β) =
∑

n

e−βEn =
∑

En

N(En)e
−βEn =

∑

En

e−βFn = e−βF ,

F = E − TS = E − tSB , T = β−1 = kt, SB = kS,

(
∂F

∂S
)T = 0 ⇒ T =

dE

dS
,

k = 8.69× 10−5eV/K = 1.38 × 10−23J/K. (211)

As temperature is an average energy of an ensemble of particles, it is
natural to measure it in units of energy. So, the Boltzmann’s constant k
connects microscopic phenomena to macroscopic one but it is not necessary
to have different unit for measuring temperature and corresponding
dimensional coefficient k, T = kt. We can put k = 1 and measuring the
temperature in energy unites. In this sense, the Boltzmann’s Constant k
has not the fundamental meaning.
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There are different opinions about the number of fundamental constants
[Duff, Okun, Veneziano, 2001]. According to Okun there are three
fundamental dimensionful constants in Nature: Planck’s constant, ~; the
velocity of light, c; and Newton’s constant, G. According to Veneziano,
there are only two: the string length ls and c. According to Duff, there are
not fundamental constants at all.
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5-dimensional Einstein-Hilbert action

S = (12π2G5)
−1

∫

d5x
√−g5R5 (212)

Decomposing 5-dimensional metric as

g5 =

(

gµν + φ2AµAν/M
2 φAµ/M

φAν/M φ2

)

, (213)

we obtain

S = (16πG4)
−1

∫

d4x
√−g4φ(R4 −

φ2

4M2
F 2) (214)

where the 4-dimensional gravitational constant G4 is

G4 = G5
3π

4
/

∫

dx5 (215)
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The scalar field couples explicitly to the kinetic term of the vector field and
cannot be eliminated by a redefinition of the metric. Such dependencies of
the masses and couplings are generic for higher-dimensional theories and in
particular string theory. It is actually one of the definitive predictions for
string theory that there exists a dilaton, that couples directly to matter
[Taylor, Veneziano, 1988] and whose vacuum expectation value determines
the string coupling constants [Witten, 1984,2]. In the Nambu-Goto string
model

S

~
=

1

s

∫

d(Area), s = l2s (216)

where ls is the characteristic size of strings. The characteristic length of a
superstring

ls(M
2
GUT ) =

lp
√

α(M2
GUT )

(217)
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We have seen, that α−1GUT in MSSM is equal to 29, so, in String Minimal
SM (SMSM)

s =
l2p

αGUT
=

l2s
αGUTα(me)

= 29× 137e2G/c4 (218)

where ls is Stony’s fundamental length,

ls =
lp

√

α(me)
, α(me)

−1 = 137. (219)

the parameter s is the one which replace the gravitational constant in old
triumvirate of fundamental units G, c, ~ ⇒ s, c, ~. Important consequence
of this statement is that a string theory phenomenon we observe in
everyday live as gravitation force.
String theory only needs two fundamental dimensionful constants c and s,
i.e. one fundamental unit of speed and one of area. The role of Planck
constant plays s.
There is, in relativity, a fundamental unit of speed c; there is, in QM, a
fundamental unit of action ~; there is, in string theory, a fundamental unit
of action - area, s.
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In string theory we would like to freeze the moduli at values that provide
the correct values of the coupling constant and unification scale of grand
unified theories (GUTs). For instance, the dilaton and compactification
volume V6 should be frozen at values such that

αGUT ∼ eφ ∼ m2
s

m2
P

∼ gs, m
2
GUT ∼ α

4/3
GUT g

−1/3
s m2

P , gs = V6M
6eφ (220)

where mGUT ,ms,mP are GUT, string and the Planck scales, gs is the
string coupling.
The tree-level low-energy effective action of string theory reads:

S =
1

2

∫

d4x
√
−ge−φ(λ−2s (R+ ∂µφ∂

µφ+HµνρH
µνρ) + FµνF

µν) (221)

where Hµνρ is Kalb-Ramond antisymmetric tensor field strength.
Couplings are VEVs which, hopefully, become dynamically determined. In
particular, a scalar field, the so-called dilaton φ, controls all sorts of
couplings, gravitational and gauge alike,

αgauge ∼ eφ ∼
l2p
l2s

= GNT, T =
~

l2s
(222)

where ls is string length, T is string tension.
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Mathematical Foundation for Fundamental Constants

In mathematics we have two kind of structures, discrete and continuous
one. If a physical quantity has discrete values, it might not have dimension.
If the values are continuous - the quantity might have dimension, unit of
measure. These structures may depend on scale, e.g. on macroscopic scale
condensed state of matter (and time) is well described as continuous
medium, so we use dimensional units of length (and time). On the scale of
atoms, the matter has discrete structure, so we may count lattice sites and
may not use unit of length. If at small (e.g. at Plank) scale space (and/or
time) is discrete then we not need an unit of length (time) for measuring,
there is the fundamental length and we can just count.
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Renormdynamics of observable quantities in high energy physics

Let us consider l−particle semi-inclusive distribution

Fl(n, q) =
dlσn

d̄q1...d̄ql
=

1

n!

∫ n
∏

i=1

d̄q′iδ(p1 + p2 − Σli=1qi −Σni=1q
′
i)

·|Mn+l+2(p1, p2, q1, ..., ql, q
′
1, ..., q

′
n; g(µ),m(µ)), µ)|2 ,

d̄p ≡ d3p

E(p)
, E(p) =

√

p2 +m2. (223)
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Renormdynamics of observable quantities in high energy physics

From the renormdynamic equation

DMn+l+2 =
γ

2
(n+ l + 2)Mn+l+2, (224)

we obtain

DFl(n, q) = γ(n+ l + 2)Fl(n, q),
DFl(q) = γ(< n > +l + 2)Fl(q),

D < nk(q) >= γ(< nk+1(q) > − < nk(q) >< n(q) >),
DCk = γ < n(q) > (Ck+1 − Ck(1 + k(C2 − 1)))

Fl(q) ≡
dlσ

d̄q1...d̄ql
=

∑

n

dlσn
d̄q1...d̄ql

, < nk(q) >=

∑

n n
kdlσn/d̄q

l

∑

n d
lσn/d̄ql

Ck =
< nk(q) >

< n(q) >k
(225)
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Scaling relations for multi particle cross sections

From dimensional considerations, the following combination of cross
sections [Koba et al, 1972] must be universal function

< n >
σn
σ

= Ψ(
n

< n >
). (226)

Corresponding relation for the inclusive cross sections is
[Matveev et al, 1976].

< n(p) >
dσn
d̄p

/
dσ

d̄p
= Ψ(

n

< n(p) >
). (227)

Indeed, let us define n−dimension of observables [Makhaldiani, 1980]

[n] = 1, [σn] = −1, σ = Σnσn, [σ] = 0, [< n >] = 1. (228)

The following expression does not depend on any dimensional quantities
and must have a corresponding universal form

Pn =< n >
σn
σ

= Ψ(
n

< n >
). (229)

Let us find an explicit form of the universal functions using renormdynamic
equations.
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From the definition of the moments we have

Ck =

∫ ∞

0
dxxkΨ(x), (230)

so they are universal parameters,

DCk = 0 ⇒ Ck+1 = (1 + k(C2 − 1))Ck ⇒
Ck = (1 + (k − 1)(C2 − 1))...(1 + 2(C2 − 1))C2. (231)

Now we can invert momentum transform and find (see [Makhaldiani, 1980]
and appendix ) universal functions [Ernst, Schmit, 1976],
[Darbaidze et al, 1978].

Ψ(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1Cn =

cc

Γ(c)
zc−1e−cz,

C2 = 1 +
1

c
(232)
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Figure: KNO distribution (232), Ψ(z), with c = 2.8

The value of the parameter c can be measured from the dispersion low,

D =
√

< n2 > − < n >2 =
√

C2 − 1 < n >= A < n >,

A =
1√
c
≃ 0.6, c = 2.8;

(c = 3, A = 0.58) (233)

which is in accordance with n−dimension counting.
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1/ < n > correction to the scaling function

We can calculate also 1/ < n > correction to the scaling function (see
appendix)

< n >
σn
σ

= Ψ = Ψ0(
n

< n >
) +

1

< n >
Ψ1(

n

< n >
),

Ck = C0
k +

1

< n >
C1
k ,

C0
k =

∫ ∞

0
dxxkΨ0(x), C

1
k =

∫ ∞

0
dxxkΨ1(x),

Ψ1(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1C1

n =
C1
2c

2

2
(z − 2 +

c− 1

cz
)Ψ0 (234)
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Characteristic function for KNO

The characteristic function we define as

Φ(t) =

∫ ∞

0
dxetxΨ(x) = (1− t/c)−c, Re(t) < c (235)

For the moments of the distribution, we have

Φ(k)(0) = Ck = (−c)(−c − 1)...(−c − k + 1)(−1/c)k =
Γ(c+ k)

Γ(c)ck
(236)

Note that it is an infinitely divisible characteristic function, i.e.

Φ(t) = (Φn(t))
n, Φn(t) = (1− t/c)−c/n (237)

If we calculate observable(mean) value of x, we find

< x >= Φ′(0) = nΦ(0)n
′ = n < x >n,

< x >n=
< x >

n
(238)
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For the second moment and dispersion, we have

< x2 >= Φ(2)(0) = n < x2 >n +n(n− 1) < x >2
n,

D2 =< x2 > − < x >2= n(< x2 >n − < x >2
n) = nD2

n

D2
n =

D2

n
=

D2

< x >
< x >n (239)
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Physical distributions

In a sense, any Hamiltonian quantum (and classical) system can be
described by infinitely divisible distributions, because in the functional
integral formulation, we use the following step

U(t) = e−itH = (e−i
t
N
H)N (240)

In the case of our scalar field theory (1),

L(ϕ) =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − g

n
ϕn

= g
2

2−n (
1

2
∂µφ∂

µφ− m2

2
φ2 − 1

n
φn) (241)

so, to the constituent field φN corresponds higher value of the coupling
constant,

gN = gN
n−2
2 (242)

For weak nonlinearity, n = 2 + 2ε, d = 2/ε+ 2, gN = g(1 + ε lnN +O(ε2))
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Closed equation of renormdynamics for the generating function of the
observables

Let us consider a generating function of the topological crossections

F (h, g,m, µ) = Σn≥2h
nσn,

σn =
1

n!

dn

dhn
F |h=0,

σ = F |h=1, < n >=
d

dh
lnF |h=1, ... (243)

It is natural that for the generating function we have closed renormdynamic
equation [Makhaldiani, 1980]

(D− γ(
h∂

∂h
+ 2))F = 0,

F (h(µ), g(µ),m(µ), µ) = F (h(µ̄), g(µ̄),m(µ̄), µ̄) exp(2

∫ µ

µ̄

dρ

ρ
γ(g(ρ))),

h̄ = h̄(µ̄) = h(µ) exp(

∫ µ̄

µ

dρ

ρ
γ(g(ρ))),

m̄ = m̄(µ̄) = m(µ) exp(

∫ µ̄

µ

dρ

ρ
η(g(ρ))),

∫ ḡ

g

dg

β(g)
= ln

µ̄

µ
(244)
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Explicit form of Generating function in the case of KNO scaling

Let us find generating function in the case of KNO scaling. From the
definition of Generating function and using topological cross section from
KNO, we find

F (h) =
∑

n

hn
σ

< n >
Ψ(

n

< n >
) =

σ

< n >

∑

Ψ(
n

< n >
)hn

=
σ

< n >
Ψ(

δ

< n >
)
h2

1− h
, δ ≡ h

d

dh
, qδf(h) = f(qh), (245)

Now we can find more concrete form of the generating function, with the
explicit form of KNO function,

(
δ

< n >
)c−1 exp(−c δ

< n >
)
h2

1− h
= (

δ

< n >
)c−1

q2h2

1− qh

=
1

< n >c−1
1

Γ(1− c)

∫ ∞

0

dt

tc
q2h2e−2t

1− qhe−t
, (246)

so

F (h)KNO =
cc

Γ(c)

σ

< n >c
1

Γ(1− c)

∫ ∞

0

dt

tc
q2h2e−2t

1− qhe−t
,

q = exp(− c

< n >
) (247)
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Indeed, if we expend and than integrate under this formula, we hind

F (h) =
cc

Γ(c)

σ

< n >c

∑

n≥2
hnnc−1 exp(− c

< n >
n) (248)

which corresponds to the considered explicit form of the KNO function.
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Negative binomial distribution

Negative binomial distribution (NBD) is defined as

P (n) =
Γ(n+ r)

n!Γ(r)
pn(1− p)r,

∑

n≥0
P (n) = 1, (249)

5 10 15 20 25 30

0.02

0.04

0.06

0.08

0.10

Figure: P (n), (249), r = 2.8, p = 0.3, < n >= 6
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NBD provides a very good parametrization for multiplicity distributions in
e+e− annihilation; in deep inelastic lepton scattering; in proton-proton
collisions; in proton-nucleus scattering.

Hadronic collisions at high energies (LHC) lead to charged multiplicity
distributions whose shapes are well fitted by a single NBD in fixed intervals
of central (pseudo)rapidity η [ALICE,2010].

It is interesting to understand how NBD fits such a different reactions?
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NBD and KNO scaling

Let us consider NBD for normed topological cross sections

σn
σ

= P (n) =
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k)

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(1 +

k

< n >
)−n(1 +

< n >

k
)−k

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

< n >

< n > +k
)n(

k

k+ < n >
)k,

=
Γ(n+ k)

Γ(n+ 1)Γ(k)

( k
<n>)

k

(1 + k
<n>)

k+n
,

r = k > 0, p =
< n >

< n > +k
. (250)

The generating function for NBD is

F (h) = (1 +
< n >

k
(1− h))−k = (1 +

< n >

k
)−k(1− ah))−k,

a = p =
< n >

< n > +k
. (251)

Indeed,
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(1− ah))−k =
1

Γ(k)

∫ ∞

0
dttk−1e−t(1−ah)

=
1

Γ(k)

∫ ∞

0
dttk−1e−t

∞
∑

0

(tah)n

n!

=
∞
∑

0

Γ(n+ k)an

Γ(k)n!
hn,

P (n) = (1 +
< n >

k
)−k

Γ(n+ k)

Γ(k)n!
(
< n >

< n > +k
)n

=
kkΓ(n+ k)

Γ(k)Γ(n+ 1)
(< n > +k)−(n+k) < n >n

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k) (252)
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Note that KNO characteristic function (235) coincides with the NBD
generating function (251) when t =< n > (h− 1), c = k.
The Bose-Einstein distribution is a special case of NBD with k = 1.

If k is negative, the NBD becomes a positive binomial distribution, narrower
than Poisson (corresponding to negative correlations).
For negative (integer) values of k = −N, we have Binomial GF

Fbd = (1 +
< n >

N
(h− 1))N = (a+ bh)N , a = 1− < n >

N
, b =

< n >

N
,

Pbd(n) = CnN (
< n >

N
)n(1− < n >

N
)N−n (253)

(In a sense) we have a (quantum) spectrum for the parameter k, which
contains any (positive) real values and (with finite number of states) the
negative integer values, (0 ≤ n ≤ N)
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Dispersion low for NBD

From the generating function we have

< n2 >= (
hd

dh
)2F (h)|h=1 =

k + 1

k
< n >2 + < n >, (254)

for dispersion we obtain

D =
√

< n2 > − < n >2 =
1√
k
< n > (1 +

k

< n >
)1/2

=
1√
k
< n > +

√
k

2
+O(1/ < n >), (255)

so the dispersion low for KNO and NBD distributions are the same, with
c = k, for high values of the mean multiplicity.
The factorial moments of NBD,

Fm = (
d

dh
)mF (h)|h=1 =

< n(n− 1)...(n −m+ 1) >

< n >m
=

Γ(m+ k)

Γ(m)km
, (256)

and usual normalized moments of KNO (236) coincides.
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Fractal factorial and cumulant moments

Using fractal calculus (see e.g. [Makhaldiani, 2003]),

D−α0,xf =
|x|α
Γ(α)

1
∫

0

|1− t|α−1f(xt)dt, = |x|α
Γ(α)

B(α, ∂x)f(x)

= |x|α Γ(∂x)

Γ(α+ ∂x)
f(x), f(xt) = tx

d
dx f(x). (257)

we can define factorial and cumulant moments for not only negative integer
values of q, but for any complex indexes,

F−q =< n >q D−q0,xGNBD(x)|x=0 =
kqΓ(k − q)

Γ(k)
,

K−q =< n >q D−q0,x lnGNBD(x)|x=0 = kq+1Γ(−q),

H−q =
Γ(k + 1)Γ(−q)

Γ(k − q)
(258)
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The KNO as asymptotic NBD

Let us show that NBD is a discrete distribution corresponding to the KNO
scaling,

lim
<n>→∞

< n > Pn| n
<n>

=z = Ψ(z) (259)

Indeed, using the following asymptotic formula

Γ(x+ 1) = xxe−x
√
2πx(1 +

1

12x
+O(x−2)), (260)

we find

< n > Pn =< n >
(n + k − 1)n+k−1e−(n+k−1)

Γ(k)nne−n
kk

nk
< n > zke−k

n+k
<n>

=
kk

Γ(k)
zk−1e−kz +O(1/ < n >) (261)

We can calculate also 1/ < n > correction term to the KNO from the
NBD. The answer is

Ψ =
kk

Γ(k)
zk−1e−kz(1 +

k2

2
(z − 2 +

k − 1

kz
)

1

< n >
) (262)

This form coincides with the corrected KNO (234) for c = k and C1
2 = 1.
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We have seen that KNO characteristic function (235) and NBD GF (251)
have almost same form. This relation become in coincidence if

c = k, t = (h− 1)
< n >

k
(263)

Now the definition of the characteristic function (235) can be read as
∫ ∞

0
e−<n>z(1−h)Ψ(z)dz = (1 +

< n >

k
(1− h))−k (264)

which means that Poisson GF weighted by KNO distribution gives NBD GF.
Because of this, the NBD is the gamma-Poisson (mixture) distribution.
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NBD, Poisson and Gauss distributions

Fore high values of x2 = k the NBD distribution reduces to the Poisson
distribution

F (x1, x2, h) = (1 +
x1
x2

(1− h))−x2 ⇒ e−x1(1−h) = e−<n>eh<n>

=
∑

P (n)hn,

P (n) = e−<n>
< n >n

n!
(265)

For the Poisson distribution

d2F (h)

dh2
|h=1 =< n(n− 1) >=< n >2,

D2 =< n2 > − < n >2=< n > . (266)

In the case of NBD, we had the following dispersion low

D2 =
1

k
< n >2 + < n >, (267)

which coincides withe previous expression for high values of k.
Poisson GF belongs to the class of the infinitely divisible distributions,

F (h,< n >) = (F (h,< n > /k))k (268)
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For high values of < n >, the Poisson distribution reduces to the Gauss
distribution

P (n) = e−<n>
< n >n

n!
⇒ 1√

2π < n >
exp(−(n− < n >)2

2 < n >
) (269)

For high values of k in the integral relation (264), in the KNO function
dominates the value zc = 1 and both sides of the relation reduce to the
Poisson GF.
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Multiplicative properties of KNO and NBD and corresponding motion
equations

An useful property of the negative binomial distribution with parameters

< n >, k

is that it is (also) the distribution of a sum of k independent random
variables drawn from a Bose-Einstein distribution1 with mean < n > /k,

Pn =
1

< n > +1
(
< n >

< n > +1
)n

= (eβ~ω/2 − e−β~ω/2)e−β~ω(n+1/2), T =
~ω

ln <n>+1
<n>

∑

n≥0
Pn = 1,

∑

nPn =< n >=
1

eβ~ω−1
, T ≃ ~ω < n >, < n >≫ 1,

P (x) =
∑

n

xnPn = (1+ < n > (1− x))−1. (270)

1A Bose-Einstein, or geometrical, distribution is a thermal distribution for single state systems.
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This is easily seen from the generating function in (251), remembering that
the generating function of a sum of independent random variables is the
product of their generating functions.
Indeed, for

n = n1 + n2 + ...+ nk, (271)

with ni independent of each other, the probability distribution of n is

Pn =
∑

n1,...,nk

δ(n −
∑

ni)pn1 ...pnk
,

P (x) =
∑

n

xnPn = p(x)k (272)

This has a consequence that an incoherent superposition of N emitters that
have a negative binomial distribution with parameters k,< n > produces a
negative binomial distribution with parameters Nk,N < n >.
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So, for the GF of NBD we have (N=2)

F (k,< n >)F (k,< n >) = F (2k, 2 < n >) (273)

And more general formula (N=m) is

F (k,< n >)m = F (mk,m < n >) (274)

We can put this equation in the closed nonlocal form

QqF = F q, (275)

where

Qq = qD, D =
kd

dk
+
< n > d

d < n >
=
x1d

dx1
+
x2d

dx2
(276)

Note that temperature defined in (270) gives an estimation of the Glukvar
temperature when it radiates hadrons. If we take ~ω = 100MeV, to
T ≃ Tc ≃ 200MeV corresponds < n >≃ 1.5 If we take ~ω = 10MeV, to
T ≃ Tc ≃ 200MeV corresponds < n >≃ 20.
We see that universality of NBD in hadron-production is similar to the
universality of black body radiation.
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p-adic string theory

p-adic string amplitudes can be obtained as tree amplitudes of the field
theory with the following lagrangian and motion equation (see e.g.
[Brekke, Freund, 1993])

L =
1

2
ΦQpΦ− 1

p+ 1
Φp+1,

QpΦ = Φp, Qp = pD (277)

D = −1

2
△, △ = −∂2x0 + ∂2x1 + ...+ ∂2xn−1

, (278)

Φ - is real scalar field on D-dimensional space-time with coordinates
x = (x0, x1, ..., xD−1). We have trivial, Φ = 0 and Φ = 1, and following
nontrivial solutions of the equation (277)

Φ(x0, x1, ..., xD−1) = p
D

2(p−1) e
1−p−1

2 lnp
(x20−x21−x22−...−x2D−1) (279)
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The equation (277) permits factorization of its solutions
Φ(x) = Φ(x0)Φ(x1)...Φ(xD−1), every factor of which fulfils one
dimensional equation

pε∂
2
xΦ(x) = Φ(x)p, ε = ±1

2
(280)

The trivial solution of the equations are Φ = 0 and Φ = 1. For nontrivial
solution of (280), we have

pε∂
2
xΦ(x) = ea∂

2
Φ(x) =

1√
4πa

∫ ∞

−∞
dye−

1
4a
y2+y∂Φ(x)

=
1√
4πa

∫ ∞

−∞
dye−

1
4a
y2Φ(x+ y) = Φ(x)p, a = ε ln p (281)

If we (de quantize) put, p = q, and take (classical) limit, q → 1, the motion
equation reduce to

ε∂2xΦ = Φ lnΦ, (282)

with solution

Φ(x) = e
1
2 e

x2

4ε . (283)
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It is obvious that the anzac

Φ = Aebx
2
, (284)

can pass the equation (281). Indeed, the solution is

Φ(x) = p
1

2(p−1) e
1−p−1

4ε ln p
x2 ,

Φ(x0, x1, ..., xD−1) = p
D

2(p−1) e
1−p−1

2 lnp
(x20−x21−x22−...−x2D−1) (285)
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Corresponding class of the motion equations

Now, we can define the following class of motion equations

QqF = F q, (286)

where

Qq = qD, D = D1(x1) + ...+Dl(xl), (287)

Dk(x) is some (differential) operator depending on x. In the case of the
NBD GF,

Dk(x) =
xd

dx
. (288)

For this (Qlike) class of equations, we have factorization property

F = F (x1, ..., xl) = F1(x1)...Fl(xl),

qDk(x)Fk(x) = ckFk(x)
q, 1 ≤ k ≤ l, c1c2...cl = 1. (289)
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NBD motivated equations

For NBD distribution we have corresponding
multiplication(convolution)formulas

(P ⋆ P )n ≡
n
∑

m=0

Pm(k,< n >)Pn−m(k,< n >)

= Pn(2k, 2 < n >) = Q2Pn(k,< n >), ... (290)

So, we can say, that star-product on the distributions of NBD corresponds
ordinary product for GF.
It will be nice to have similar things for string field theory(SFT)
[Kaku, 2000].
SFT motion equation is

QΦ = Φ ⋆ Φ (291)

For stringfield GF F we may have

QF = F 2. (292)
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By construction we know the solution of the nice equation (275) as GF of
NBD, F. We obtain corresponding differential equations, if we consider
q = 1 + ε, for small ε,

(D(D − 1)...(D −m+ 1)− (lnF )m)Ψ = 0,

(
Γ(D + 1)

Γ(D + 1−m)
− (lnF )m)Ψ = 0,

(Dm − Φm)Ψ = 0,m = 1, 2, 3, ...

Dm =
Γ(D + 1)

Γ(D + 1−m)
,Φ = lnF, (293)

with the solution Ψ = F = exp(Φ). In the case of the NBD and p-adic
string, we have correspondingly

D =
x1d

dx1
+
x2d

dx2
;

D = −1

2
△, △ = −∂2x0 + ∂2x1 + ...+ ∂2xn−1

. (294)

These equations have meaning not only for integer m.
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For high mean multiplicities we have corresponding equations for KNO

Q2Ψ(z) = Ψ ⋆Ψ ≡
∫ z

0
Ψ(t)Ψ(z − t)dt

= z

∫ 1

0
dttδ1(1− t)δ2Ψ(z1)Ψ(z2)|z1=z2=z

= z
Γ(δ1 + 1)Γ(δ2 + 1)

Γ(δ1 + δ2 + 2)
Ψ(z1)Ψ(z2)|z1=z2=z (295)

Due to the explicit form of the operator D, these equations and
corresponding solutions have the symmetry under the change of the
variables

k → ak, < n >→ b < n > . (296)

When

a =
< n >

k
, b =

k

< n >
, (297)

we obtain the symmetry with respect to the transformations
k ↔< n >, x1 ↔ x2.
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Zeros of the Riemann zeta function

The Riemann zeta function ζ(s) is defined for complex s = σ + it and
σ > 1 by the expansion

ζ(s) =
∑

n≥1
n−s, Re s > 1,

= δ−sx
x

1− x
|x⇁1 =

1

Γ(s)

∫ ∞

0
ts−1e−δxt

x

1− x
|x⇁1

=
1

Γ(s)

∫ ∞

0
ts−1et∂τ

1

eτ − 1
|τ⇁0

=
1

Γ(s)

∫ ∞

0

ts−1dt
et − 1

, x = e−τ . (298)

All complex zeros, s = α+ iβ, of ζ(σ + it) function lie in the critical stripe
0 < σ < 1, symmetrically with respect to the real axe and critical line
σ = 1/2. So it is enough to investigate zeros with α ≤ 1/2 and β > 0.
These zeros are of three type, with small, intermediate and big ordinates.
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Riemann hypothesis

The Riemann hypothesis [Titchmarsh,1986] states that the (non-trivial)
complex zeros of ζ(s) lie on the critical line σ = 1/2.
At the beginning of the XX century Polya and Hilbert made a conjecture
that the imaginary part of the Riemann zeros could be the oscillation
frequencies of a physical system (ζ - (mem)brane).
After the advent of Quantum Mechanics, the Polya-Hilbert conjecture was
formulated as the existence of a self-adjoint operator whose spectrum
contains the imaginary part of the Riemann zeros.
The Riemann hypothesis (RH) is a central problem in Pure Mathematics
due to its connection with Number theory and other branches of
Mathematics and Physics.
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The functional equation for zeta function

The functional equation is (see e.g. [Titchmarsh,1986])

ζ(1− s) =
2Γ(s)

(2π)s
cos(

πs

2
)ζ(s) (299)

From this equation we see the real (trivial) zeros of zeta function:

ζ(−2n) = 0, n = 1, 2, ... (300)

Also, at s=1, zeta has pole with reside 1.
From Field theory and statistical physics point of view, the functional
equation (299) is duality relation, with self dual (or critical) line in the
complex plane, at s = 1/2 + iβ,

ζ(
1

2
− iβ) =

2Γ(s)

(2π)s
cos(

πs

2
)ζ(

1

2
+ iβ), (301)

we see that complex zeros lie symmetrically with respect to the real axe.
On the critical line, (nontrivial) zeros of zeta corresponds to the infinite
value of the free energy,

F = −T ln ζ. (302)
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At the point with β = 14.134725... is located the first zero. In the interval
10 < β < 100, zeta has 29 zeros. The first few million zeros have been
computed and all lie on the critical line. It has been proved that
uncountably many zeros lie on critical line.
The first relation of zeta function with prime numbers is given by the
following formula,

ζ(s) =
∏

p

(1− p−s)−1, Res > 1. (303)
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Another formula, which can be used on critical line, is

ζ(s) = (1− 21−s)−1
∑

n≥1
(−1)n+1n−s, Re s > 0

=
eiπ(δx+1)

(1− 21−s)δsx

x

1− x
|x⇁1

=
1

1− 21−s
1

Γ(s)

∫ ∞

0
dtts−1eiπe(iπ−t)δx

1

x−1 − 1
|x⇁1

=
1

1− 21−s
1

Γ(s)

∫ ∞

0
dtts−1e(t−iπ)∂τ

eiπ

eτ − 1
|τ⇁0

=
1

1− 21−s
1

Γ(s)

∫ ∞

0

ts−1dt
et + 1

,
∫ ∞

0

ts−1dt
et + 1

=

∫ ∞

0
dtts−1e−t

∑

n≥0
(−1)ne−nt

= Γ(s)
∑

n≥1
(−1)n+1n−s (304)
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From Qlike to zeta equations

Let us consider the values q = n, n = 1, 2, 3, ... and take sum of the
corresponding equations (286), we find

ζ(−D)F =
F

1− F
(305)

In the case of the NBD we know the solutions of this equation.
Now we invent a Hamiltonian H with spectrum corresponding to the set of
nontrivial zeros of the zeta function, in correspondence with Riemann
hypothesis,

−Dn =
n

2
+ iHn, Hn = i(

n

2
+Dn),

Dn = x1∂1 + x2∂2 + ...+ xn∂n, H
+
n = Hn =

n
∑

m=1

H1(xm),

H1 = i(
1

2
+ x∂x) = −1

2
(xp̂+ p̂x), p̂ = −i∂x (306)

The Hamiltonian H = Hn is hermitian, its spectrum is real. The case
n = 1 corresponds to the Riemann hypothesis.
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The case n = 2, corresponds to NBD,

ζ(1 + iH2)F =
F

1− F
, ζ(1 + iH2)|F =

1

1− F
,

F (x1, x2;h) = (1 +
x1
x2

(1− h))−x2 (307)

Let us scale x2 → λx2 and take λ→ ∞ in (307), we obtain

ζ(
1

2
+ iH1(x))e

−(1−h)x =
1

e(1−h)x − 1
,

1

ζ(12 + iH(x))

1

eεx − 1
= e−εx,

H(x) = i(
1

2
+ x∂x) = −1

2
(xp̂+ p̂x), H+ = H, ε = 1− h. (308)
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Now we scale x→ xy, multiply the equation by ys−1 and integrate

1

ζ(12 + iH(x))

∫ ∞

0
dy

ys−1

eεxy − 1
=

∫ ∞

0
dye−εxyys−1 =

1

(εx)s
Γ(s),

1

ζ(12 + iH(x))

∫ ∞

0
dy

ys−1

eεxy − 1

=
1

ζ(12 + iH(x))
x−sε−sΓ(s)ζ(s), (309)

so

ζ(
1

2
+ iH(x))x−s = ζ(s)x−s ⇒ H(x)ψE = EψE ,

ψE = cx−s, s =
1

2
+ iE, (310)
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we have correct way and can return to the previous step (308) and take the
following transformation

1

eεxy − 1
=

1

2π

∫ ∞+ic

−∞+ic
dEx−iE−1/2ϕ(E, εy),

ϕ(E, εy) =

∫ ∞

0
dx

xiE−
1
2

eεxy − 1
=

Γ(12 + iE)

(εy)iE+1/2
ζ(

1

2
+ iE),

1

2π

∫ ∞+ic

−∞+ic
dEx−iE−1/2ϕ(E, εy)

1

ζ(1/2 + iE)
= e−εxy (311)
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If we take the following formula

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1dt
et − 1

, (312)

which says that ζ function is the Mellin transformation, we can find

Γ(1 + iH2)
F

1− F
=

∫ ∞

0

dt/t

et − 1
F 1/t, (313)

or

Γ(1 + iH2)Φ =

∫ ∞

0

dt/t

et − 1
(

Φ

1 + Φ
)1/t,

Φ =
F

1− F
=

1

(1 + x1
x2
(1− h))x2 − 1

(314)
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We can obtain also the following equation with argument of ζN on critical
axis

ζN (
1

2
+ iH1(x2))F (x1, x2, h) =

N
∑

n=1

1

(1 + x1
nx2

(1− h))nx2

=

N
∑

n=1

F (x1, nx2, h),

ζN (
1

2
+ iH1(x2))F (λx1, x2, h) =

N
∑

n=1

1

(1 + λx1
nx2

(1− h))nx2

=

N
∑

n=1

F (λx1, nx2, h) ≃ Ne−λ(1−h)x1 , N ≫ 1. (315)
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Let us calculate next therm in the 1/λ expansion in the (307)

F (x1, λx2, h) = (1 +
εx1
λx2

)−λx2 = e
−λx2 ln(1+ε x1

λx2
)

= e−εx1e
(εx1)

2

2λx2
+O(λ−2)

= e−εx1(1 +
(εx1)

2

2λx2
+O(λ−2)),

(F−1 − 1)−1 = (e
λx2 ln(1+ε

x1
λx2

) − 1)−1

=
1

eεx1 − 1
(1 +

eεx1

eεx1 − 1

(εx1)
2

2λx2
+O(λ−2)) (316)

The zero order term, λ0 we already considered. The next, λ−1 order term
gives the following relations

ζ(−δ1 − δ2)
x21
x2
e−εx1 =

1

x2
ζ(1− δ1)x

2
1e
−εx1 =

x21e
εx1

x2(eεx1 − 1)2
,

ζ(1− δ)x2e−εx =
x2eεx

(eεx − 1)2
= x2e−εx +O(e−2εx)

ζ(1− δ)Ψ = EΨ +O(e−2εx),Ψ = x2e−εx, E = 1. (317)
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There have been a number of approaches to understanding the Riemann
hypothesis based on physics (for a comprehensive list see [Watkins])
According to the idea of Berry and Keating, [Berry,Keating,1997] the real
solutions En of

ζ(
1

2
+ iEn) = 0, (318)

are energy levels, eigenvalues of a quantum Hermitian operator (the
Riemann operator) associated with the one-dimensional classical hyperbolic
Hamiltonian

Hc = xp, (319)

where x and p are the conjugate coordinate and momentum.
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They suggest a quantization condition generating Riemann zeros. This
Hamiltonian breaks time-reversal invariance since
(x, p) → (x,−p) ⇒ H → −H. The classical Hamiltonian H = xp of linear
dilation, i.e. multiplication in x and contraction in p, gives the Hamiltonian
equations:

ẋ = x,
ṗ = −p, (320)

with the solution

x(t) = x0e
t,

p(t) = p0e
−t (321)

for any nonzero E = x0p0 = x(t)p(t) is hyperbola in phase space.
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The system is quantized by considering the dilation operator in the x space

H =
1

2
(xp+ px) = −i~(1

2
+ x∂x), (322)

which is the simplest formally Hermitian operator corresponding to the
classical Hamiltonian. The eigenvalue equation

HψE = EψE , (323)

is satisfied by the eigenfunctions

ψE(x) = cx−
1
2
+ i

~
E , (324)

where the complex constant c is arbitrary, since the solutions are not
square-integrable. To the normalization

∫ ∞

0
dxψE(x)

∗ψE′(x) = δ(E − E′), (325)

corresponds c = 1/
√
2π.
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We have seen that

ζ(
1

2
+ iH)e−εx =

1

eεx − 1
,

H = −i(1
2
+ x∂x) = x1/2px1/2, p = −i∂x, (326)

than

e−εx =
∫

dEx−1/2+iEϕ(E, ε), ϕ(E, ε) =
1

2π

∫ ∞

0
dxx−1/2−iEe−εx

=
ε−1/2+iE

2π
Γ(1/2 + iE);

ζ(
1

2
+ iE)ϕ(E, ε) =

1

2π

∫ ∞

0
dx
x−1/2−iE

eεx − 1

=
ε−1/2+iE

2π
Γ(1/2 + iE)ζ(

1

2
+ iE). (327)
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Some calculations with zeta function values

From the equation (308) we have

ζ(
1

2
+ iH1(x))e

−εx =
1

eεx − 1
, H1 = i(

1

2
+ x∂x),

ζ(−x∂x)(1− εx+
(εx)2

2
+ ...) =

1

εx
(1− (

εx

2
+

(εx)2

6
+ ...)+

+(
εx

2
+ ...)2 + ...), (328)

so

ζ(0) = −1

2
, ζ(−1) = − 1

12
, ... (329)

Note that, a little calculation shows that, the (εx)2 terms cancels on the
r.h.s, in accordance with ζ(−2) = 0.
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More curious question concerns with the term 1/εx on the r.h.s. To it
corresponds the term with actual infinitesimal coefficient on the l.h.s.

1

ζ(1)

1

εx
, (330)

in the spirit of the nonstandard analysis (see, e.g. [Davis,1977]), we can
imagine that such a terms always present but on the r.h.s we may not note
them.
For other values of zeta function we will use the following expansion

1

ex − 1
=

1

x+ x2

2 + x3

3! + ...
=

1

x
− 1

2
+

∑

k≥1

B2kx
2k−1

(2k)!
,

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, ... (331)

and obtain

ζ(1− 2n) = −B2n

2n
, n ≥ 1. (332)
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Multiparticle production stochastic dynamics

Let us imagine space-time development of the the multiparticle process and
try to describe it by some (phenomenological) dynamical equation. We
start to find the equation for the Poisson distribution and than naturally
extend them for the NBD case.
Let us define an integer valued variable n(t) as a number of events
(produced particles) at the time t, n(0) = 0. The probability of event
n(t), P (t, n), is defined from the following motion equation

Pt ≡
∂P (t, n)

∂t
= r(P (t, n− 1)− P (t, n)), n ≥ 1

Pt(t, 0)) = −rP (t, 0),
P (t, n) = 0, n < 0, (333)

so

P (t, 0) ≡ P0(t) = e−rt,
P (t, n) = Q(t, n)P0(t),
Qt(t, n) = rQ(t, n− 1), Q(t, 0) = 1. (334)
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To solve the equation for Q, we invent its generating function

F (t, h) =
∑

n≥0
hnQ(t, n), (335)

and solve corresponding equation

Ft = rhF, F (t, h) = erth =
∑

hn
(rt)n

n!
, Q(t, n) =

(rt)n

n!
, (336)

so

P (t, n) = e−rt
(rt)n

n!
(337)

is the Poisson distribution.
If we compare this distribution with (269), we identify < n >= rt, as if we
have a free particle motion with velocity r and the distance is the mean
multiplicity. This way we have a connection between n-dimension of the
multiplicity and the usual dimension of trajectory.
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As the equation gives right solution, its generalization may give more
general distribution, so we will generalize the equation (333). For this, we
put the equation in the closed form

Pt(t, n) = r(e−∂n − 1)P (t, n)

=
∑

k≥1
Dk∂

kP (t, n), Dk = (−1)k
r

k!
, (338)

where the Dk, k ≥ 1, are generalized diffusion coefficients.
For other values of the coefficients, we will have other distributions.
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Fractal dimension of the multiparticle production trajectories

For mean square deviation of the trajectory we have

< (x− x̄)2 >=< x2 > − < x >2≡ D(x)2 ∼ t2/df , (339)

where df is fractal dimension. For smooth classical trajectory of particles
we have df = 1; for free stochastic, Brownian, trajectory, all diffusion
coefficients are zero but D2, we have df = 2. In the case of Poisson process
we have,

D(n)2 =< n2 > − < n >2∼ t, df = 2. (340)

In the case of the NBD and KNO distributions

D(n)2 ∼ t2, df = 1. (341)

As we have seen, rasing k, KNO reduce to the Poisson, so we have a
dimensional (phase) transition from the phase with dimension 1 to the
phase with dimension 2. It is interesting, if somehow this phase transition is
connected to the other phase transitions in strong interaction processes.
For the Poisson distribution GF is solution of the following equation,

Ḟ = −r(1− h)F, (342)

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) August 7 152 / 247



For the NBD corresponding equation is

Ḟ =
−r(1− h)

1 + rt
k (1− h)

F = −R(t)F, R(t) = r(1− h)

1 + rt
k (1− h)

. (343)

If we change the time variable as t = T df , we reduce the dispersion low
from general fractal to the NBD like case. Corresponding transformation for
the evolution equation is

FT = −dfT df−1R(T dF )F, (344)

we ask that this equation coincides with NBD motion equation, and define
rate function R(T )

dfT
df−1R(T dF ) =

r(1− h)

1 + rT
k (1− h)

, (345)

now the following equation defines a production processes with fractal
dimension dF

Ft = −R(t)F, R(t) = r(1− h)

dF t
dF−1

dF (1 + rt1/dF
k (1− h))

(346)

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) August 7 153 / 247



Spherical model of the multiparticle production

Now we would like to consider a model of multiparticle production based on
the d-dimensional sphere, and (try to) motivate the values of the NBD
parameter k. The volum of the d-dimensional sphere with radius r, in units
of hadron size rh is

v(d, r) =
πd/2

Γ(d/2 + 1)
(
r

rh
)d (347)

Note that,

v(0, r) = 1, v(1, r) = 2
r

rh
,

v(−1, r) =
1

π

rh
r

(348)

If we identify this dimensionless quantity with corresponding coulomb
energy formula,

1

π
=
e2

4π
, (349)

we find e = ±2.
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For less then -1 even integer values of d, and r 6= 0, v = 0. For negative
odd integer d = −2n+ 1

v(−2n + 1, r) =
π−n+1/2

Γ(−n+ 3/2)
(
rh
r
)2n−1, n ≥ 1, (350)

v(−3, r) = − 1

2π2
(
rh
r
)3, v(−5, r) =

3

4π3
(
rh
r
)5 (351)

Note that,

v(2, r)v(3, r)v(−5, r) =
1

π
, v(1, r)v(2, r)v(−3, r) = − 1

π
(352)

We postulate that after collision,it appear intermediate state with almost
spherical form and constant energy density. Than the radius of the sphere
rise, dimension decrease, volume remains constant. At the last moment of
the expansion, when the crossection of the one dimensional sphere - string
become of order of hadron size, hadronic string divide in k independent
sectors which start to radiate hadrons with geometric (Boze-Einstein)
distribution, so all of the string final state radiate according to the NBD
distribution.
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So, from the volume of the hadronic string,

v = π(
r

rh
)2
l

rh
= πk, (353)

we find the NBD parameter k,

k =
πd/2−1

Γ(d/2 + 1)
(
r

rh
)d (354)

Knowing, from experimental date, the parameter k, we can restrict the
region of the values of the parameters d and r of the primordial sphere (PS),

r(d) = (
Γ(d/2 + 1)

πd/2−1
k)1/drh,

r(3) = (
3

4
k)1/3rh, r(2) = k1/2rh, r(1) =

π

2
krh (355)

If the value of r(d) will be a few rh, the matter in the PS will be in the
hadronic phase. If the value of r will be of order 10rh, we can speak about
deconfined, quark-gluon, Glukvar, phase. From the formula (355), we see,
that to have for the r, the value of order 10rh, in d = 3 dimension, we need
the value for k of order 1000, which is not realistic.
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So in our model, we need to consider the lower than one, fractal,
dimensions. It is consistent with the following intuitive picture. Confined
matter have point-like geometry, withe dimension zero. Primordial sphere
of Glukvar have nonzero fractal dimension, which is less than one,

k = 3, r(0.7395)/rh = 10.00,
k = 4, r(0.8384)/rh = 10.00 (356)

From the experimental data we find the parameter k of the NBD as a
function of energy, k = k(s). Then, by our spherical model, we construct
fractal dimension of the Glukvar as a function of k(s).
If we suppose that radius of the primordial sphere r is of order (or less) of
rh. Than we will have higher dimensional PS, e.g.

d r/rh k
3 1.3104 3.0002
4 1.1756 3.0003
6 1.1053 2.9994
8 1.1517 3.9990
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Extra dimension effects at high energy and large scale Universe

With extra dimensions gravitation interactions may become strong at the
LHC energies,

V (r) =
m1m2

m2+d

1

r1+d
(357)

If the extra dimensions are compactified with(in) size R, at r >> R,

V (r) ≃ m1m2

m2(mR)d
1

r
=
m1m2

M2
P l

1

r
, (358)

where (4-dimensional) Planck mass is given by

M2
P l = m2+dRd, (359)

so the scale of extra dimensions is given as

R =
1

m
(
MP l

m
)
2
d (360)
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If we take m = 1TeV, (GeV −1 = 0.2fm)

R(d) = 2 · 10−17 · ( MP l

1TeV
)
2
d · cm,

R(1) = 2 · 1015cm,
R(2) = 0.2 cm !
R(3) = 10−7cm !
R(4) = 2 · 10−9cm,
R(6) ∼ 10−11cm (361)

Note that lab measurements of GN (= 1/M2
P l,MP l = 1.2 · 1019GeV ) have

been made only on scales of about 1 cm to 1 m; 1 astronomical unit(AU)
(mean distance between Sun and Earth) is 1.5 · 1013cm; the scale of the
periodic structure of the Universe, L = 128Mps ≃ 4 · 1026cm. It is curious
which (small) value of the extra dimension corresponds to L?

d = 2
ln MPl

m

ln(mL)
= 0.74, m = 1TeV,

= 0.81, m = 100GeV,
= 0.07, m = 1017GeV. (362)
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Dynamical formulation of z - Scaling

Motion equations of physics (applied mathematics in general) connect
different observable quantities and reduce the number of independently
measurable quantities. More fundamental equation contains less number of
independent quantities. When (before) we solve the equations, we invent
dimensionless invariant variables, than one solution can describe all of the
class of phenomena.
In the z - Scaling (zS) approach to the inclusive multiparticle distributions
(MPD) (see, e.g. [Tokarev, Zborovsky, 2007a]), different inclusive
distributions depending on the variables x1, ...xn, are described by universal
function Ψ(z) of fractal variable z,

z = x−α1
1 ...x−αn

n . (363)

It is interesting to find a dynamical system which generates this
distributions and describes corresponding MPD.
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We can find a good function if we know its derivative. Let us consider the
following RD like equation

z
d

dz
Ψ = V (Ψ),

∫ Ψ(z)

Ψ(z0)

dx

V (x)
= ln

z

z0
(364)

In x−representation,

ln z = −
n
∑

k=1

αk lnxk, δz = z
d

dz
= −

∑

k

δk
nhαk

,

n
∑

k=1

xk
nhαk

∂

∂xk
Ψ(x1, ..., xn) + V (Ψ) = 0, (365)

e.g.

z = δzz = −
n
∑

k=1

xk
nhαk

∂

∂xk
x−α1
1 ...x−αn

n = z, nh = n. (366)
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In the case of NBD GF (275), we have

n = 2, x1 = k, x2 =< n >, α1 = α2 = 1, nh = 1,
Ψ = F, V (Ψ) = −Ψ lnΨ. (367)

In the case of the z−scaling, [Tokarev, Zborovsky, 2007a],

n = 4, x3 = ya, x4 = yb,
α1 = δ1, α2 = δ2, α3 = εa, α4 = εb, nh = 4, (368)

for infinite resolution, αn = 1, n = 1, 2, 3, 4. In z variable the equation for
Ψ has universal form. In the case of n = 2, α1 = α2 = 1, nh = 1, we find
that V (Ψ) = −Ψ lnΨ,

z
d

dz
Ψ(z) = −Ψ lnΨ,

Ψ(z) = ec/z = (Ψ(z0)
z0)

1
z = Ψ(z0)

z0
z ,

c = z0 lnΨ(z0) < 0, z ∈ (0,∞), Ψ(z) ∈ (0, 1). (369)

Note that the fundamental equation is invariant with respect to the scale
transformation z → λz, but the solution is not, the scale transformation
transforms one solution into another solution. This is an example of the
spontaneous breaking of the (scale) symmetry by the states of the system.
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Formal motivation (foundation) of the RD motion equation for Ψ

As a dimensionless physical quantity Ψ(z) may depend only on the running
coupling constant g(τ), τ = ln z/z0

z
d

dz
Ψ = Ψ̇ =

dΨ

dg
β(g) = U(g) = U(f−1(Ψ)) = V (Ψ),

Ψ(τ) = f(g(τ)), g = f−1(Ψ(τ)) (370)
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Realistic solution for Ψ

According to the paper [Tokarev, Zborovsky, 2007a], for high values of
z, Ψ(z) ∼ z−β ; for small z, Ψ(z) ∼ const.
So, for high z,

z
d

dz
Ψ = V (Ψ(z)) = −βΨ(z); (371)

for smaller values of z, Ψ(z) rise and we expect nonlinear terms in V (Ψ),

V (Ψ) = −βΨ+ γΨ2. (372)

With this function, we can solve the equation for Ψ(see appendix) and find

Ψ(z) =
1

γ
β + czβ

. (373)
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Reparametrization of the RD equation

RD equation of the z-Scaling,

z
d

dz
Ψ(z) = V (Ψ), V (Ψ) = V1Ψ+ V2Ψ

2 + ...+ VnΨ
n + ... (374)

can be reparametrized,

Ψ(z) = f(ψ(z)) = ψ(z) + f2ψ
2 + ...+ fnψ

n + ...

z
d

dz
ψ(z) = v(z) = v1ψ(z) + v2ψ

2 + ...+ vnψ
n + ...

(v1ψ(z) + v2ψ
2 + ...+ vnψ

n + ...)(1 + 2f2ψ + ...+ nfnψ
n−1 + ...)

= V1(ψ + f2ψ
2 + ...+ fnψ

n + ...)
+V2(ψ

2 + 2f2ψ
3 + ...) + ...+ Vn(ψ

n + nf2ψ
n+1 + ...) + ...

= V1ψ + (V2 + V1f2)ψ
2 + (V3 + 2V2f2 + V1f3)ψ

3+
...+ (Vn + (n− 1)Vn−1f2 + ...+ V1fn)ψ

n + ...
v1 = V1,
v2 = V2 − f2V1,
v3 = V3 + 2V2f2 + V1f3 − 2f2v2 − 3f3v1 = V3 + 2(f22 − f3)V1, ...
vn = Vn + (n− 1)Vn−1f2 + ...+ V1fn − 2f2vn−1 − ...− nfnv1,(375)

so, by reparametrization, we can change any coefficient of potential V but
V1.
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We can fix any higher coefficient with zero value, if we take

f2 =
V2
V1
, f3 =

V3
2V1

+ f22 =
V3
2V1

+ (
V2
V1

2

), ...

fn =
Vn + (n− 1)Vn−1f2 + ...+ 2V2fn−1

(n− 1)V1
, ... (376)

We will consider the case when only one of higher coefficient is nonzero and
give explicit form of the solution Ψ.
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More general solution for Ψ

Let us consider more general potential V

z
d

dz
Ψ = V (Ψ) = −βΨ(z) + γΨ(z)1+n (377)

Corresponding solution for Ψ is

Ψ(z) =
1

(γβ + cznβ)
1
n

(378)
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More general solution contains three parameters and may better describe
the data of inclusive distributions.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure: z-scaling distribution (378), Ψ(z, 9, 9, 1, 1)

In the case of n = 1 we reproduce the previous solution.
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Another ”natural” case is n = 1/β,

Ψ(z) =
1

(γβ + cz)β
(379)

In this case, we can absorb (interpret) the combined parameter by shift and
scaling

z → 1

c
(z − γ

β
) (380)

Another interesting point of view is to predict the value of β

β =
1

n
= 0.5; 0.33; 0.25; 0.2; ..., n = 2, 3, 4, 5, ... (381)

For experimentally suggested value β ≃ 9, n = 0.11

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) August 7 169 / 247



In the case of n = −ε, β = γ = 1/ε, c = εk, we will have

V (Ψ) = −Ψ lnΨ, Ψ(z) = e
k
z (382)

This form of Ψ−function interpolates between asymptotic values of Ψ and
predicts its behavior in the intermediate region.
The three parameter function is restricted by the normalization condition

∫ ∞

0
Ψ(z)dz = 1,

B(
β − 1

βn
,
1

βn
) = (

β

γ
)
β−1
βn

βn

cβn
, (383)

so remains only two free parameter. When βn = 1, we have

c = (β − 1)(
β

γ
)β−1 (384)

If βn = 1 and β = γ, than c = β − 1.
In general

cβn = (
β

γ
)
β−1
βn

βn

B(β−1βn ,
1
βn)

(385)
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Scaling properties of scaling functions and they equations

RD equation of the z-scaling (377), after substitution,

Ψ(z) = (ϕ(z))
1
n , (386)

reduce to the n = 1 case with scaled parameters,

ϕ̇ = −βnϕ+ γnϕ2, (387)

this substitution could be motivated also by the structure of the solution
(378),

Ψ(z, β, γ, n, c) = Ψ(z, βn, γn, 1, c)
1
n = Ψ(z, β, γ, βn, c)β . (388)

General RD equation takes form

ϕ̇ = nv1ϕ+ nv2ϕ
1+ 1

n + nv3ϕ
1+ 2

n + ...+ nvnϕ
2 + nvn+1ϕ

2+ 1
n + ... (389)
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Space-time dimension inside hadrons and nuclei

The dimension of the space(-time) is the model dependent concept. E.g.
for the fundamental bosonic string model (in flat space-time) the dimension
is 26; for superstring model the dimension is 10 [Kaku, 2000].
Let us imagine that we have some action-functional formulation with the
fundamental motion equation

z
d

dz
Ψ = V (Ψ(z)) = V (Ψ) = −βΨ+ γΨ1+n. (390)

Than, the corresponding Lagrangian contains the following mass and
interaction parts

−β
2
Ψ2 +

γ

2 + n
Ψ2+n (391)

The action gives renormalizable (effective quantum field theory) model
when

d+ 2 =
2N

N − 2
=

2(2 + n)

n
= 2 +

4

n
= 2 + 4β, (392)

so, measuring the parameter β inside hadronic and nuclear matters, we find
corresponding (fractal) dimension.
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Another action formulation of the Fundamental equation

From fundamental equation we obtain

(z
d

dz
)2Ψ ≡ Ψ̈ = V ′(Ψ)V (Ψ) =

1

2
(V 2)′

= β2Ψ− βγ(n+ 2)Ψn+1 + γ2(n + 1)Ψ2n+1 (393)

Corresponding action Lagrangian is

L =
1

2
Ψ̇2 + U(Ψ), U =

1

2
V 2 =

1

2
Ψ2(β − γΨn)2

=
β2

2
Ψ2 − βγΨ2+n +

γ2

2
Ψ2+2n (394)

This potential, −U, has two maximums, when V = 0, and minimum, when
V ′ = 0, at Ψ = 0 and Ψ = (β/γ)1/n, and Ψ = (β/(n + 1)γ)1/n,
correspondingly.
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We define time-space-scale field Ψ(t, x, η), where η = ln z− is scale
coordinate variable, with corresponding action functional

A =

∫

dtddxdη(
1

2
gab∂aΨ∂bΨ+ U(Ψ)) (395)

The renormalization constraint for this action is

N = 2 + 2n =
2(2 + d)

2 + d− 2
= 2 +

4

d
, dn = 2, d = 2/n = 2β. (396)

So we have two models for spase-time dimension, (392) and (396),

d1 = 4β; d2 = 2β (397)

The coordinate η characterise (multiparticle production) physical process at
the (external) space-time point (x,t). The dimension of the space-time
inside hadrons and nuclei, where multiparticle production takes place is

d+ 1 = 1 + 2β (398)

Note that this formula reminds the dimension of the spin s state,
ds = 2s+ 1. If we take β(= s) = 0; 1/2; 1; 3/2; 2; ... We will have
d+ 1 = 1; 2; 3; 4; 5; ...
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Note that as we invent Ψ as a real field, we ought to take another
normalization

∫

ddx|Ψ|2 = 1 (399)

for the solutions of the motion equation. This case extra values of the
parameter β is possible, β > d/2.
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Measurement of the space-time dimension inside hadrons

We can take a renormdynamic scheme were Ψ(g) is running coupling
constant. The variable z is a formation length and has dimension -1, RD
equation for Ψ in ϕ3

D model is

z
d

dz
Ψ =

6−D

2
Ψ + γΨ2 (400)

β =
D − 6

2
(401)

For high values of z, β = 9, so D = 24. This value of D corresponds to the
physical (transverse) degrees of freedom of the relativistic string, to the
dimension of the external space in which this relativistic string lives. This is
also the number of the quark - lepton matter degrees of freedom, 3 · 6 + 6.
So, in these high energy reactions we measured the dimension of the
space-time and matter and find the values predicted by relativistic string
and SM. For lower energies, in this model, D monotonically decrees until
D = 6, than the model (may) change form on the ϕ4

D, β = D − 4. So we
have two scenarios of behavior. In one of them the dimension of the
space-time inside hadrons has value 6 and higher. In another the dimension
is 4 and higher.
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Perturbative QCD indicates that we have a fixed point of RD in dimension
slightly higher than 4, and ordinary to hadron phase transition corresponds
to the dimensional phase transition from slightly lower than 4, in QED, to
slightly higher than 4 dimension in QCD. In general scalar field model ϕnD,

β = −dg =
nD

2
− n−D. (402)

For ϕ3 model, β = 9 corresponds to D = 24. In tha case of the
O(N)−sigma model

β = D − 2, (403)

For the experimental value of β = 9, we have the dimension of the
M−theory, D = 11!
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Quantum and information statistics

One of the characteristic features in every high energy collision experiment
is the production of large numbers of secondaries (mostly pions). From the
very beginning of the history of the multiparticle production processes, it
was realized that a possible way to treat them was to employ some sort of
statistical approach [Heisenberg, 1949],[Fermi, 1936],[Pomeranchuk, 1951].
In the statistical bootstrap model proposed by Hagedorn [Hagedorn, 1965],
the exponential growth of the number of hadronic resonances with mass is
one of the most fundamental issues

d3σ

dp3
= N

∫

dmρ(m)e−β
√
p2l+p

2
t+m

2
, (404)

where ρ(m) denotes the density of resonances given by

ρ(m) =
eβHm

(m2 +m2
0)

5
4

, βH =
1

kBTH
, (405)

TH , the Hagedorns temperature, is a parameter to be deduced from data
on resonance production. The other parameter is β = 1/(kBT ), with T
explicitly governing the observed energy distribution and therefore identified
with the temperature of the hadronizing system. In the followings we put
kB = 1.
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Transverse momentum distributions and Hagedorns temperature

One of the aims in the study of multiparticle production processes is
therefore the best possible estimation of this quantity. To this end we
would like to investigate the measured transverse momentum (pt)
distributions integrated over longitudinal degrees of freedom,

dσ

2πptdpt
= N

∫

dmρ(m)mtK1(βmt), (406)

where
∫ ∞

0
dxe−

√
x2+a2 = aK1(a) (407)

and for modified Bessel functions,

Ka(x) =

∫ ∞

0
dt cosh(at)e−x cosh t (408)

This simple formula can explain the RHIC data only in the limited range of
transverse momenta, namely for pt < 6 GeV/c, [Biyajima et al, 2005]. For
larger values of pt data exhibit a power-like tail.
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The Main thermodynamic relation (MTR) and the von Neumann-Shannon
entropy

We call MTR the following relation

F = E − TS. (409)

Let us obtain MTR. From statistical sum we have

Z =
∑

n

e−βEn = e−βF , β =
1

T

E =

∑

nEne
−βEn

∑

n e
−βEn

= −∂ lnZ
∂β

=
∂(βF )

∂β
= F − T

∂F

∂T
,

F = E + T
∂F

∂T
. (410)

The von Neumann-Shannon entropy is defined as

S = −
∑

n

pn ln pn,

∑

n

pn = 1, 0 ≤ pn ≤ 1. (411)
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For Gibbs weights-probabilities,

pn =
e−βEn

∑

m e
−βEm

= e−β(En−F ), β =
1

T

S = −
∑

n

pnβ(F − En) = β(E − F ),

F = E − TS, E =
∑

n

Enpn, (412)

so, we obtain MTR (409) and using (410), we have

S = −∂F
∂T

. (413)

The von Neumann-Shannon entropy has the following additive property

S(A+B) = S(A) + S(B), (414)

when the subsystems A and B of the system A+B are independent, i.e.
p(A+B) = p(A)p(B) = p1p2.
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Indeed,

S(A+B) = −
∑

n,m

p1np2m(ln p1n + ln p2m) = S(A) + S(B),

∑

n

p1n =
∑

n

p2n = 1. (415)

Let us find minimum and maximum values of the entropy and
corresponding distributions. The entropy is nonnegative. For the finite
number of the levels, En, n = 1, 2, ..., N, to the minimum values
corresponds all of the values pn = ǫ→ 0, but one, which is
p1 = 1− (N − 1)ǫ → 1, by constraint. For that values, S = 0.
To the maximum of the entropy S = lnN corresponds equal partition
pn = 1

N . Indeed, let us find maximum of the following function

f = −
∑

n

pn ln pn + λϕ(pn), ϕ(pn) =
∑

n

pn − 1,

∂f

∂pn
= − ln pn − 1 + λ = 0 ⇒ pn = eλ−1 = p,

∂f

∂λ
=

∑

n

pn − 1 = 0 ⇒ pn = p =
1

N
, λ = 1− lnN,

S = lnN. (416)
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For the simplest composed system, N = 2 and maximum S = ln 2. Now we
can define pn as a monotone function of energy
pn = pn(βEn), pn(0) =

1
N ; p1(∞) = 1, pn(∞) = 0, n = 2, 3, ..., N. The

Gibbs weights-probabilities fulfils these conditions. If a system A with
energy EA reduce to two independent subsystems (B,EB) and
(C,EC) : p(EA) = p(EB)p(EC), EA = EB + EC , than definitely
p(E) = βe−βE− the Gibbs distribution.
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The Rényis entropies

The Rényi entropies are defined for an arbitrary real parameter q as
[Rényi, 1970]

Srq =
ln

∑

n p
q
n

1− q
,

∑

n

pn = 1, 0 ≤ pn ≤ 1,

Sr1 = lim
q→1

ln
∑

n p
q
n

1− q
= −

∑

n

pn ln pn = S (417)

The Rényi entropies are additive. Indeed,

Srq (A) + Srq (B) =
ln

∑

n p
q
1n + ln

∑

m p
q
2m

1− q
=

ln
∑

nm(p1np2m)
q

1− q
= Srq (A+B) (418)
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The Tsallis entropies

The Tsallis entropy [Tsallis,1988-2004] is the following one parameter
deformation

Stq =
1−∑

n p
q
n

1− q
,

∑

n

pn = 1, 0 ≤ pn ≤ 1, (419)

of the the von Neumann-Shannon entropy

St1 = lim
q→1

1−∑

n p
q
n

1− q
= −

∑

n

pn ln pn = S (420)

The Tsallis entropy is not additive. We have

Stq(A+B) = Stq(A) + Stq(B)− (1− q)Stq(A)S
t
q(B) (421)

The Tsallis distribution p(a) of some variable a is defined as

pq(a) = (2− q)(1 + (q − 1)a)
1

1−q ,

∫ ∞

0
dapq(a) = 1. (422)

In the limit q → 1 and a = βE, the Tsallis distribution becomes the usual
exponential (Boltzmann-Gibbs) distribution,
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p(E) = βe−βE ,
∫ ∞

0
dEp(E) = 1. (423)

Note that, when q − 1 = 1/k and a =< n > (1− h) the Tsallis distribution
reduce to the generating function of the NBD

pq(a) = (1− 1

k
)(1 +

< n >

k
(1− h))−k, q = 1 + 1/k, a =< n > (1− h), k >

In our interpretation of the parameter k as the number of the independent
radiating sources, it is positive integer equal to the number of sources. In a
recent description of the multiparticle production spectrum at LHC,
[Wong, Wilk, 2012], the value q = 1.172 were identified. It corresponds to
the value k = 5.814
We assume that k = 6 and propose to find q from the fit to the data.
Corresponding value from the Tsallis distribution is q = 1.1667.
The obvious question is: to what physics corresponds the value k = 6. And
again, obvious answer is: the value is the number of constituent valence
quarks of the two protons in the initial state of the multiparticle production
processes.
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Superstatistics

Let us calculate the Tsallis entropy of the following distribution

pn = N(1 +
En
kT

)−k, k =
1

1− q
, β =

1

T
,
∑

n

pn = 1, (425)

Stq =
1−

∑

n p
q
n

1− q
=

1−∑

pnN
q−1(1 + (1− q)βEn)

1− q

=
1−N q−1 +N q−1(1− q)βE

1− q
= βN (E − F ),

F = E − TNS, βN = βN q−1, F =
N q−1 − 1

(q − 1)βN
,

N−1 = Z =
∑

n

(1 +
βEn
k

)−k =
1

Γ(k)

∫ ∞

0
dttk−1e−t

∑

n

e−tβEn/k

=

∫ ∞

0
dbf(b)

∑

n

e−bEn = (1 + (1− q)βNF )
1

q−1 ,

f(b) =
(kT )k

Γ(k)
bk−1e−kTb (426)
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Superstatistics

So, we have a state with a mixture of the systems with different
temperatures with Gamma distribution named as superstatistics
[Beck, Cohen, 2003].
For the Rényis entropies of the same distribution,

Srq =
ln

∑

n pnN
q−1(1 + (1− q)βEn)

1− q
=

ln[N q−1(1 + (1− q)βE)]

1− q

= − lnN +
ln(1 + (1− q)βE)

1− q
= β(Er − F ),

F = Er − TSrq , N = eβF , Er =
ln(1 + (1− q)βE)

(1− q)β
, T = β−1 (427)
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Higher and low temperature phases

From the definition of βN and F,

βN = N q−1β =
β

1 + (1− q)βNF
, N = (1 + (1− q)βNF )

− 1
q−1 (428)

we find

F =
β − βN
β2N (1− q)

, βN =
−1±

√

1 + 4(1− q)βF

2(1 − q)F
(429)

To the positive values of βN , β and F corresponds two states with

βN =
1±

√

1− 4(q − 1)βF

2(q − 1)F
, 1 < q = 1 +

1

k
< 1 +

1

4βF
, k > 4βF (430)

and one state

βN =

√

1 + 4(1− q)βF − 1

2(1 − q)F
, q < 1 (431)

The higher temperature phase for q > 1, in the classical limit q → 1, reduce
to the classical temperature,

βN = β(1 + (q − 1)βF + ...) (432)
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Higher and low temperature phases

For the low-temperature phase,

TN =
2(q − 1)F

2− 2(q − 1)βF + ...
= (q − 1)F (1 + (q − 1)βF + ...)

= (q − 1)F + (q − 1)2βF 2 + ... (433)

For pp−multiparticle productions, we have seen that q − 1 = 1/k, k = 6,
so in that processes

TN =
F

6
(1 +

F

6
β + ...) (434)
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Fermi and bose statistics

Let us calculate the von Neumann-Shannon entropy

S = −
∑

n

pn ln pn,

∑

n

pn = 1, 0 ≤ pn ≤ 1, (435)

for fermi and bose oscillators.
The energy spectrum of the bose-oscillator is

En = ~ω(n+
1

2
), n = 0, 1, 2, ... (436)

Corresponding statistical sum is

ZB =
∑

n≥0
e−a(n+

1
2
) =

e−
a
2

1− e−a
=

1

2 sinh a
2

, a =
~ω

kT
(437)
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Fermi and bose statistics

For fermi-oscillator we have

En = ~ω(n− 1

2
), n = 0, 1

ZF =

1
∑

n=0

e−a(n−
1
2
) = e

a
2 + e−

a
2 = 2cosh

a

2
(438)

For super-oscillator system composed from one fermi- and one
bose-oscillators,

Z = ZBZF = e−βF = coth
a

2
= 1 + 2e−

a
2 + ..., a =

~ω

kT
≫ 1 (439)

For fermi oscillator

p0 =
e

a
2

e
a
2 + e−

a
2

=
1

1 + e−a
, p1 =

e−
a
2

e
a
2 + e−

a
2

=
1

ea + 1
, p0 + p1 = 1

SF (a) =
ln(1 + e−a)
1 + e−a

+
ln(1 + ea)

1 + ea
=

ln(1 + q)

1 + q
+

ln(1 + q−1)
1 + q−1

,

0 ≤ SF ≤ ln 2 (440)
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Fermi and bose statistics

SF is symmetric under the dual transformation:
a↔ −a, q ↔ q−1; SF (0) = ln 2, SF (∞) = 0

-

1 0
-

5 5 1 00 . 10 . 20 . 30 . 40 . 50 . 60 . 7

Figure: SF (a)-entropy distribution, SF (0) = ln 2 = 0.693147
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Fermi and bose statistics

0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 20 . 30 . 40 . 50 . 60 . 7

Figure: SF (q)-entropy distribution, SF (1) = ln 2 = 0.693147
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Fermi and bose statistics

Now, let us calculate the entropy for bose oscillator,

pn = (1− q)qn, q = e−a

SB = −
∞
∑

n=0

pn ln pn = ln
1

1− q
+ ln

1

q
< n >,

< n >=

∞
∑

n=0

npn =

∞
∑

n=0

(1− q)q
d

dq
qn

= q(1− q)
d

dq

1

1− q
=

q

1− q
=

1

ea − 1
,

SB(q) = ln
1

1− q
+

q

1− q
ln

1

q
, 0 ≤ q ≤ 1,

SB(0) = 0, SB(1− ǫ) = ln
1

ǫ
+ 1 +O(ǫ) (441)
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Fermi and bose statistics
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5

Figure: SB(q)-entropy distribution,
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Super-oscillator system

For super-oscillator system composed from one fermi-oscillator and one
bose-oscillator,

pnm = pnpm = tan
a

2
e−a(n+m), n = 0, 1; m = 0, 1, 2, ...

SFB = SF + SB =
ln(1 + q)

1 + q
+

ln(1 + q−1)
1 + q−1

+ ln
1

1− q
+

q

1− q
ln

1

q
(442)

The figure of the supersymmetric oscillator entropy is similar with the figure
of the bose oscilator entropy.
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Renormdynamic motivation (foundation) of the interpolating distributions

Let us consider the following distribution

Ψ(z) = N(1 + az)−k, k > 1,

∫ ∞

0
Ψ(z)dz = 1 ⇒ N = (k − 1)a. (443)

The RD equation which define Ψ(z) as a solution is

z
dΨ

dz
= −kΨ+ rΨq, r =

k

N
1
k

, q = 1 +
1

k
(444)

In the case of the Tsallis distribution we will have

Ψ(E) = p(E) = N(1 + aE)−k,

N = (2− q)β, a = (q − 1)β, k =
1

q − 1
. (445)

Having right equation, we see that the parameter a is an integration
constant. If we want to have a transition from power-like to exponential
form, we need to correlate the constant a and the parameter k as in the
case of Tsallis distribution.
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Renormdynamic motivation (foundation) of the interpolating distributions

For negative values of k = −m and a = −b we have binomial distribution

Ψ(z) = N(1− bz)m,

∫ zb

0
Ψ(z)dz = 1 ⇒ N = (m+ 1)b, zb =

1

b
, (446)

z
dΨ

dz
= mΨ− rΨq, r = mN

1
m , 0 < q = 1− 1

m
< 1 (447)

To the classical exponential distribution corresponds

b = (1− q)β, m =
1

1− q
, lim
q⇁1

Ψ(z) = e−βz (448)
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Interpolating distributions, NBD and inclusive-KNO

We have seen, that the generating function of NBD is

F (h) = (1 + (1− h)
< n >

k
)−k (449)

Where the parameter k has clear physical sense, it is the number of
identical independent sources radiating as black body with
mean-multiplicity < n > /k.
Interpolating distribution for inclusive crossection is

dσ

dp
= F (p) = N(1 + (1− q)βp)−k = N(1 + βp)−k(1− a)−k,

a =
qβp

1 + βp
(450)

The semiinclusive crossection we define expending the inclusive crossection
as generating function
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Interpolating distributions, NBD and inclusive-KNO

F (p) =
∑

n

Fn(p) = N(1 + βp)−k(1 + ka+
k(k + 1)

1 · 2 a2 + ...),

dσn
dp

= Fn(p) = N(1 + βp)−k
Γ(k + n)an

Γ(k)n!
,

< n(p) >=

∑

n nFn
∑

n Fn
= a

d

da
lnF =

ka

1− a
,

a =
< n(p) >

< n(p) > +k
(451)

So, for semiinclusive crossection we have NBD

pn =
dσn/dp

dσ/dp
=

Γ(k + n)

Γ(k)n!

(k/ < n(p) >)k

(1 + k/ < n(p) >)n+k
(452)

and for inclusive-KNO distribution [Matveev et al, 1976] we obtain
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Interpolating distributions, NBD and inclusive-KNO

< n(p) >
dσn/dp

dσ/dp
=

Γ(k + n)

Γ(k)n!

k(k/ < n(p) >)k−1

(1 + k/ < n(p) >)n+k

=
kk

Γ(k)
zk−1e−kz(1 +

k2

2
(z − 2 +

k − 1

kz
)

1

< n(p) >
+O(

1

< n >2
)),

z = z(p) =
n

< n(p) >
(453)
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Social profit of big collaborations

Nowadays there are several big collaborations in science, e.g. LHC.
Scientific value of LHC depends on three components, the highest quality
of accelerator, highest quality of detectors and distributed data processing.
The first two components need good mathematical and physical modeling.
Third component and the collaboration as a social structure are not under
(anther) the control by scientific methods and corresponding modeling.
By definition, scientific collaborations (SC) have a main scientific aim: to
obtain answer on the important scientific question(s) and maybe gain extra
scientific bonus: new important questions and discoveries.
SC is more open information system than e.g. finance or military systems.
So, it is possible to describe and optimize SC by scientific methods. Profit
from scientific modeling of SC maybe also for other information systems
and social structures.
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Hamiltonization of the general dynamical systems

Let us consider a general dynamical system described by the following
system of the ordinary differential equations [Arnold, 1978]

ẋn = vn(x), 1 ≤ n ≤ N, (454)

ẋn stands for the total derivative with respect to the parameter t.
When the number of the degrees of freedom is even, and

vn(x) = εnm
∂H0

∂xm
, 1 ≤ n,m ≤ 2M, (455)

the system (549) is Hamiltonian one and can be put in the form

ẋn = {xn,H0}0, (456)

where the Poisson bracket is defined as

{A,B}0 = εnm
∂A

∂xn

∂B

∂xm
= A

←
∂

∂xn
εnm

→
∂

∂xm
B, (457)

and summation rule under repeated indices has been used.
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Hamiltonization of the general dynamical systems

Let us consider the following Lagrangian

L = (ẋn − vn(x))ψn (458)

and the corresponding equations of motion

ẋn = vn(x), ψ̇n = −∂vm
∂xn

ψm. (459)

The system (551) extends the general system (549) by linear equation for
the variables ψ. The extended system can be put in the Hamiltonian form
[Makhaldiani, Voskresenskaya, 1997]

ẋn = {xn,H1}1, ψ̇n = {ψn,H1}1, (460)

where first level (order) Hamiltonian is

H1 = vn(x)ψn (461)

and (first level) bracket is defined as

{A,B}1 = A(

←
∂

∂xn

→
∂

∂ψn
−

←
∂

∂ψn

→
∂

∂xn
)B. (462)
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Hamiltonization of the general dynamical systems

Note that when the Grassmann grading [Berezin, 1987] of the conjugated
variables xn and ψn are different, the bracket (462) is known as Buttin
bracket[Buttin, 1996].
In the Faddeev-Jackiw formalism [Faddeev, Jackiw, 1988] for the
Hamiltonian treatment of systems defined by first-order Lagrangians, i.e. by
a Lagrangian of the form

L = fn(x)ẋn −H(x), (463)

motion equations

fmnẋn =
∂H

∂xm
, (464)

for the regular structure function fmn, can be put in the explicit
hamiltonian (Poisson; Dirac) form

ẋn = f−1nm
∂H

∂xm
= {xn, xm}

∂H

∂xm
= {xn,H}, (465)

where the fundamental Poisson (Dirac) bracket is

{xn, xm} = f−1nm, fmn = ∂mfn − ∂nfm. (466)
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Hamiltonization of the general dynamical systems

The system (551) is an important example of the first order regular
hamiltonian systems. Indeed, in the new variables,

y1n = xn, y
2
n = ψn, (467)

lagrangian (550) takes the following first order form

L = (ẋn − vn(x))ψn ⇒ 1

2
(ẋnψn − ψ̇nxn)− vn(x)ψn

=
1

2
yanε

abẏbn −H(y) = fan(y)ẏ
a
n −H(y), fan =

1

2
ybnε

ba,H = vn(y
1)y2n,

fabnm =
∂f bm
∂yan

− ∂fan
∂ybm

= εabδnm; (468)

corresponding motion equations and the fundamental Poisson bracket are

ẏan = εabδnm
∂H

∂ybm
= {yan,H}, {yan, ybm} = εabδnm. (469)
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Canonical Quantization of the general dynamical systems

To the canonical quantization of this system corresponds

[ŷan, ŷ
b
m] = i~εabδnm, ŷ

1
n = y1n, ŷ

2
n = −i~ ∂

∂y1n
(470)

In this quantum theory, classical part, motion equations for y1n, remain
classical.
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Modified Bochner-Killing-Yano (MBKY) structures

Now we return to our extended system (551) and formulate conditions for
the integrals of motion H(x, ψ)

H = H0(x) +H1 + ...+HN , (471)

where
Hn = Ak1k2...kn(x)ψk1ψk2 ...ψkN , 1 ≤ n ≤ N, (472)

we are assuming Grassmann valued ψn and the tensor Ak1k2...kn is
skew-symmetric. For integrals (471) we have

Ḣ = {
N
∑

n=0

Hn,H1} =
N
∑

n=0

{Hn,H1} =
N
∑

n=0

Ḣn = 0. (473)

Now we see, that each term in the sum (471) must be conserved separately.
In particular for Hamiltonian systems (455), zeroth, H0 and first level H1,
(461), Hamiltonians are integrals of motion. For n = 0

Ḣ0 = H0,kvk = 0, (474)
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Modified Bochner-Killing-Yano (MBKY) structures

for 1 ≤ n ≤ N we have

Ḣn = Ȧk1k2...knψk1ψk2 ...ψkN +Ak1k2...knψ̇k1ψk2 ...ψkN + ...

+Ak1k2...knψk1ψk2 ...ψ̇kN
= (Ak1k2...kn,kvk −Akk2...knvk1,k − ...
−Ak1...kn−1kvkn,k)ψk1ψk2 ...ψkN = 0, (475)

and there is one-to-one correspondence between the existence of the
integrals (472) and the existence of the nontrivial solutions of the following
equations

D

Dt
Ak1k2...kn = Ak1k2...kn,kvk −Akk2...knvk1,k − ...−Ak1...kn−1kvkn,k = 0.(476)

For n = 1 the system (476) gives

Ak1,kvk −Akvk1,k = 0 (477)

and this equation has at list one solution, Ak = vk.

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) August 7 210 / 247



Modified Bochner-Killing-Yano (MBKY) structures

If we have two (or more) independent first order integrals

H
(1)
1 = A1

kΨk; H
(2)
1 = A2

kΨk, ... (478)

we can construct corresponding (reducible) second (or higher)order MBKY
tensor(s)

H2 = H
(1)
1 H

(2)
1 = A1

kA
2
lΨkΨl = AklΨkΨl;

HM = H
(1)
1 ...H

(M)
M = Ak1...kMΨk1 ...ΨkM ,

Ak1...kM = {A(1)
k1
...A

(M)
kM

}, 2 ≤M ≤ N (479)

where under the bracket operation, {Bk1,...,kN} = {B} we understand
complete anti-symmetrization. The system (476) defines a Generalization
of the Bochner-Killing-Yano structures of the geodesic motion of the point
particle, for the case of the general (549) (and extended (551)) dynamical
systems.
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Modified Bochner-Killing-Yano (MBKY) structures

Having AM , 2 ≤M ≤ N independent MBKY structures, we can construct
corresponding second order Killing tensors and Nambu-Poisson dynamics.
In the superintegrable case, we have maximal number of the motion
integrals, N-1.
The structures defined by the system (476) we call the Modified
Bochner-Killing-Yano structures or MBKY structures for short,
[Makhaldiani, 1999].
The dynamics of spinning point-particles in a D-dimensional curved
space-time is described by the one-dimensional supersymmetric σ-model
[Berezin, Marinov, 1977].
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Point vortex dynamics (PVD)

PVD can dy defined (see e.g. [Aref, 1983, Meleshko, Konstantinov, 1993] )
as the following first order system

żn = i
N
∑

m6=n

γm
z∗n − z∗m

, zn = xn + iyn, 1 ≤ n ≤ N. (480)

Corresponding first order lagrangian, hamiltonian, momenta, Poisson
brackets and commutators are

L =
∑

n

i

2
γn(znż

∗
n − żnz

∗
n)−

∑

n 6=m
γnγmln|zn − zm|

H =
∑

n 6=m
γnγm ln |zn − zm|

=
1

2

∑

n 6=m
γnγm(ln(zn − zm) + ln(pn − pm)),

pn =
∂L

∂żn
= − i

2
γnz
∗
n, p

∗
n =

∂L

∂ż∗n
=
i

2
γnzn, (481)
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Point vortex dynamics (PVD)

{pn, zm} = δnm, {p∗n, z∗m} = δnm, {xn, ym} = δnm,

[pn, zm] = −i~δnm ⇒ [xn, ym] = −i ~
γn
δnm (482)

So, quantum vortex dynamics corresponds to the noncommutative space. It
is natural to assume that vortex parameters are quantized as

γn =
~

a2
n, n = ±1,±2, ... (483)

and a is a characteristic (fundamental) length.
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Nambu dynamics

Nabu – Babylonian God
of Wisdom and Writing.

The Hamiltonian mechanics (HM) is in the fundamentals of mathematical
description of the physical theories [Faddeev, Takhtajan, 1990]. But HM is
in a sense blind; e.g., it does not make a difference between two opposites:
the ergodic Hamiltonian systems (with just one integral of motion)
[Sinai, 1993] and (super)integrable Hamiltonian systems (with maximal
number of the integrals of motion).
Nabu mechanics (NM) [Nambu, 1973, Whittaker, 1927] is a proper
generalization of the HM, which makes the difference between dynamical
systems with different numbers of integrals of motion explicit (see,
e.g.[Makhaldiani, 2007] ).
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Nambu dynamics

In the canonical formulation, the equations of motion of a physical system
are defined via a Poisson bracket and a Hamiltonian, [Arnold, 1978]. In
Nambu’s formulation, the Poisson bracket is replaced by the Nambu
bracket with n+ 1, n ≥ 1, slots. For n = 1, we have the canonical
formalism with one Hamiltonian. For n ≥ 2, we have Nambu-Poisson
formalism, with n Hamiltonians, [Nambu, 1973], [Whittaker, 1927].
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System of three vortexes

The system of N vortexes (480) for N = 3, and

u1 = ln|z2 − z3|2,
u2 = ln|z3 − z1|2,
u3 = ln|z1 − z2|2 (484)

reduce to the following system

u̇1 = γ1(e
u2 − eu3),

u̇2 = γ2(e
u3 − eu1),

u̇3 = γ3(e
u1 − eu2), (485)

The system (485) has two integrals of motion

H1 =

3
∑

i=1

eui

γi
,H2 =

3
∑

i=1

ui
γi

and can be presented in the Nambu–Poisson form, [Makhaldiani, 1997,2]
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System of three vortexes

u̇i = ωijk
∂H1

∂uj

∂H2

∂uk
= {xi,H1,H2} = ωijk

euj

γj

1

γk
,

where

ωijk = ǫijkρ, ρ = γ1γ2γ3

and the Nambu–Poisson bracket of the functions A,B,C on the
three-dimensional phase space is

{A,B,C} = ωijk
∂A

∂ui

∂B

∂uj

∂C

∂uk
. (486)

This system is superintegrable: for N = 3 degrees of freedom, we have
maximal number of the integrals of motion N − 1 = 2.
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Extended quantum mechanics

As an example of the infinite dimensional Nambu-Poisson dynamics, let me
conside the following extension of Schrödinger quantum mechanics
[Makhaldiani, 2000]

iVt = ∆V − V 2

2
, (487)

iψt = −∆ψ + V ψ. (488)

An interesting solution to the equation for the potential (487) is

V =
4(4 − d)

r2
, (489)

where d is the dimension of the spase. In the case of d = 1, we have the
potential of conformal quantum mechanics.
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Extended quantum mechanics

The variational formulation of the extended quantum theory, is given by the
following Lagrangian

L = (iVt −∆V +
1

2
V 2)ψ. (490)

The momentum variables are

Pv =
∂L

∂Vt
= iψ, Pψ = 0. (491)

As Hamiltonians of the Nambu-theoretic formulation, we take the following
integrals of motion

H1 =

∫

ddx(∆V − 1

2
V 2)ψ,

H2 =

∫

ddx(Pv − iψ),

H3 =

∫

ddxPψ. (492)
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Extended quantum mechanics

We invent unifying vector notation, φ = (φ1, φ2, φ3, φ4) = (ψ,Pψ , V, Pv).
Then it may be verified that the equations of the extended quantum theory
can be put in the following Nambu-theoretic form

φt(x) = {φ(x),H1,H2,H3}, (493)

where the bracket is defined as

{A1, A2, A3, A4} = iεijkl

∫

δA1

δφi(y)

δA2

δφj(y)

δA3

δφk(y)

δA4

δφl(y)
dy

= i

∫

δ(A1, A2, A3, A4)

δ(φ1(y), φ2(y), φ3(y), φ4(y))
dy = idet(

δAk
δφl

). (494)
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M theory

The basic building blocks of M theory are membranes and M5−branes.
Membranes are fundamental objects carrying electric charges with respect
to the 3-form C-field, and M5-branes are magnetic solitons. The
Nambu-Poisson 3-algebras appear as gauge symmetries of superconformal
Chern-Simons nonabelian theories in 2 + 1 dimensions with the maximum
allowed number of N = 8 linear supersymmetries.
The Bagger and Lambert [Bagger, Lambert, 2007] and, Gustavsson
[Gustavsson, 2007] (BLG) model is based on a 3-algebra,

[T a, T b, T c] = fabcd T d (495)

where T a, are generators and fabcd is a fully anti-symmetric tensor. Given
this algebra, a maximally supersymmetric Chern-Simons lagrangian is:

L = LCS + Lmatter ,

LCS =
1

2
εµνλ(fabcdA

ab
µ ∂νA

cd
λ +

2

3
fcdagf

g
efbA

ab
µ A

cd
ν A

ef
λ ), (496)
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M theory

Lmatter =
1

2
BIa
µ B

µI
a −BIa

µ D
µXI

a

+
i

2
ψ̄aΓµDµψa +

i

4
ψ̄bΓIJx

I
cx
J
dψaf

abcd

− 1

12
tr([XI ,XJ ,XK ][XI ,XJ ,XK ]), I = 1, 2, ..., 8, (497)

where Aabµ is gauge boson, ψa and XI = XI
aT

a matter fields. If
a = 1, 2, 3, 4, then we can obtain an SO(4) gauge symmetry by choosing
fabcd = fεabcd, f being a constant. It turns out to be the only case that
gives a gauge theory with manifest unitarity and N = 8 supersymmetry.
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M theory

The action has the first order form so we can use the formalism of the first
section. The motion equations for the gauge fields

fnmabcdȦ
cd
m(t, x) =

δH

δAabn (t, x)
, fnmabcd = εnmfabcd (498)

take canonical form

Ȧabn = fabcdnm
δH

δAcdm
= {Aabn , Acdm} δH

δAcdm
= {Aabn ,H},

{Aabn (t, x), Acdm(t, y)} = εnmf
abcdδ(2)(x− y) (499)
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Nambu-Poisson dynamics of an extended particle with spin in an
accelerator

The quasi-classical description of the motion of a relativistic (nonradiating)
point particle with spin in accelerators and storage rings includes the
equations of orbit motion

ẋn = fn(x), fn(x) = εnm∂mH, n,m = 1, 2, ..., 6;
xn = qn, xn+3 = pn, εn,n+3 = 1, n = 1, 2, 3;

H = eΦ+ c
√

℘2 +m2c2, ℘n = pn −
e

c
An (500)

and Thomas-BMT equations
[Tomas, 1927, Bargmann, Michel,Telegdi, 1959 ] of classical spin motion

ṡn = εnmkΩmsk = {H1,H2, sn}, H1 = Ω · s, H2 = s2,
{A,B,C} = εnmk∂nA∂mB∂kC, (501)
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Nambu-Poisson dynamics of an extended particle with spin in an
accelerator

Ωn =
−e
mγc

((1 + kγ)Bn − k
(B · ℘)℘n
m2c2(1 + γ)

+
1 + k(1 + γ)

mc(1 + γ)
εnmkEm℘k) (502)

where, parameters e and m are the charge and the rest mass of the particle,
c is the velocity of light, k = (g − 2)/2 quantifies the anomalous spin g
factor, γ is the Lorentz factor, pn are components of the kinetic momentum
vector, En and Bn are the electric and magnetic fields, and An and Φ are
the vector and scalar potentials;

Bn = εnmk∂mAk, En = −∂nΦ− 1

c
Ȧn,

γ =
H − eΦ

mc2
=

√

1 +
℘2

m2c2
(503)

The spin motion equations we put in the Nambu-Poisson form.
Hamiltonization of this dynamical system according to the general approach
of the previous sections we will put in the ground of the optimal control
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Hamiltonian extension of the spinning particle dynamics

The general method of Hamiltonization of the dynamical systems we can
use also in the spinning particle case. Let us invent unified configuration
space q = (x, p, s), xn = qn, pn = qn+3, sn = qn+6, n = 1, 2, 3; extended
phase space, (qn, ψn) and hamiltonian

H = H(q, ψ) = vnψn, n = 1, 2, ...9; (504)

motion equations

q̇n = vn(q),

ψ̇n = −∂vm
∂qn

ψm (505)

where the velocities vn depends on external fields as in previous section as
control parameters which can be determined according to the optimal
control criterium.
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Nambu-Poisson extension of the spinning particle dynamics

We already have Nambu-Poisson formulation of the spinning part of the
dynamics. Let us define the extended Hamiltonian as

H1 = H(x, p) +H1(s) = H1(q), H2 = H(x, p) +H2(s) = H2(q),

H1(s) = Ω · s, H2(s) =
1

2
s2 (506)

Than the Nambu-Poisson form of the dynamics will be

Ȧ(q) = {A(q),H1,H2}, (507)

where

{A,B,C} = fNMK
∂A

∂qN

∂B

∂qM

∂C

∂qK
, N,M,K = 1, 2, ..., 9, (508)

and the structure function fNMK is defined from the comparison with the
motion equations for qN .
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Nambu-Poisson extension of the spinning particle dynamics

The structure function is antisymmetric; when A = qn, we obtain the
motion equation for qn,

q̇n = fn,m+6,k+3
∂H1(s)

∂sm

∂H(x, p)

∂pk
= δnk

∂H(x, p)

∂pk
,

fn,m+6,k+3Ωm = δnk, (509)

for A = pn,

ṗn = fn+3,m+6,k
∂H1(s)

∂sm

∂H(x, p)

∂qk
= −δnk

∂H(x, p)

∂qk
, (510)

for A = sn,

ṡn = fn+6,m+6,k+6
∂H1(s)

∂sm

∂H2(s)

∂sk
= εnmkΩmsk,

fn+6,m+6,k+6 = εnmk. (511)
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Nambu-Poisson extension of the spinning particle dynamics

With the Nambu-Poisson formulation, we have, as usual, two Hamiltonian
reductions,

Ȧ = {A,H1(q)}1 = {A,H2(q)}2 (512)

Note that, if we take collective coordinates and Hamiltonian H1(q), the
Hamiltonian motion equations will contain extra terms beyond original
motion equations [Balandin, Golubeva, 1999].
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Fractal Dynamical Systems

Note that the procedure of reduction of the higher order dynamical system,
e.g. second order Euler-Lagrange motion equations, to the first order
dynamical systems, in the case to the Hamiltonian motion equations, can
be continued using fractal calculus. E.g. first order system can be reduced
to the half order one,

D1/2q = ψ,

D1/2ψ = p⇔ q̇ = p. (513)

We define the following dynamical system [Makhaldiani, Postnov, WIP],

D1/2q = f(q), D1/2 = ∂θ + θ∂t, q(t, θ) = q0(t) + θq1(t),
f(q) = f0(q) + θf1(q) = f0(q0) + θ(f ′0(q0)q1 + f1(q0)) (514)

which is equivalent to the following dynamical system in component form

q1(t) = f0(q0),
q̇0 = f ′0(q0)q1 + f1(q0) (515)
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Discrete dynamical systems and Quanputers

It always bothers me
that according to the laws

as we understand them today,
it takes a computing machine

an infinite number of logical operations
to figure out what goes on in no matter how tiny

a region of space and no matter how tiny a region of time.
R. Feynman, The Character of Physical Law (1985).

To request an answer on Feynman’s paradox we may assume that Physics
at a very small scale is discrete. Quantum Fields on continuous spacetime is
then replaced by a lattice of quantum systems that evolve in discrete time
steps.
Quantum cellular automaton (QCA) is a quantum version of the cellular
automaton of von Neumann which describes a dynamics on a discrete
lattice in discrete time-steps.
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Discrete dynamical systems and Quanputers

Computers are physical devices and their behavior is determined by physical
laws. The Quantum Computations
[Benenti, Casati, Strini, 2004 , Nielsen, Chuang, 2000 ], Quantum
Computing, Quanputing [Makhaldiani, 2007.2], is a new interdisciplinary
field of research, which benefits from the contributions of physicists,
computer scientists, mathematicians, chemists and engineers.
Contemporary digital computer and its logical elements can be considered
as a spatial type of discrete dynamical systems [Makhaldiani, 2001]

Sn(k + 1) = Φn(S(k)), (516)

where

Sn(k), 1 ≤ n ≤ N(k), (517)

is the state vector of the system at the discrete time step k. Vector S may
describe the state and Φ transition rule of some Cellular Automata
[Toffoli, Margolus, 1987].The systems of the type (516) appears in applied
mathematics as an explicit finite difference scheme approximation of the
equations of the physics [Samarskii, Gulin, 1989 ].
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Discrete dynamical systems and Quanputers

Definition: We assume that the system (516) is time-reversible if we can
define the reverse dynamical system

Sn(k) = Φ−1n (S(k + 1)). (518)

In this case the following matrix

Mnm =
∂Φn(S(k))

∂Sm(k)
, (519)

is regular, i.e. has an inverse. If the matrix is not regular, this is the case,
for example, when N(k + 1) 6= N(k), we have an irreversible dynamical
system (usual digital computers and/or corresponding irreversible gates).
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Discrete dynamical systems and Quanputers

Let us consider an extension of the dynamical system (516) given by the
following action function

A =
∑

kn

ln(k)(Sn(k + 1)− Φn(S(k))) (520)

and corresponding motion equations

Sn(k + 1) = Φn(S(k)) =
∂H

∂ln(k)
,

ln(k − 1) = lm(k)
∂Φm(S(k))

∂Sn(k)
= lm(k)Mmn(S(k)) =

∂H

∂Sn(k)
,(521)

where

H =
∑

kn

ln(k)Φn(S(k)), (522)

is discrete Hamiltonian. In the regular case, we put the system (521) in an
explicit form

Sn(k + 1) = Φn(S(k)),
ln(k + 1) = lm(k)M

−1
mn(S(k + 1)). (523)
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Discrete dynamical systems and Quanputers

From this system it is obvious that, when the initial value ln(k0) is given,
the evolution of the vector l(k) is defined by evolution of the state vector
S(k). The equation of motion for ln(k) - Elenka is linear and has an
important property that a linear superpositions of the solutions are also
solutions.
Statement: Any time-reversible dynamical system (e.g. a time-reversible
computer) can be extended by corresponding linear dynamical system
(quantum - like processor) which is controlled by the dynamical system and
has a huge computational power, [Makhaldiani, 2001, Makhaldiani, 2002,
Makhaldiani, 2007.2, Makhaldiani, 2011.2].
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(de)Coherence criterion

For motion equations (521) in the continual approximation, we have

Sn(k + 1) = xn(tk + τ) = xn(tk) + ẋn(tk)τ +O(τ2),
ẋn(tk) = vn(x(tk)) +O(τ), tk = kτ,
vn(x(tk)) = (Φn(x(tk))− xn(tk))/τ ;

Mmn(x(tk)) = δmn + τ
∂vm(x(tk))

∂xn(tk)
. (524)

(de)Coherence criterion: the system is reversible, the linear (quantum,
coherent, soul) subsystem exists, when the matrix M is regular,

detM = 1 + τ
∑

n

∂vn
∂xn

+O(τ2) 6= 0. (525)

For the Nambu - Poisson dynamical systems (see e.g. [Makhaldiani, 2007])

vn(x) = εnm1m2...mp

∂H1

∂xm1

∂H2

∂xm2

...
∂Hp

∂xmp

, p = 1, 2, 3, ..., N − 1,

∑

n

∂vn
∂xn

≡ divv = 0. (526)
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Construction of the reversible discrete dynamical systems

Let me motivate an idea of construction of the reversible dynamical systems
by simple example from field theory. There are renormalizable models of
scalar field theory of the form (see, e.g. [Makhaldiani, 1980])

L =
1

2
(∂µϕ∂

µϕ−m2ϕ2)− gϕn, (527)

with the constraint

n =
2d

d− 2
, (528)

where d is dimension of the space-time and n is degree of nonlinearity. It is
interesting that if we define d as a function of n, we find

d =
2n

n− 2
(529)

the same function !
Thing is that, the constraint can be put in the symmetric implicit form
[Makhaldiani, 1980]

1

n
+

1

d
=

1

2
(530)
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Generalization of the idea

Now it is natural to consider the following symmetric function

f(y) + f(x) = c (531)

and define its solution

y = f−1(c− f(x)). (532)

This is the general method, that we will use in the following construction of
the reversible dynamical systems. In the simplest case,

f(x) = x, (533)

we take

y = S(k + 1), x = S(k − 1), c = Φ̃(S(k)) (534)

and define our reversible dynamical system from the following symmetric,
implicit form (see also [Toffoli, Margolus, 1987])

S(k + 1) + S(k − 1) = Φ̃(S(k)), (535)

explicit form of which is

S(k + 1) = Φ(S(k), S(k − 1))

= Φ̃(S(k))− S(k − 1). (536)
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Generalization of the idea

This dynamical system defines given state vector by previous two state
vectors. We have reversible dynamical system on the time lattice with time
steps of two units,

S(k + 2, 2) = Φ(S(k, 2)),
S(k + 2, 2) ≡ (S(k + 2), S(k + 1)),
S(k, 2) ≡ (S(k), S(k − 1))). (537)
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Internal, spin, degrees of freedom

Starting from a general discrete dynamical system, we obtained reversible
dynamical system with internal(spin,bit) degrees of freedom

Sns(k + 2) ≡
(

Sn(k + 2)
Sn(k + 1)

)

=

(

Φn(Φ(S(k))− S(k − 1))− S(k))
Φn(S(k)) − Sn(k − 1)

)

≡ Φns(S(k)), s = 1, 2 (538)

where

S(k) ≡ (Sns(k)), Sn1(k) ≡ Sn(k), Sn2(k) ≡ Sn(k − 1) (539)

For the extended system we have the following action

A =
∑

kns

lns(k)(Sns(k + 2)− Φns(S(k))) (540)
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Internal, spin, degrees of freedom

and corresponding motion equations

Sns(k + 2) = Φns(S(k)) =
∂H

∂lns(k)
,

lns(k − 2) = lmt(k)
∂Φmt(S(k))

∂Sns(k)

= lmt(k)Mmtns(S(k)) =
∂H

∂Sns(k)
, (541)

By construction, we have the following reversible dynamical system

Sns(k + 2) = Φns(S(k)),
lns(k + 2) = lmt(k)M

−1
mtns(S(k + 2)), (542)

with classical Sns and quantum lns(in the external, background S) string
bit dynamics.
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p-point cluster and higher spin states reversible dynamics, or pit string
dynamics

We can also consider p-point generalization of the previous structure,

fp(S(k + p)) + fp−1(S(k + p− 1)) + ...+ f1(S(k + 1))

+f1(S(k − 1)) + ...+ fp(S(k − p)) = Φ̃(S(k)),
S(k + p) = Φ(S(k), S(k + p− 1), ..., S(k − p))

≡ f−1p (Φ̃(S(k)) − fp−1(S(k + p− 1))− ...− fp(S(k − p))) (543)

and corresponding reversible p-oint cluster dynamical system

S(k + p, p) ≡ Φ(S(k, p)),
S(k + p, p) ≡ (S(k + p), S(k + p− 1), ..., S(k + 1)),
S(k, p) ≡ (S(k), S(k − 1), ..., S(k − p+ 1)), S(k, 1) = S(k).(544)

So we have general method of construction of the reversible dynamical
systems on the time (tame) scale p. The method of linear extension of the
reversible dynamical systems (see [Makhaldiani, 2001] and previous section)
defines corresponding Quanputers,

Sns(k + p) = Φns(S(k)),
lns(k + p) = lmt(k)M

−1
mtns(S(k + p)), (545)
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p-point cluster and higher spin states reversible dynamics, or pit string
dynamics

This case the quantum state function lns, s = 1, 2, ...p will describes the
state with spin (p − 1)/2.
Note that, in this formalism for reversible dynamics minimal value of the
spin is 1/2. There is not a place for a scalar dynamics, or the scalar
dynamics is not reversible. In the Standard model (SM) of particle physics,
[Beringer et al, 2012], all of the fundamental particles, leptons, quarks and
gauge bosons have spin. Only scalar particles of the SM are the Higgs
bosons. Perhaps the scalar particles are composed systems or quasiparticles
like phonon, or Higgs dynamics is not reversible (a mechanism for ’time
arrow’).
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

The NP ?
− P problem will be solved if for some NP− complete problem,

e.g. TSP, a polynomial algorithm find; or show that there is not such an
algorithm; or show that it is impossible to find definite answer to that
question.
TSP means to find minimal length path between N fixed points on a
surface, which attends any point ones. We consider a system where N
points with quenched positions x1, x2, ..., xN are independently distributed
on a finite domain D with a probability density function p(x). In general,
the domain D is multidimensional and the points xn are vectors in the
corresponding Euclidean space. Inside the domain D we consider a polymer
chain composed of N monomers whose positions are denoted by
y1, y2, ..., yN . Each monomer yn is attached to one of the quenched sites
xm and only one monomer can be attached to each site. The state of the
polymer is described by a permutation σ ∈ ΣN where ΣN is the group of
permutations of N objecs.
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

The Hamiltonian for the system is given by

H =

N
∑

n=1

V (|yn − yn−1|) (546)

Here V is the interaction between neighboring monomers on the polymer
chain. For convenience the chain is taken to be closed, thus we take the
periodic boundary condition x0 = xN . A physical realization of this system
is one where the xn are impurities where the monomers of a polymer loop
are pinned. In combinatorial optimization, if one takes V (x) to be the
norm, or distance, of the vector x then H(σ) is the total distance covered
by a path which visits each site xn exactly once. The problem of finding σ0
which minimizes H(σ) is known as the traveling salesman problem (TSP)
[Gutin, Pannen, 2002].
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

In field theory language to the TSP we correspond the calculation of the
following correlator

G2N (x1, x2, ..., xN ) = Z−10

∫

dϕ(x)ϕ2(x1)ϕ
2(x2)...ϕ

2(xN )e
−S(ϕ)

=
δ2NF (J)

δJ(x1)2...δJ(xN )2
, F (J) = lnZ(J),

Z(J) =

∫

dϕe−
1
2
ϕ·A·ϕ+J ·ϕ = e

1
2
J ·A−1·J , A−1(x, y;m) = e−m|x−y|,

Lmin(x1, ..., xN ) = − d

dm
lnG2Ns +O(e−am)

< A−1 >≡ 1

Γ(s)

∫ ∞

0
dmms−1A−1(x, y;m) =

1

|x− y|s
= LsA

−1(x− y; s)

k(d)∆dLsA
−1(x; s) = δd(x) ⇒ A(x; s) = k(d)∆dLs,

s = d− 2;ϕ = ϕ(x,m). (547)
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

If we take relativistic massive scalar field, then A = ∆d +m2,

A−1(x) ∼ |x|2−de−m|x|, (548)

and for d = 2, we also have the needed behaviour. Note that G2N is
symmetric with respect to its arguments and contains any paths including
minimal length one.
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Hamiltonization of dynamical systems. Let us consider the following
system of the ordinary differential equations [Arnold, 1978].

ẋn = vn(x) + jn(t), 1 ≤ n ≤ N, (549)

Lagrangian,
L = (ẋn − vn(x)− jn(t))ψn (550)

and the corresponding motion equations

ẋn = vn(x) + jn(t), ψ̇n = −∂vm
∂xn

ψm. (551)

The system (551) extends the system (549) by linear equation for the ψ.
The extended system can be put in the Hamiltonian form
[Makhaldiani, Voskresenskaya, 1997].
Quanputing. The idea of computations on quanputers is in finding of the
needed (value of the) state (wave function ψ(t, x)) from the initial, easy
constructible, state (ψ(0, x),) which is superposition of different states,
including interesting one, with the same weight. During the computation
the weight of the interesting state is growing till the value when we can
guess the solution of the problem and then test it, which is much more
easier then to find it [Kitaev, Shen, Vyalyi, 2002 ],
[Benenti, Casati, Strini, 2004 ], [Giorgadze, 2013].
Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) August 7 248 / 247



Let us consider the following nonlinear evolution equation

iVt = ∆V − 1

2
V 2 + J, (552)

extended Lagrangian and Hamiltonian

L =

∫

dxD(iVt −∆V +
1

2
V 2 − J)ψ, H =

∫

dxD(∆V − 1

2
V 2 + J)ψ(553)

and corresponding Hamiltonian motion equations [Makhaldiani, 2000].

iVt = ∆V − 1

2
V 2 + J = {V,H},

iψt = −∆ψ + V ψ = {ψ,H},
{V (t, x), ψ(t, y)} = δD(x− y) (554)

The solution of the problem is given in the form

|T ) = U(T )|0), ψ(t, x) =< x|t), U(T ) = Texp(−i
∫ T

0
H(t)) (555)

Under the programming of the quanputer we understand construction of
the potential V, or the corresponding Hamiltonian. For the given potential,
we calculate corresponding source J.
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The discrete version of the system can be put in the form
[Makhaldiani, 2007.2].

Sm(n+ 1) = Φn(S(n)) + Jm(n),

Ψm(n− 1) = Amk(S(n))Ψk(n), Amk(S(n)) =
∂Φk(S(n))

∂Sm(n)
(556)

when the matrix A is regular, we obtain explicit form of the corresponding
discrete dynamics

Sm(n+ 1) = Φn(S(n)) + Jm(n),
Ψm(n) = A−1mk(S(n + 1))Ψk(n), (557)

Now the state vector S(n) and wave vector Ψm(n) may correspond not
only to the discrete values of the potential V (n,m) = Sm(n), and wave
function ψ(n,m) = Ψm(n) but also any representation of the computing
process from theoretical to experimental realization on a quanputer,
including algorithm of solution, higher level programm realization of the
algorithm [Makhaldiani, 2011.2].
Complex Polynomial Equations and Nambu-poisson Dynamics
We consider the following polynomial equation

PN (z)− tzN+1 = 0, z ∈ C, t ∈ (0,∞) (558)
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For small times t all zeros but one of this polynomial are near the zeros of
the polynomial PN (z). The extra zero zN+1 is far from other zeros, for
small t,

zN+1 =
aN
t

+ ... (559)

In regular case main zeros are linear functions of t, for small t.
For large times all n+ 1 zeros are near the zeros of the equation

a0 − tzN+1 = 0, zn = N+1
√

a0/t exp(2πi
n

N + 1
), n = 0, 1, ..., N (560)

At a root xc of multiplicity k we have

P
(k)
N (xc)

n!
(x− xc)

k + ... = txN+1
c ,

xn(t) = xc + cn,kt
1/k, cn,k = (

xN+1
c n!

P
(k)
N (xc)

)
1
k exp(2πi

n

k
), 0 ≤ n ≤ k − 1(561)

So we can define the multiplicity of the root k from the time dependence of
the roots. It is interesting to know how extra zero approach with time to
the other zeros and then all of them organized as sites of symmetric
polygon on the circle with decreasing radius. Note that coefficients
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an, 1 ≤ n ≤ N are known functions of zeros but do not depend on t - are
invariants - integrals of motion. Having N integrals of motion
Hn, 1 ≤ n ≤ N we construct Nambu-Poisson dynamics for the roots
[Nambu, 1973], [Makhaldiani, 2007], [Makhaldiani, 1988, ?].

ẋn = {xn,H1,H2, ...,HN}, 1 ≤ n ≤ N (562)

As an example we consider quadratic deformation of the linear equation

a0 + a1z − tz2 = −t(z − z1)(z − z2) = 0,
a0 = −tz1z2, a1 = t(z1 + z2) (563)

As a ’time independent’ Hamiltonian we take

H = −a0/a1 =
z1z2
z1 + z2

(564)

the motion equations we find from the time independence of a0 and a1

ȧ0 = −z1z2 − t(ż1z2 + z1ż2) = 0,
ȧ1 = z1 + z2 + t(ż1 + ż2) = 0,

ż1 =
z31z2

a0(z1 − z2)
= {z1,H} = f12

∂H

∂z2
,

ż2 =
z32z1

a0(z2 − z1)
= {z2,H} = f21

∂H

∂z1
,
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f12 =
z1z2(z1 + z2)

2

a0(z1 − z2)
=

a21
t3(z2 − z1)

(565)

In the cubic deformation of the quadratic equation

a0 + a1z + a2z
2 − tz3 = −t(z − z1)(z − z2)(z − z3) = 0 (566)

we have

a0 = tz1z2z3, a1 = −t(z1z2 + z2z3 + z3z1), a2 = t(z1 + z2 + z3),

ż1 =
z41z2z3

a0(z2 − z1)(z1 − z3)
= {z1,H1,H2} = f1nm

∂H1

∂zn

∂H2

∂zm
,

f123 =
z1z2z3(z1z2 + z2z3 + z3z1)(z1 + z2 + z3)

a0(z2 − z1)(z3 − z2)(z1 − z3)

=
a1a2

t3(z1 − z2)(z1 − z3)(z3 − z2)
,

H1 =
z1z2z3

z1z2 + z2z3 + z3z1
, H2 =

z1z2 + z2z3 + z3z1
z1 + z2 + z3

(567)

Introducing new time variable τ = a1a2t
−2/2 we put the equation in the

form

dz1
dτ

= {z1,H1,H2} = f1nm
∂H1

∂zn

∂H2

∂zm
,
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f123 =
1

(z1 − z2)(z1 − z3)(z2 − z3)
(568)

For the following generalization of the Weierstrass function Vn(z)
∫ ∞

Vn(z)

dV
√

Pn(V )
= z,

Pn(V ) =
4

(n− 2)2
V n + Cn−2V

n−2 + ...+ C0, (569)

we have the following series (re)presentation

Vn(z) = ℘n(z, Cn−2, ..., C0) =
1

z2/(n−2)
− (n− 2)2

4(n+ 2)
Cn−2z

2/(n−2) + ...(570)
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