On dynamical equations in non-linear models

A. A. Zheltukhin
Kharkov Institute of Physics and Technology,
1, Akademicheskaya St., Kharkov, 61108, Ukraine

AAZ, arXiv: 1106.4842[hep-th]

(1) P-brane dynamics for any (D, p)
2) $U(1) \times U(1) \times \ldots U(1)$ invariant p-branes

3 Equations of \mathcal{U} invariant p-branes
(4) \mathcal{U} invariant p-branes and p-dimensional anharmonic oscillators
(5) Elliptic and hyperelliptic solutions
(6) Summary

P-brane dynamics for any (D, p)

The Dirac action for a p-brane

$$
S=\left.T \int \sqrt{|G|}\right|^{p+1} \xi,
$$

G is the determinant of the induced metric

$$
G_{\alpha \beta}:=\partial_{\alpha} x_{m} \partial_{\beta} x^{m} .
$$

The Euler-Lagrange equations and $p+1$ primary constraints

$$
\begin{gather*}
\partial_{\tau} \mathcal{P}^{m}=-T \partial_{r}\left(\sqrt{|G|} G^{r \alpha} \partial_{\alpha} x^{m}\right), \quad \mathcal{P}^{m}=T \sqrt{|G|} G^{\tau \beta} \partial_{\beta} x^{m}, \tag{1}\\
\tilde{T}_{r}:=\mathcal{P}^{m} \partial_{r} x_{m} \approx 0, \quad \tilde{U}:=\mathcal{P}^{m} \mathcal{P}_{m}-T^{2}\left|\operatorname{det} G_{r s}\right| \approx 0 . \tag{2}
\end{gather*}
$$

We use the orthogonal gauge

$$
\begin{gather*}
L \tau=x^{0} \equiv t, \quad G_{r r}=-L\left(\dot{\vec{x}} \cdot \partial_{r} \vec{x}\right)=0, \tag{3}\\
g_{r s}:=\partial_{r} \vec{x} \cdot \partial_{s} \vec{x}, \quad G_{\alpha \beta}=\left(\begin{array}{cc}
L^{2}\left(1-\dot{\vec{x}}^{2}\right) & 0 \\
0 & -g_{r s}
\end{array}\right)
\end{gather*}
$$

with $\dot{\vec{x}}:=\partial_{t} \vec{x}=L^{-1} \partial_{\tau} \vec{x}$.
The solution of constraint \tilde{U}

$$
\begin{equation*}
\mathcal{P}_{0}=\sqrt{\overrightarrow{\mathcal{P}}^{2}+T^{2}|g|}, \quad g=\operatorname{det}\left(g_{\mathrm{rs}}\right) . \tag{4}
\end{equation*}
$$

\mathcal{P}_{0} becomes Hamiltonian density \mathcal{H}_{0} since $\dot{\mathcal{P}}_{0}=0$.

Definition of $\mathcal{P}_{0}(1)$ and $G^{\tau \tau}=1 / L^{2}\left(1-\dot{\vec{x}}^{2}\right)$ results in

$$
\begin{equation*}
\mathcal{P}_{0}:=T L \sqrt{|\operatorname{det} G|} G^{\pi \tau}=T \sqrt{\frac{|g|}{1-\dot{\vec{x}}^{2}}} . \tag{5}
\end{equation*}
$$

Density $\overrightarrow{\mathcal{P}}$ and its evolution are

$$
\begin{equation*}
\overrightarrow{\mathcal{P}}=\mathcal{P}_{0} \dot{\vec{x}}, \quad \dot{\overrightarrow{\mathcal{P}}}=T^{2} \partial_{r}\left(\frac{|g|}{\mathcal{P}_{0}} g^{r s} \partial_{s} \vec{x}\right) . \tag{6}
\end{equation*}
$$

PDE for \vec{x}

$$
\begin{equation*}
\ddot{\vec{x}}=\frac{T}{\mathcal{P}_{0}} \partial_{r}\left(\frac{T}{\mathcal{\mathcal { P }}_{0}}|g| g^{r s} \partial_{s} \vec{x}\right) . \tag{7}
\end{equation*}
$$

The canonical Hamiltonian generates

$$
\dot{\vec{x}}=\left\{H_{0}, \vec{x}\right\}, \quad \dot{\overrightarrow{\mathcal{P}}}=\left\{H_{0}, \overrightarrow{\mathcal{P}}\right\}, \quad\left\{\mathcal{P}_{i}(\sigma), x_{j}(\tilde{\sigma})\right\}=\delta_{i j} \delta^{(2)}\left(\sigma^{r}-\tilde{\sigma}^{r}\right)
$$

with integrated density $\mathcal{H}_{0}\left(=\mathcal{P}_{0}\right)$

$$
\begin{equation*}
H_{0}=\int d^{p} \sigma \sqrt{\overrightarrow{\mathcal{P}}^{2}+T^{2}|g|} \tag{8}
\end{equation*}
$$

Residual symmetry of orthonormal gauge

$$
\begin{equation*}
\tilde{t}=t, \quad \tilde{\sigma}^{r}=f^{r}\left(\sigma^{s}\right) \tag{9}
\end{equation*}
$$

Reduced constraints \tilde{T}_{r}

$$
\begin{equation*}
T_{r}:=\overrightarrow{\mathcal{P}} \partial_{r} \vec{x}=0 \quad \Leftrightarrow \quad \dot{\vec{x}} \partial_{r} \vec{x}=0, \quad(r=1,2, ., p) . \tag{10}
\end{equation*}
$$

$U(1) \times U(1) \times \ldots U(1)$ invariant p-branes

We consider p-branes evolving in $D=(2 p+1)$-dimensional Minkowski space-time and assume that their shape is invariant under the direct product $\mathcal{U}:=\prod_{a=1}^{p} U_{a}(1)$. Each of these $U(1)$ symmetries is locally isomorphic to one of the $O(2)$ subgroups of the $S O(2 p, 1)$ group of rotations. Anzats for \vec{x}

$$
\begin{array}{r}
\vec{x}^{T}=\left(q_{1} \cos \theta_{1}, q_{1} \sin \theta_{1}, q_{2} \cos \theta_{2}, q_{2} \sin \theta_{2}, \ldots, q_{p} \cos \theta_{p}, q_{p} \sin \theta_{p}\right) \tag{11}\\
q_{a}=q_{a}(t), \quad(a=1, \ldots, p) ; \quad \theta_{r}=\theta_{r}\left(\sigma^{s}\right), \quad(r, s=1, \ldots, p) .
\end{array}
$$

Vector \vec{x} lies in $2 p$-dim subspace and satisfies $\dot{\vec{x}} \partial_{r} \vec{x}=0$. Anzats (11) originates from realization of a $2 p$-dimensional vector \vec{x} defined by p pairs of its "polar" coordinates

$$
\begin{equation*}
\vec{x}^{\top}\left(t, \sigma^{r}\right)=\left(q_{1} \cos \theta_{1}, q_{1} \sin \theta_{1}, \ldots, q_{p} \cos \theta_{p}, q_{p} \sin \theta_{p}\right) \tag{12}
\end{equation*}
$$

with q_{a}, θ_{a} depending on $t, \sigma^{1}, \ldots, \sigma^{p}$.

Our anzats (11) is obtained by excluding the time dependence for all "polar" angles $\theta_{a}=\theta_{a}\left(\sigma^{r}\right)$ as well as the σ^{r} dependence for all "radial" coordinates $m_{a}=m_{a}(t)$.
At any moment t vector $\vec{x}^{\top}(11)$ is produced from ${\overrightarrow{x_{0}}}^{\top}=\left(q_{1}, 0, q_{2}, 0, \ldots, q_{p}, 0\right)$ by rotations of the diagonal subgroup $\mathcal{U} \in S O(2 p)$, parametrized by the angles θ_{a} and rotating the planes $x_{1} x_{2}, x_{3} x_{4}, \ldots, x_{2 p-1} x_{2 p}$.
World-volume metric $G_{\alpha \beta}$ becomes

$$
\begin{equation*}
G_{t t}=1-\dot{\mathbf{q}}^{2}, \quad \mathbf{q}:=\left(q_{1}, . ., q_{p}\right), \quad g_{r s}=\sum_{a=1}^{p} q_{a}^{2} \theta_{a, r} \theta_{a, s} \tag{13}
\end{equation*}
$$

where $\theta_{s, r}:=\partial_{r} \theta_{s}$ and $\dot{\mathbf{q}} \equiv \partial_{t} \mathbf{q}$ and yields $d s^{2}$ on Σ_{p+1}

$$
\begin{equation*}
d s_{p+1}^{2}=\left(1-\dot{\mathbf{q}}^{2}\right) d t^{2}-\sum_{a=1}^{p} q_{a}^{2}(t) d \theta_{a} d \theta_{a} \tag{14}
\end{equation*}
$$

independent of σ^{r}.

Change of σ^{r} by new parameters $\theta_{a}\left(\sigma^{r}\right)$ makes metric independent of σ^{r} with Killing vectors $\frac{\partial}{\partial \theta_{\theta}}$ on Σ_{p}.
It shows that Σ_{p} has zero curvature and is isomorphic to a flat p-dimensional torus $S^{1} \times S^{1} \times \ldots S^{1}$ at any moment.
Canonical components $\pi_{a}=\frac{\partial \mathcal{L}}{\partial \dot{q}_{\dot{a}}}=\overrightarrow{\mathcal{P}} \frac{\partial \dot{\bar{x}}}{\partial \dot{q}_{a}}$ or $\pi:=\left(\pi_{1}, \ldots, \pi_{p}\right)$ for \mathbf{q} are

$$
\begin{equation*}
\boldsymbol{\pi}=\mathcal{P}_{0} \dot{\mathbf{q}}, \quad \mathcal{P}_{0}=T \sqrt{\frac{|g|}{1-\dot{\mathbf{q}}^{2}}}, \quad g=\operatorname{det}\left(\sum_{a=1}^{p} q_{a}^{2} \theta_{a, r} \theta_{a, s}\right) \tag{15}
\end{equation*}
$$

and $\vec{x}^{2}=\mathbf{q}^{2}, \quad \dot{\vec{x}}^{2}=\dot{\mathbf{q}}^{2}$.

Hamiltonian density in (\mathbf{q}, π) phase space

$$
\begin{equation*}
\mathcal{H}_{0}=\mathcal{P}_{0}=\sqrt{\pi^{2}+T^{2}|g|}, \quad \dot{\mathcal{P}_{0}}=0 . \tag{16}
\end{equation*}
$$

Hamiltonian equations

$$
\begin{equation*}
\dot{\mathbf{q}}=\left\{H_{0}, \mathbf{q}\right\}=\frac{1}{\mathcal{P}_{0}} \boldsymbol{\pi}, \quad \dot{\boldsymbol{\pi}}=\left\{H_{0}, \boldsymbol{\pi}\right\} . \tag{17}
\end{equation*}
$$

Canonical PB's and Hamiltonian

$$
\begin{equation*}
\left\{\pi_{a}, q_{b}\right\}=\delta_{a b}, \quad H_{0}=\int d^{p} \sigma \sqrt{\pi^{2}+T^{2}|g|} \tag{18}
\end{equation*}
$$

Equations of \mathcal{U} invariant p-branes

To simplify equations of motion we simplify Anzats by fixing gauge for residual symmetry (9): $\theta_{a}=\delta_{a r} \sigma^{r}$

$$
\begin{equation*}
\theta_{1}\left(\sigma^{r}\right)=\sigma^{1}, \quad \theta_{2}\left(\sigma^{r}\right)=\sigma^{2}, \ldots, \theta_{p}\left(\sigma^{r}\right)=\sigma^{p} . \tag{19}
\end{equation*}
$$

Then Anzats and $g_{r s}$ are expressed

$$
\begin{array}{r}
\vec{x}^{\top}(t)=\left(q_{1} \cos \sigma^{1}, q_{1} \sin \sigma^{1}, \ldots, q_{p} \cos \sigma^{p}, q_{p} \sin \sigma^{p}\right), \\
g_{r s}(t)=q_{r}^{2}(t) \delta_{r s}, \quad g=\left(q_{1} q_{2} \ldots q_{p}\right)^{2} \tag{21}
\end{array}
$$

with diagonalized metric $g_{r s}(t)$ depending on t.

In gauge (19) interval and $g^{\text {rs }}$ on Σ_{p} are

$$
\begin{equation*}
d s_{p}^{2}=\sum_{r=1}^{p} q_{r}^{2}(t)\left(d \sigma^{r}\right)^{2}, \quad g^{r s}(t)=\frac{1}{q_{r}^{2}} \delta_{r s} . \tag{22}
\end{equation*}
$$

This gauge clarifies sense of coordinates $\mathbf{q}(t)=\left(q_{1}, q_{2}, \ldots, q_{p}\right)$ as time dependent radii $\mathbf{R}(t)=\left(R_{1}, R_{2}, \ldots, R_{p}\right)$ of flat hypertorus Σ_{p}. Hamiltonian density \mathcal{H}_{0} becomes independent of σ^{r}

$$
\begin{equation*}
\mathcal{H}_{0}=\mathcal{P}_{0}=\sqrt{\pi^{2}+T^{2} \prod_{r=1}^{p} q_{r}^{2}}=C, \quad \dot{\mathcal{P}}_{0}=0, \quad \frac{\partial}{\partial \sigma^{r}} \mathcal{P}_{0}=0 . \tag{23}
\end{equation*}
$$

This property yields condition for the initial data

$$
\begin{equation*}
\mathcal{P}_{0}=C \rightarrow T \sqrt{\frac{|g|}{1-\dot{\mathbf{q}}^{2}}} \equiv T \sqrt{\frac{\left(q_{1} q_{2} \ldots q_{p}\right)^{2}}{1-\dot{\mathbf{q}}^{2}}}=C . \tag{24}
\end{equation*}
$$

Eqs. (6) for \vec{x} are simplified

$$
\begin{equation*}
\ddot{\vec{x}}-\left(\frac{T}{C}\right)^{2} g g^{r s} \partial_{r s} \vec{x}=0 . \tag{25}
\end{equation*}
$$

Taking into account

$$
\begin{equation*}
g g^{r s}=\frac{\delta_{r s}}{q_{r}^{2}} \prod_{t=1}^{p} q_{t}^{2}, \quad \partial^{r} \partial_{r} \vec{x}=-\vec{x} \tag{26}
\end{equation*}
$$

we present Eqs. (25) in terms of \mathbf{q}

$$
\begin{equation*}
\ddot{q}_{r}+\left(\frac{T}{C}\right)^{2}\left(q_{1} \ldots q_{r-1} q_{r+1} \ldots q_{p}\right)^{2} q_{r}=0, \quad r=(1,2, \ldots, p) . \tag{27}
\end{equation*}
$$

Multiplication (27) by q_{r} results in the first integral

$$
\begin{equation*}
\dot{\mathbf{q}}^{2}+\left(\frac{T}{C}\right)^{2}\left(q_{1} q_{2} \ldots q_{p}\right)^{2}=c \tag{28}
\end{equation*}
$$

which coincides with initial data (24) if $c=1$. Eqs. (27) are presented as

$$
\begin{equation*}
C \ddot{\mathbf{q}}=-\frac{\partial V}{\partial \mathbf{q}}, \tag{29}
\end{equation*}
$$

where elastic energy density $V(\mathbf{q})$ turns out to be proportional to g

$$
\begin{equation*}
V(\mathbf{q}):=\frac{T^{2}}{2 C} g \equiv \frac{T^{2}}{2 C}\left(q_{1} \ldots q_{p}\right)^{2} \tag{30}
\end{equation*}
$$

\mathcal{U} invariant p-branes and p-dimensional anharmonic oscillators

General equations of elastic non relativistic media with mass density ρ

$$
\begin{equation*}
\rho \ddot{u}_{i}=\frac{\partial \sigma_{i k}}{\partial x_{k}} . \tag{31}
\end{equation*}
$$

We observe that Eqs. (29) have form of relativistic generalization (31)

$$
\begin{equation*}
C \ddot{q}_{r}=-\frac{T^{2}}{2 C} \delta_{r s} \frac{\partial g}{\partial q_{s}} \tag{32}
\end{equation*}
$$

with stress tensor $\sigma_{r s}$

$$
\begin{equation*}
\sigma_{r s}:=-p \delta_{r s}, \quad p:=\frac{T^{2}}{2 C} g \equiv \frac{T^{2}}{2 C} \prod_{s=1}^{p} q_{s}^{2}, \quad r=(1,2, \ldots, p) . \tag{33}
\end{equation*}
$$

Eqs. (33) shows that p is isotropic pressure per unit area of its p-brane hypersurface, and C is a relativistic generalization of mass density ρ. Pressure p is created by forces F_{r}

$$
\begin{equation*}
F_{r}(t):=-\frac{\partial V}{\partial q_{r}} \equiv-\frac{T^{2}}{C}\left(q_{1} \ldots q_{r-1} q_{r+1} \ldots q_{p}\right)^{2} q_{r} \tag{34}
\end{equation*}
$$

associated with p-brane potential $V(30)$.
It is instructive to note that the discussed equations are generated by Hamiltonian H free from the square root present in H_{0} (18).
Constant C can be used to write square root free Hamiltonian density

$$
\mathcal{H}=\frac{\mathcal{H}_{0}^{2}}{2 C}=C / 2
$$

and Hamiltonian H

$$
\begin{equation*}
H:=\int d^{p} \sigma \mathcal{H}, \quad \mathcal{H}=\frac{1}{2 C}\left(\pi^{2}+T^{2} \prod_{s=1}^{p} q_{s}^{2}\right) \tag{35}
\end{equation*}
$$

with standard PB's

$$
\left\{\pi_{a}, q_{b}\right\}=\delta_{a b}, \quad\left\{q_{a}, q_{b}\right\}=0, \quad\left\{\pi_{a}, \pi_{b}\right\}=0 .
$$

Hamiltonian H describes p-dimensional anharmonic oscillators without quadratic terms, and reproduces Eqs. (27).
The set of Hamiltonians (35) contains quartic potential energy for $p=2$ or the higher degree monomials in components of \mathbf{q} for $p>2$ respectively.

Cyclic "frequency" ω_{r} of a coordinate q_{r} is proportional to products of remaining coordinates

$$
\begin{equation*}
\omega_{r}(t)=\frac{T}{C}\left|q_{1} \ldots q_{r-1} q_{r+1} \ldots q_{p}\right|, \quad r=(1,2, \ldots, p) . \tag{36}
\end{equation*}
$$

These frequencies ω_{r} in Eqs. (27) can not be infinitely large because of the initial data (28) with $c=1$

$$
\begin{equation*}
\sqrt{1-\dot{\mathbf{q}}^{2}}=\frac{T}{C}\left|q_{1} q_{2} \ldots q_{p}\right| \tag{37}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
0 \leq|\dot{\mathbf{q}}| \leq 1, \quad 0 \leq \frac{T}{C}\left|q_{1} q_{2} \ldots q_{p}\right| \leq 1 \tag{38}
\end{equation*}
$$

i.e. velocity $|\dot{\mathbf{q}}|$ grows when hypervolume $\sim\left|q_{1} q_{2} \ldots q_{p}\right|$ diminishes and achieves velocity of light.

If $T=0$ nonlinear system (27) reduces to equations

$$
\begin{equation*}
T=0: \Rightarrow \ddot{\mathbf{q}}=0, \quad|\dot{\mathbf{q}}|=1 \tag{39}
\end{equation*}
$$

similar to equations of free massless particles in effective p-dimensional space. In general case the system (27) is rather complicate because of monomial entanglement of coordinates q_{r} in interaction potential V (35). However, there is a special solvable case that we discuss below.

Elliptic and hyperelliptic solutions

Degenerate case is characterized by coincidence $q_{1}=q_{2}=\ldots=q_{p} \equiv q$. System (27) reduces to nonlinear diff. eqn.

$$
\begin{equation*}
\ddot{q}+\left(\frac{T}{C}\right)^{2} q^{(2 p-1)}=0 \tag{40}
\end{equation*}
$$

equivalent to initial data constraint (37) for $q(t)$

$$
\begin{equation*}
p \dot{q}^{2}+\left(\frac{T}{C}\right)^{2} q^{2 p}=1 \tag{41}
\end{equation*}
$$

After change of q by $y=\Omega^{\frac{1}{p}} \sqrt{p} q$, and introduction of frequency $\Omega:=\frac{T}{C} p^{-\frac{p}{2}}$, Eq. (41) takes form

$$
\begin{equation*}
\left(\frac{d y}{d \tilde{t}}\right)^{2}=\frac{1}{2}\left(1-y^{p}\right)\left(1+y^{p}\right) \tag{42}
\end{equation*}
$$

with new variable $\tilde{t}:=\sqrt{2} \Omega^{\frac{1}{p}} t$.

In membrane case ($p=2$) Eq. (42) coincides with eqn. defining Jacobi elliptic cosine $c n(x ; k)$

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)^{2}=\left(1-y^{2}\right)\left(1-k^{2}+k^{2} y^{2}\right) \tag{43}
\end{equation*}
$$

if elliptic modulus $k=\frac{1}{\sqrt{2}}$.
Thus, $y(t)=c n\left(\sqrt{2 \omega} t ; \frac{1}{\sqrt{2}}\right)$ with $2 \omega=T / C$.
Using relation $q \equiv y / \sqrt{2 \omega}$ we obtain elliptic cosine solution

$$
\begin{equation*}
q(t)=\frac{1}{\sqrt{2 \omega}} \operatorname{cn}\left(\sqrt{2 \omega}\left(t+t_{0}\right) ; \frac{1}{\sqrt{2}}\right) \equiv \sqrt{\frac{C}{T}} c n\left(\sqrt{\frac{T}{C}}\left(t+t_{0}\right) ; \frac{1}{\sqrt{2}}\right) . \tag{44}
\end{equation*}
$$

If initial data are $\dot{q}\left(t_{0}\right)>0$ then solution (44) describes expanding torus which at some point reaches the maximal size $q_{\max }=\sqrt{\frac{C}{T}}$ and then shrinks to a point after a finite time $\mathbf{K}(1 / \sqrt{2}) \sqrt{\frac{c}{T}}$ (where $\mathbf{K}(1 / \sqrt{2})=1,8451$ is quarter period of elliptic cosine).
Equation of surface $\Sigma_{2}(t)$ of contracting torus (44) in $D=5$ is

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=4 \frac{C}{T} c n\left(\sqrt{\frac{T}{C}}\left(t+t_{0}\right), \frac{1}{\sqrt{2}}\right)^{2}, \quad x_{1} x_{4}=x_{2} x_{3} .
$$

For $p>2$ integration of Eq. (42) defines implicit dependence of q on time

$$
\begin{equation*}
\tilde{t}= \pm \sqrt{2} \int \frac{d y}{\sqrt{1-y^{2 p}}}+\text { const } \tag{45}
\end{equation*}
$$

The integral (45) is an hyperelliptic integral, thus general solution of Eq. (41) is expressed in terms of hyperelliptic functions.

After change of variable $z=y^{2 p}$ hyperelliptic solution takes form

$$
\begin{equation*}
\tilde{t}-\tilde{t}_{0}= \pm \frac{1}{\sqrt{2} p} \int_{0}^{z^{\frac{1}{2 p}}} d z z^{\left(\frac{1}{2 p}-1\right)} \cdot(1-z)^{-\frac{1}{2}} \tag{46}
\end{equation*}
$$

Using (46) one can find the time of contraction $\Delta \tilde{t}_{c}$ of p-torus from the maximal value of the radii $q_{\max }=\left(\frac{C}{T}\right)^{\frac{1}{p}}$ to $q_{\min }=0$

$$
\begin{equation*}
\Delta \tilde{t}_{c}=\frac{1}{\sqrt{2} p} \int_{0}^{1} d z z^{\left(\frac{1}{2 p}-1\right)} \cdot(1-z)^{\frac{1}{2}-1}=\frac{1}{\sqrt{2 p}} B\left(\frac{1}{2 p}, \frac{1}{2}\right) \tag{47}
\end{equation*}
$$

where $B\left(\frac{1}{2 p}, \sqrt{2}\right)$ is the Euler beta function $B(\alpha, \beta)$.
Coming back to the real time t we obtain

$$
\Delta t_{c} \equiv \frac{1}{\sqrt{2}} \Omega^{-\frac{1}{p}} \Delta \tilde{t}_{c}=\frac{1}{2 \sqrt{p}}\left(\frac{2 E}{T}\right)^{\frac{1}{p}} B\left(\frac{1}{2 p}, \frac{1}{2}\right)
$$

So, the case of degenerate p-torus with coinciding radii q turns out to be integrable and reveals connection of p-brane equations with (hyper)elliptic curves and Euler beta function.

Summary

Exact solvability of brane equations is studied, and a new $U(1) \times U(1) \times \ldots U(1)$ invariant anzats for the solution of p-brane equations in $D=(2 p+1)$-dimensional Minkowski space is proposed.

The reduction of the p-brane Hamiltonian to the Hamiltonian of p-dimensional relativistic anharmonic oscillator with the monomial potential of the degree equal to $2 p$ is revealed.

It is shown that the case of degenerate p-torus with equal radii is integrable and that the p-brane solutions are expressed in terms of elliptic $(p=2)$ or hyperelliptic ($p>2$) functions.

P．K．Townsend，The eleven－dimensional supermembrane revisited，Phys． Lett．B350（1995）184；E．Witten，String Theory Dynamics In Various Dimensions，Nucl．Phys．B443（1995）85；T．Banks，W．Fishler，S．H． Shenker，L．Susskind，M theory as a Matrix Mode：A conjecture Phys．Rev． D55（8）：5112；M．J．Duff，The world in Eleven Dimensions：Supergravity， Supermembranes and M－theory（IOP，Bristol 1999）．

C．Rebbi，Dual models and relativistic strings，Phys．Rep． 12 （1974） 1.

目
R．W．Tucker，Extended Particles and the Exterior Calculus，Lectures given at the Rutherford Laboratory，Feb 1976.
J．Hoppe，MIT PhD Thesis，1982，and in Proc．Int．Workshop on Constraints Theory and Relativistic Dynamics．G．Longhi，L．Lusanna（eds），Singapore： World Scientific 1987.

E．Berqshoeff，E．Sezgin，P．K．Townsend，Phys．Lett．B189（1987） 75.

懂
M．Duff，P．Howe，T．Inami，K．Stelle，Phys．Lett．B191（1987） 70.
E．Floratos，J．Illipoulos，Phys．Lett．B201（1988） 237.

B．de Witt，J．Hoppe，G．Nicolai，Nucl．Phys．B305［FS23］（1988） 545.
A．A．Zheltukhin，Sov．J．Nucl．Phys． 48 （1988） 375.B．de Witt，M．Lusher，G．Nicolai，Nucl．Phys．B320（1989） 135.
I．A．Bandos and A．A．Zheltukhin，Fortsch．Phys． 41 （1993） 619.
目
M．Bordemann，J．Hoppe，Phys．Lett．B317（1993） 315 ；ibid．B325（1994） 359.J．Polchinski，Phys．Rev．Lett． 75 （1995） 4729.D．V．Uvarov and A．A．Zheltukhin，Phys．Lett．B545（2002） 183.
\square J．Arnlind，J．Hoppe，S．Theisen，Phys．Lett．B 599 （2004） 118.J．Hoppe，Compl．Anal．Oper．Theory 3 （2009） 419.
M．Trzetrzelewski and A．A．Zheltukhin，Phys．Lett．B679（2009） 523.
囯 A．A．Zheltukhin and M．Trzetrzelewski，J．Math．Phys． 51 （2010） 062303.
L.D. Landau and E.M. Lifshits, Theory of Elasticity Moscow, "Science", 1987.

