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To specify different types of cosmic fluids one uses a relation
between the pressure p and the energy density ϱ: p = wϱ,
where w is the state parameter.
Contemporary experiments give strong support that
w > 0 — Atoms. (4%)
w = 0 — the Cold Dark Matter. (23%)
w < 0— the Dark Energy. (73%), wDE = −1±0.2.
Different variants of the Dark Energy

• The cosmological constant,

• Scalar and k-essence fields, phantom fields and quintom mod-
els,

•Modified f (R) gravity models,

• Nonlocal modified gravity and nonlocal scalar fields,

• Vectors and, in particular, Yang–Mills fields.
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Model with scalar fields

• w > −1, is achieved in quintessence models.

• w = −1, is realized by means of the cosmological constant.

• w < −1, is called a ”phantom” one and can be realized due
to a scalar field with a ghost (phantom) kinetic term.

To describe the crossing of the cosmological constant barrier
w = −1 we can use to fields: one usual scalar field and one a
phantom scalar field.
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f (R) gravity

Let us consider a f (R) gravity model

Sf =
1

16πGN

∫
d4x

√
−gf (R), (1)

The equation of motion are the following:

f ′(R)Rµν −
f (R)

2
gµν −Dµ∂νf

′(R) + gµν�gf
′(R) = 0. (2)

Equations of f (R) metric gravity is equivalent to general rela-
tivity equations with an additional scalar field.
They can be rewritten as

R̃µν −
1

2
gµνR̃ = 8πGN T̃µν(φ), (3)
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If we transforms the metric tensor

g̃µν = F (R)gµν, (4)

then

R̃
µ
ν =

R
µ
ν

F
−gµαDν(DαF )

F 2
+3

gµαDνFDαF

2F 3
−
gαβDα(DβF )

2F 2
δ
µ
ν ,

(5)
and

R̃ =
R

F
− 3

gβαDβ(DαF )

F 2
+ 3

gβαDβFDαF

2F 3
. (6)

So, one can obtain that

F (R) = f ′(R), (7)

V =
f (R)−Rf ′(R)

16πGN (f ′(R))2
, φ =

√
3

4
√
πGN

ln(F ). (8)
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The standard example.
For

f (R) = R− 1

6M2
R2, (9)

one get the exponential potential:

V (φ) =
3M2

32πGN

(
1− e

4
√

πGN√
3

φ
)2

(10)

and

φ =

√
3

4
√
πGN

ln

(
1− R

3M2

)
. (11)

As known the Einstein equation are the second order differen-
tial equations in gµν.
The f (R) gravity equations are the fourth order differential

equations in gµν.
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Nonlocal gravity models

There are another type of modifications that explicitly includes
a function of �g operator, in particular, �−1

g and defines a non-
local modification of gravity.
A modification that does not assume the existence of a new

dimensional parameter in the action

S2 =

∫
d4x

√
−g

{
1

16πGN
R
(
1 + f (�−1R)

)
+ Lmatter

}
,

(12)
The action (12) can be rewritten in the following form:

S̃2 =

∫
d4x

√
−g

[
1

2κ2
{
R (1 + f (ϕ))− ∂µξ∂

µϕ− ξR
}
+ Lmatter

]
.

By the variation over ξ, we obtain �ϕ = R. Substituting
ϕ = �−1R, we reobtain (12).
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The reasons to consider (12) with corrections involving �−1R
as an origin for dark energy is the following. This term is dimen-
sionless and one may construct the distortion function without
introducing any dimensional functions. It appears as a prefactor
for the Newtonian gravitational constant, and explain weakening
of gravity at cosmological scales.
Deser S., Woodard R.P., 2007, Phys. Rev. Lett. 99 111301

(arXiv:0706.2151)
Deffayet C., Woodard R.P., 2009, JCAP 0908, 023 (arXiv:0904.0961)
Nojiri Sh., Odintsov S.D., 2009, Phys. Lett. B 659, 821–826

(arXiv:0708.0924)
Capozziello S., Elizalde E., Nojiri Sh., Odintsov S.D., 2009,

Phys. Lett. B 671 193–198 (arXiv:0809.1535)
Koivisto T.S., 2008, Phys. Rev. D 77, 123513 (arXiv:0803.3399)
Koivisto T.S., 2008, Phys. Rev. D 78 123505 (arXiv:0807.3778)
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Amodification that assumes the existence of a new dimensional
parameter L can be of the form

S =

∫
d4x

√
−g

(
M2

P

2
R +

1

2
RF(�/M2

∗)R− Λ

)
(13)

where M∗ is the mass scale at which the higher derivative terms
in the action become important.
By virtue of the field redefinition one can transform the non-

local gravity action (13) as follows:

S =

∫
d4x

√
−g

(
M2

P

2
(1 + Φ)R +

1

2
τF(�/M2

∗)τ −
M2

P

2
Φτ − Λ

)
with two scalar fields Φ and τ . Variation w.r.t. Φ gives τ = R.
Biswas T., Mazumdar A., and Siegel W. 2006, JCAP 0603

009 (hep-th/0508194), Biswas T., Koivisto T., and Mazumdar
T. 2010, JCAP 1011 008 (arXiv:1005.0590)
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Gravity models with a minimally coupling nonlocal
scalar field

The SFT inspired nonlocal gravitation models are introduced as
a sum of the SFT action of the tachyon field ϕ plus the gravity
part of the action. One cannot deduce this form of the action
from the SFT.
Let us consider the f (R) gravity model with a nonlocal scalar

field:

Sf =

∫
d4x

√
−g

(
f (L2R)

16πGNL2
+

1

α′g2o

(
1

2
ϕF

(
α′�g

)
ϕ− V (ϕ)

)
− Λ

)
,

(14)
where f (L2R) is an arbitrary differentiable function.
We use the signature (−,+,+,+), gµν is the metric tensor,
GN is the Newtonian constant.
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The function F is assumed to be be an entire function.
The function F can be represented as the convergent series:

F(�g) =

∞∑
n=0

fn� n
g .

TheWeierstrass factorization theorem asserts that the function
F can be represented as a product involving its zeroes Jk:

F(J) = JmeY (J)
∞∏
k=1

(
1− J

Jk

)
e

J
Jk
+ J2

2J2
k

+···+ 1
pk

(
J
Jk

)pk
,

where m is an order of the root J = 0 (m can be equal to
zero), Y (J) is an entire function, natural numbers pn are chosen

such that the series
∞∑
n=1

(
J
Jn

)pn+1
is an absolutely and uniformly

convergent one.
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Scalar fields ϕ (associated with the open string tachyon) is
dimensionless, while [α′] = length2, [L] = length and [go] =
length.
Let us introduce dimensionless coordinates x̄µ = xµ/

√
α′,

the dimensionless Newtonian constant ḠN = GN/α′,
the dimensionless parameter L̄ = L/

√
α′, and

the dimensionless ḡo = go/
√
α′.

The dimensionless cosmological constant Λ̄ = Λα′2, R̄ is the
curvature scalar in the coordinates x̄µ:

Sf =

∫
d4x̄

√
−g

(
f (L̄2R̄)

16πḠN L̄2
+

1

ḡ2o

(
1

2
ϕF

(
�̄g
)
ϕ− V (ϕ)

)
− Λ̄

)
In the following formulae we omit bars, but use only dimension-
less coordinates and parameters.
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In the metric variational approach the equations of gravity are
as follows:

f ′(R)Rµν−
f (R)

2
gµν−Dµ∂νf

′(R)+gµν�gf
′(R) = 8πGNTµν,

F(�g)ϕ =
dV

dϕ
, (15)

where the energy–momentum (stress) tensor Tµν is

Tµν = − 2√
−g

δS

δgµν
=

1

g2o

(
Eµν +Eνµ− gµν

(
gρσEρσ +W

))
,

Eµν ≡ 1

2

∞∑
n=1

fn

n−1∑
l=0

∂µ�l
gϕ∂ν�n−1−l

g ϕ,

W ≡ 1

2

∞∑
n=2

fn

n−1∑
l=1

�l
gϕ�n−l

g ϕ− f0
2
ϕ2 + V (ϕ).
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There are two different cases:

• The potential V (ϕ) = C2ϕ
2 + C1ϕ + C0, where C2, C1 and

C0 are arbitrary constants. In this case one can construct the
equivalent action with local fields and quadratic potentials.
Number of local fields is equal to number of roots of F(�),
with a glance of order of them. It has been proved for an
arbitrary analytic function F with simple and double roots.

I.Ya. Aref’eva, L.V. Joukovskaya, S.Yu.V., J. Phys. A:
Math. Theor. 41 (2008) 304003, arXiv:0711.1364;

D.J. Mulryne, N.J. Nunes, Phys. Rev. D 78 (2008) 063519,
arXiv:0805.0449

S.Yu.V., Class. Quant. Grav.27 (2010) 035006,arXiv:0907.0468

S.Yu.V., Phys. Part. Nucl. Lett. 8 (2011) 310–320

A.S. Koshelev, S.Yu.V., Class. Quant. Grav. 28 (2011) 085019
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• The potential V (ϕ) ̸= C2ϕ
2+C1ϕ+C0. In this case situation

is more difficult and exact solutions is possible to find only
adding some scalar field, for example, a k-essence field.

Numerical Solution:

L. Joukovskaya, JHEP 0902 (2009) 045, arXiv:0807.2065

Approximate solutions for field equation:

G. Calcagni and G. Nardelli, Int. J. Mod. Phys. D 19
(2010) 329–338, arXiv:0904.4245

Exact solutions for field equation:

S.Yu.V., Theor.Math.Phys.166 (2011) 392–402, arXiv:1005.5007
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SOLUTIONS FOR EQUATIONS OF MOTION

(S.Yu.V., Theor.Math.Phys.166 (2011) 392-402, arXiv:1005.5007)

Let us consider nonlocal Klein–Gordon equation in the case of
an arbitrary potential:

F(�g)ϕ = V ′(ϕ), (16)

where prime is a derivative with respect to ϕ. A particular so-
lution of (16) is a solution of the following system:

N−1∑
n=0

fn� n
g ϕ = V ′(ϕ)− C, fN�N

g ϕ = C, (17)

where N − 1 is a natural number, C is an arbitrary constant.
In the case f1 ̸= 0 we can choose N = 2.

16



In the spatially flat FRW metric with the interval:

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)
, (18)

where a(t) is the scale factor, we obtain from (17):

f1�gϕ = −f1

(
ϕ̈ + 3Hϕ̇

)
= V ′(ϕ)−f0ϕ−C, f2� 2

g ϕ = C.

(19)
The Hubble parameter

H = − 1

3ϕ̇

(
ϕ̈ + Ṽ ′(ϕ)− C

f1

)
, (20)

where

Ṽ ′(ϕ) ≡ 1

f1

(
V ′(ϕ)− f0ϕ

)
. (21)

Equation

(∂2t + 3H∂t)
(
ϕ̈ + 3Hϕ̇

)
=

C

f2
, (22)
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is as follows

(∂2t + 3H∂t)Ṽ
′ = Ṽ ′′′ϕ̇2 + Ṽ ′′(ϕ̈ + 3Hϕ̇) = − C

f2
. (23)

We eliminate H and obtain

ϕ̇2 =
1

Ṽ ′′′

(
Ṽ ′′Ṽ ′ − C

f1
Ṽ ′′ − C

f2

)
. (24)

The obtained equation can be solved in quadratures. Its gen-
eral solution depend on two arbitrary parameters C and t0.
It allows to find solutions for an arbitrary potential V (ϕ), with

the exception of linear and quadratic potentials.
Note that we do not consider other Einstein equations. In

distinguish to the localization method, which allows to localize
all Einstein equations, this method solves only the field equa-
tion, whereas the obtained solutions maybe do not solve other
equations.
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CUBIC POTENTIAL
The case of cubic potential is is connected with the bosonic

string field theory. Let us find solutions (16) for

V (ϕ) = B3ϕ
3 +B2ϕ

2 +B1ϕ +B0, (25)

where B0, B1, B2, and B3 are arbitrary constants, but B3 ̸= 0.
For this potential we get (24) in the following form

ϕ̇2 = 4C3ϕ
3 + 6C2ϕ

2 + 4C1ϕ + C0, (26)

where

C0 =
(B1 − C)(2B2 − f0)

6f1B3
−

Cf21
6f1f2B3

, C2 =
2B2 − f0

4f1
,

(27)

C1 =
6B3(B1 − C) + (2B2 − f0)

2

24f1B3
, C3 =

3B3

4f1
. (28)
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Note, that C3 ̸= 0 since B3 ̸= 0. Using the transformation

ϕ =
1

2C3
(2ξ − C2), (29)

we get the following equation

ξ̇2 = 4ξ3 − g2ξ − g3, (30)

where

g2 =
(2B2 − f0)

2 − 12B3(B1 − C)

16f21
,

g3 = 2C1C2C3 − C3
2 − C0C

2
3 = − 3B3C

32f2f1
.

A solution of equation (30) is either the Weierstrass elliptic func-
tion

ξ(t) = ℘(t− t0, g2, g3), (31)

or a degenerate elliptic function.
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Let us consider degenerated cases. At g2 = 0 and g3 = 0

ϕ1 =
1

C3(t− t0)2
− C2

2C3
=

4f1
3B3(t− t0)2

− 2B2 − f0
6B3

. (32)

H1 =
5

3(t− t0)
. (33)

We are of interest to obtain a bounded solution, which tends
to a finite limit at t → ∞. We have obtained such solutions in
the following form

ϕ2 = D2 tanh(β(t− t0))
2 +D0, (34)

D2 =
4

3B3
f1β

2, D0 =
1

18B3

(
3(f0 − 2B2)− 16f1β

2
)
,

(35)
where β is a root of the following equation

1024f2f1β
6 + 576f21β

4 + 324B3B1− 27(2B2− f0)
2 = 0. (36)
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Bounded real solutions for equation (26) correspond to real
root of equations (36). Pure image root of (36) correspond to
unbounded real solutions for equation (26), because tanh(βt)2 =
− tan(iβt)2. The solution ϕ2 exists at

C =
1

36B3

(
64f21β

4 − 3(2B2 − f0)
2 + 36B3B1

)
. (37)

H2 =
β(2 cosh(βt)2 − 3)

3 cosh(βt) sinh(βt)
−

−3B3(D2 tanh(βt)
2 +D0)

2 + (2B2 − f0)(D2 tanh(βt)
2 +D0) +B1

6f1D2β tanh(βt)(1− tanh(βt)2)
.
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Cosmological model with a nonlocal scalar field
and a k-essence field
Let us consider the k-essence cosmological model with a non-

local scalar field:

S2 =

∫
d4x

√
−gα′

(
R

16πGN
+

1

g2o

(
1

2
ϕF(�g)ϕ− V (ϕ)

)
− P − Λ

)
,

(38)
where

X ≡ − gµν∂µΨ∂νΨ. (39)

In the FRW metric X = Ψ̇2.
The standard variant of the k-essence field Lagrangian

P(Ψ, X) =
1

2
(pq(Ψ)−ϱq(Ψ))+

1

2
(pq(Ψ)+ϱq(Ψ))X+

1

2
M4(Ψ)(X−1)2.

Here pq(Φ), ϱq(Φ), and M4(Φ) are arbitrary differentiable
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functions. The energy density is

E(Ψ, X) = (pq(Ψ) + ϱq(Ψ))X + 2M4(Ψ)(X2−X)−P(Ψ, X).

The Einstein equations are

3H2 = 8πGN (ϱ + E + Λ), (40)

2Ḣ + 3H2 = − 8πGN (p + P − Λ). (41)

From S2 we also have equation

F(�g)ϕ = V ′(ϕ), (42)

and
Ė = − 3H (E + P) . (43)
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For any real differentiable function H0(t), there exist such real
differentiable functions ϱq(Φ) and pq(Φ) that the functionsH0(t)
and Ψ(t) = t are a particular solution for the system of the
Einstein equations.
This property can be generalized on the model with the ac-

tion S2.
If Ψ(t) = t, then

E = ϱq(Ψ) = ϱq(t), P = pq(Ψ) = pq(t). (44)

Substituting ϱq pq in (40)–(43), we get

ϱq(Ψ) = ϱq(t) =
3

8πGN
H2
0(t)− ϱ(t)− Λ, (45)

pq(Ψ) = pq(t) = − ϱq(t)− ϱ(t)− p(t)− 1

4πGN
Ḣ(t). (46)
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Let ϕ2 is a solution to system (17) at N = 2.
Using �2

gϕ2 = C/f2, we get

ϱ(ϕ2) = E00(ϕ2) +W (ϕ2), p(ϕ2) = E00(ϕ2)−W (ϕ2),

where

E00(ϕ2) =
1

2g2o

(
f1(∂tϕ2)

2 + 2f2∂tϕ2∂t�gϕ2 + f3(∂t�gϕ2)
2
)
,

W (ϕ2) =
1

g2o

(
f2
2
(�gϕ2)

2 +
f3C

f2
�gϕ2 +

f4C
2

2f22
− f0

2
ϕ22 + V (ϕ2)

)
.

26



Conclusion

We can propose the following algorithm to con-
struct exact solvable k-essence cosmological models
with a nonlocal scalar fields:

• For given potential V (ϕ) find H(t) and ϕ(t) as a
particular solution for

F(�g)ϕ = V ′(ϕ), (47)

•Calculate p and ϱ.

•Using the Einstein equations, calculate ϱq(Ψ) and
pq(Ψ).

The exact solution corresponds to Ψ(t) = t.

27


