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Higher-Spin interactions

Higher spins: s > 2

Higher-spin interactions
A.Bengtsson, I.Bengtsson, Brink (1983), Berends, Burgers, van Dam (1984)

S = S2 + S3 + . . .

S3 =
∑
p,q,r

(Dpϕ)(Dqϕ)(Drϕ)ρp+q+r+1
2d−3

s derivatives in interactions.

String: ρ ∼
√
α′

HS Gauge Theories (m = 0): Fradkin, M.V. (1987)

AdS4 : (X0)2 + (X4)2 − (X1)2 − (X2)2 − (X3)2 = ρ2 , ρ = λ−1

The ρ→∞ limit is ill-defined at the interaction level

Cubic vertices in Minkowski space of any dimension Metsaev (2005)

s1 + s2 − s3 ≤ 2N ≤ s1 + s2 + s3

Manvelyan, Mkrtchyan, Ruhl; Sagnotti, Taronna; Fotopoulos, Tsulaya; (2010)
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Cartan gravity in the AdSd covariant formalism

wAB = −wBA = dxnwABn connection of AdSd

o(d− 1,2)–curvature

rAB = dwAB + wAC ∧ wCB ,

w = wABtAB = ωLabLab + λeaPa

Provided that ea is nondegenerate

rAB(w) = 0

implies that ωLab and ea describe AdSd. λ
−1 is radius of AdSd.

Covariant definitions: compensator field V A(x) normalized to

V AVA = λ−2. Lorentz algebra is the stability subalgebra of V A.

Convenient choice is the standard gauge V A = λ−1δAd . It leads to stan-

dard formulae from covariant definitions

EA = DV A ≡ dV A + wABVB , ωLAB = wAB − λ2(EAV B − EBV A) .
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Action

S =
(−1)d+1

4λ2κd−2

∫
Md

GA1A2A3A4
∧ rA1A2 ∧ rA3A4 ,

where

GA1...Aq = εA0...AdVA0
EAq+1

∧ . . . ∧ EAd

DGA1...Aq ' (−1)qqλ2V [A1GA2...Aq] , tA := DEA ≡ rABVB = 0

GA1...Aq ∧ EC =
q

d+ 1− q
G[A1...Aq−1

(
ηAq]C − λ2V CV Aq]

)
.

Generalized Einstein equations(
GA1A2A3

−
(d− 4)

4λ2
GA1A2A3A4A5

∧ rA4A5

)
∧ rA1A2 = 0 .
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Symmetric higher-spin gauge fields

A spin s ≥ 2 massless field can be described (2001) by a one-form

dxnωnA1...As−1,B1...Bs−1 carrying the irreducible representation of o(d− 1,2)

described by the traceless two-row rectangular Young diagram of length

s− 1

ω(A1...As−1,As)B2...Bs−1 = 0 , ωA1...As−3C
C,
B1...Bs−1 = 0 .

Linearized HS curvature R1 has simple form

R
A1...As−1,B1...Bs−1
1 = D0(ωA1...As−1,B1...Bs−1) = dω

A1...As−1,B1...Bs−1
1

+(s− 1)
(
w

(A1
0 C ∧ ω

CA2...As−1),B1...Bs−1
1 + w

(B1
0 C ∧ ω

A1...As−1,CB2...Bs−1)
1

)
,

AdSd background gauge field wAB0 satisfies the zero curvature condition

D2
0 = 0 .

Bianchi identities: D0R1 = 0.
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Lorentz covariant irreducible fields dxnωna1...as−1,b1...bt identify with those

components of dxnωnA1...As−1,B1...Bs−1, that are parallel to V A in some s−t−1

indices and transversal in the rest t indices. The dynamical frame-like

and auxiliary Lorentz-like fields are those with t = 0 and t = 1

eA1...As−1 = ωA1...As−1,B1...Bs−1VB1
. . . VBs−1

ωA1...As−1 ,C = ΠV ω
A1...As−1,CB2...Bs−1VB2

. . . VBs−1

The HS gauge fields with t > 1 are called extra fields.

The free action that describes properly HS gauge fields is

S2 =
1

2

∫
Md

s−2∑
p=0

a(s, p)VC1
. . . VC2(s−2−p)

GA1A2A3A4
∧

R
A1B1...Bs−2
1 ,

A2C1...Cs−2−pD1...Dp ∧RA3
1 B1...Bs−2,

A4Cs−1−p...C2(s−2−p)
D1...Dp ,

a(s, p) = b(s)λ−2(p+1)(d− 5 + 2(s− p− 2))!! (s− p− 1)

(s− p− 2)!
,

The coefficients are chosen so that the variation of the action over all

extra fields is identically zero: at the linearized level, only the frame-like

and Lorentz-like fields contribute to the action
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First On-Shell Theorem

R
A1...As−1,B1...Bs−1
1 ∼ E0As ∧ E0BsC

A1...As,B1...Bs .

Generalized Weyl tensors CA1...As,B1...Bs parametrize those components of

the curvatures that may remain nonzero when the field equations and

constraints on extra fields are imposed. CA1...As,B1...Bs is described by a

traceless V A–transversal two-row rectangular Young diagram of length s

C(A1...As,As+1)B2...Bs = 0 , CA1...As−2CD,B1...Bs ηCD = 0 , CA1...As−1C,B1...Bs VC = 0 .

Consequences:

R1A...V
A ∼ 0 , R1A... ∧ EA ∼ 0 , G[A1...Aq ∧RAq+1]

1 ... ∼ 0 .

Dual curvature (d− 2)–form

R′A1...As−1 ,B1...Bs−1 ,
= GAs−1Bs−1

FGRFA1...As−2 ,GB1...Bs−2
.

Important property: any d-form F (R′, R) bilinear in R and R′ is symmetric

F (R′, R) ∼ F (R ,R′) .
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Cubic interactions

Current ΩΦ defined via

δS3 =
∫
Md

δωΦ ∧ΩΦ(ω) , ΩΦ(ω) =
δS3

δωΦ
,

respects gauge invariance under δωΦ = D0ωΦ if it obeys the conservation

condition

D0ΩΦ ∼ 0 .

in the case with several gauge fields the integrability condition should

be respected

δΩΛ

δωΦ
= (−1)pΦpΛ

δΩΦ

δωΛ
.

It is this condition that makes difficult to introduce Noether current

interactions for a system of gauge fields of different types
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Different types of vertices

Abelian vertices

S3 =
∫
Md

V Φ1Φ2Φ3 ∧R1 Φ1
∧R2 Φ2

∧R3 Φ3
, R1 Φ = D0ωΦ ,

S3 =
∫
Md

UCs1Cs2Cs3 ,

C: generalized Weyl tensors which parametrize on-shell nontrivial com-

ponents of the linearized curvatures R1 Φ

Current vertices

S3 =
∫
Md

ωΦ ∧ Ω̃Φ(C) , D0Ω̃Φ(C) ∼ 0

for a p-form ωΦ and a D0on shell–closed (d−p)–form Ω̃Φ(C) (d−p) bilinear

in the HS Weyl zero-forms
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Non-Abelian curvatures

are typical for the actions constructed from bilinears of some non-Abelian

curvatures R = R1 + ω2 since the cubic part of the lagrangian L = 1
2RR

has the structure R1ω
2.

For the curvature

Rα = dωα + fαβγω
βωγ ,

fαβγ contribute linearly to the action while the on-shell analysis involves

only Abelian ( free) gauge transformation law.

For the cubic order analysis it does not matter whether or not fαβγ satisfy

the Jacobi identities.

What does matter is the symmetry property of the coefficients: the

existence of such an metric gαβ that the structure coefficients fαβγ =

gαρf
ρ
βγ are totally (graded) antisymmetric

fαβγ = −fαγβ = −fβαγ .
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Chern-Simons vertices

ω3–type vertices we call Chern-Simons vertices.

Except for the case of true Chern-Simons vertices where ω3 is a d–

form, all other Chern-Simons vertices in AdSd are equivalent up to total

derivatives to some curvature-dependent vertices

Being true in AdS, this property may not be true in Minkowski geometry

where nontrivial Chern-Simons vertices can exist.
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Minkowski versus AdS

The situation in AdSd geometry is different because of presence of the

dimensionfull parameter ρ = λ−1.

Let VAdS be a deformation of a Minkowski vertex VM . It may happen

that it admits a representation

VAdS ∼ λ−2(dUAdS + ṼAdS)

with U and ṼAdS containing, respectively, N + 1 and N + 2 derivatives of

the dynamical fields. This implies that VAdS is equivalent to ṼAdS for all

λ 6= 0.

AdSd vertices that contain different numbers of derivatives can belong

to the same equivalence class

13



Vertex tri-complex

Consider a differential form

F (ω,R1|V,E) = GA1...AqV C1 . . . V CpF[A1...Aq],C1...Cp
(ω,R1) = GA1...AqF[A1...Aq]

(ω,R1|V ) ,

Direct computation gives dF = QF

Q = Qtop + λ2Qsub +Qcur ,

QtopF = (−1)d−q
q

d+ 1− q
GA1...Aq−1

∂

∂VAq
FA1...Aq(ω,R1|V ) ,

QsubF = (−1)d
q

d+ 1− q
GA2...Aq ∧ V A1

(
d+ 1− q + V E

∂

∂V E

)
FA1...Aq(ω,R1|V )

QcurF = (−1)d−qRα1
∂

∂ωα
F (ω,R1|V ) .

(Qtop)2 = 0 , (Qsub)2 = 0 , (Qcur)2 = 0 ,

{Qtop , Qsub} = 0 , {Qtop , Qcur} = 0 , {Qcur , Qsub} = 0 .

Qtop, Qsub and Qcur form tri-complex.
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Vertex cohomology

Let F (ω ,R1) be a d–form. Consider the action

S =
∫
Md

F (ω ,R1) .

Using convention εα ∂
∂ωα(R1) = 0 gauge variation is

δ
∫
Md

F (ω ,R1) =
∫
Md

εα
∂

∂ωα
(QF (ω ,R1)) ,

Gauge invariance requires

QF (ω ,R1) ∼ G(R1) .

Gauge invariant vertices: Hd(Q).
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Flat limit

Q = F fl + λ2Qsub , Qfl = Qtop +Qcur .

λ2 iin front of Qsub signals that QsubF contains at least two less space-time

derivatives than QtopF and QcurF . Since the term with Qsub disappears in

the flat limit, vertices in Minkowski space are controlled by Qfl.

Gauge invariant vertices in Minkowski space: Hd(Qfl).

Vertex F is pure iff

F ∈ Hd(Qfl) , QsubF = 0 ⇒ QF = 0

In terms of HS connections, pure vertices have the same form in Minkowski

and AdSd.
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Spin two

Two Q-closed vertices

B1 = GA1...A5V CRA1 ,A2
RA3 ,A4

ωA5 ,C

B2 = GA1...A4RA1 ,A2
ωA3

BωA4 ,B .

B1 can be represented in the form

B1 = QsubU , U = −
1

2
(−1)dGA1...A6RA1 ,A2

RA3 ,A4
ωA5 ,A6

.

QtopU = 0 , QcurU = −
1

2
GA1...A6RA1 ,A2

RA3 ,A4
RA5 ,A6

.

B1 is Qfl–closed. Since B1 is Qsub–exact, it is pure hence being gauge

invariant both in Minkowski space and AdSd.

B2 is also pure. Both B1 and B2 contain up to four space-time derivatives

of the vielbein: some combination of B1 and B2 should be Qfl exact.

(d− 4)B1 − 3B2 ∼ (−1)dQfl(E2 − (d− 4)E1)) ,
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E1 = GA1...A5V CRA1 ,A2
ωA3 ,A4

ωA5 ,C , E2 = GA1...A4ωA1
BRA2 ,A3

ωA4 ,B .

However, being equivalent in Minkowski space, B1 and B2 are not equiv-

alent in AdSd. Indeed,

(d− 4)B1 − 3B2 ∼ (−1)d(Q− λ2Qsub)(E2 − (d− 4)E1) ,

AdS deformation of (d − 4)B1 − 3B2, that was trivial in Minkowski case

gives rise to the vertex

V3 =
1

2
(−1)dQsub(E2 − (d− 4)E1) .

V3 is Q-closed since B1 and B2 are. Being Qsub–closed, V3 is pure. Its

explicit form is

V3 = (d−3)GA1...A4V CV CRA1A2
ωA3CωA4C+GA1A2A3V C

(
ωC

DωA1A2
ωA3D+ωA1

DωA2CωA3D

)
.

V3 contains two derivatives, reproducing cubic part of the Einstein action

with the cosmological term.

Spin two example illustrates the general phenomenon that AdS defor-

mation of a higher-derivative vertex trivial in flat space may become

nontrivial in AdSd.

17-



Spin three

Two pure vertices

F3 = GA1A2A3V C(3)tr

(
ωA1B,A2E

(
− 2{ωA3

B
,CD, ω

ED
,C(2)} − {ωA3D,C

B , ωED,C(2)}
)

+ ωA1B,FC

(
2{ωA2

B
,CG , ωA3

F
,
G
C}+

4

3
{ωA2G,

B
C , ωA3

F
,
G
C}
))
. (1)

F3 contains three spin three fields that carry at most three derivatives.

H5 = GA1A2A3A4V CV Ctr

(
RA1

G
,A2

D
(
2{ωA3C,A4E , ωCD,G

E} − 3{ωA3DD ,G
E , ωA4E,CC}

+6{ωA3G ,C
E , ωA4D,CE}+ 8{ωA3

E
,CG , ωA4D,CE}+ {ωA3

E
,CG , ωA4E ,C

D}
))
. (2)

H5 contains up to five derivatives. Using the on shell condition it is

straightforward, although somewhat lengthy, to check that

QtopH5 ∼ 0 , QsubH5 ∼ 0 , QcurH5 ∼ 0 .

That H5 is not Qtop–exact is easy to see.

F3 is of Chern-Simons type. Hence it is equivalent to a higher-derivative

vertex.
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Higher-spin algebra

Generic element

A(Ŷ ) =
∑
n
AA1...An ,B1...BnT

A1...An ,B1...Bn ,

where the coefficients are projected to two-row traceless Young diagrams

A{A1...An,An+1}B2...Bn = 0 , AA1...An−2C
C,
B1...Bn = 0 .

(A ◦B)A(n),B(n) =
∑
kl

f
A(n),B(n)
C(k),D(k) ;F (l),G(l)(h)AC(k),D(k)BF (l),G(l)

HS algebra possesses the invariant trace operation

tr(A ◦B) = tr(B ◦A) , tr(A) = A0 , A0 = AA(0),B(0) .

RA(n),B(n) = dωA(n),B(n)(x) + (ω(x) ◦ ∧ω(x))A(n),B(n) ,
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Cubic Action

S =
1

2

∫
Md

∑
s

s−2∑
p=0

a(s, p)VC1
. . . VC2(s−2−p)

∧

tr

(
RB1...Bs−1,

C1...Cs−2−pD1...Dp+1 ∧R′B1...Bs−1,
A4Cs−1−p...C2(s−2−p)

D1...Dp+1

)
.

tr is the trace over matrix indices in the case of HS algebras with non-

Abelian Yang-Mills symmetries.

Choosing the coefficients in such a way that the on-shell (V A-independent

takes the form

S ∼
1

2

∫
Md

Tr(R ∧ ◦R′)

implies its gauge invariance under the HS gauge transformations

δR = [R , ε]◦

due to the cyclic property of trace and on-shell property

F (R′, R) ∼ F (R ,R′) .
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sp(2) invariance

In terms of generating functions

A(Y ) =
∑
n
AA1...An ,B1...BnY

A1
1 . . . Y An1 Y

B1
2 . . . Y Bn2 .

That AA1...An ,B1...Bn obeys the properties of two-row traceless Young di-

agrams is encoded by the constraints

τijA(Y ) = 0 , ∆ijA(Y ) = 0 ,

τi
j = Y Ai

∂

∂Y Aj
−

1

2
δ
j
iY

A
k

∂

∂Y Ak
, ∆ij =

∂2

∂Y Ai ∂YAj

i, j, . . . = 1,2 , ai = εijaj , ai = ajεji , εijεij = −εji , ε12 = 1

τij = τji generate sp(2) with the invariant symplectic form εij.

Non-zero vertices are represented by spµ(2) singlets for all µ
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Vertex generating functions

It is convenient to replace GA1...Aq by a product of anticommuting vari-

ables ψA1 . . . ψAq. All o(d− 1,2) invariant contractions are represented by

operators

∆iµjν = ∆jνiµ =
∂2

∂Y Aiµ ∂YAjν
, piµ = V A

∂

∂Y A
iµ
, σiµ = ψA

∂

∂Y A
iµ
.

General vertex

F (A) = F (∆, p, σ)
N∏
ρ=1

Aρ(Yρ)
∣∣∣∣
Yσ=0

That Aν(Yν) describes traceless tensors implies ∆iµjµAµ(Yµ) = 0 .

F (∆, p, σ) should be spµ(2) invariant for any µ.

Using labels ν̆ for A(Yν) = R1(Yν), the on-shell conditions are

piν̆F ∼ 0 ,
∂

∂Y Aiν
∂

∂ψA
F ∼ 0
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Non-Abelian and current vertices

In terms of generating functions pure non-Abelian vertex

L(V ) = V α
1α2α3

123 (∆)R′
α1(Y1)ωα2(Y2)ωα3(Y3)

∣∣∣∣
Yi=0

, V α
1α2α3

123 (∆) = −V α
1α3α2

132 (∆) .

R′(Y ) is the dual curvature (d− 2)–form.

L(V ) is Qtop and Qsub-closed because it does not contain the compensator

QcurL = (−1)d
(
V α

1α2α3

123 (∆)− V α
2α3α1

231 (∆)
)
R′
α1(Y1)Rα2(Y2)ωα3(Y3)

∣∣∣∣
Yi=0

,

QcurL(V ) = 0 with totally antisymmetric V α
1α2α3

123 in which case L(V ) is

pure: QflL(V ) = 0, QsubL(V ) = 0

Pure current vertices

F (Ũ) = −QsubT (Ũ) = σi1σ
iiσj2σ

j2
σk3p

k3
Ũα

1α2α3

123 (∆)Rα1(Y1)Rα2(Y2)ωα3(Y3)
∣∣∣∣
Yi=0

.
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Derivative reduction

All non-Abelian vertices L(V ) and current vertices F (Ũ) are pure vertices

with s1 + s2 + s3 − 2 derivatives. Since there exists just one nontrivial

Minkowski vertex of this order of derivatives, most of vertices L(V ) and

F (Ũ) should be quasi exact.

Consider

I = −wα
1α2α3

123 (∆)σi1σ
i1σj2σ

j2
σk3p

k3
Rα1(Y1)Rα2(Y2)ωα3(Y3)

)∣∣∣∣
Y=0

,

J =
3

d− 4
w

(α1α2α3)
(123) (∆)σi1σ

i1σj2σk3∆j2k3
Rα1(Y1)ωα2(Y2)ωα3(Y3)

with arbitrary wα
1α2α3

123 (∆) and w
(α1α2α3)
(123) (∆) = 1

6
∑
µ6=ν 6=ρw

αµαναρ
µνρ (∆) .

One can see that

I + J = (−1)dQfl(H +W ) ,

H = w
(α1α2α3)
(123) (∆)(∆)σi1σ

i1σj2σk3∆j2k3
ωα1(Y1)ωα2(Y2)ωα3(Y3)

∣∣∣∣
Y=0

W = wα
1α2α3

123 (∆)σ1iσ
i
1σ2jσ

j
2σk3p

k3
Rα1(Y1)ωα2(Y2)ωα3(Y3)

∣∣∣∣
Y=0
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This implies that the sum of the current vertex I and non-Abelian vertex

J is quasi exact. (cf the case of spin two).

To perform further reduction more tricky consequences of the on-shell

conditions should be used

QtopN ∼
(−1)d

d− 5
σk1σ

k1
σj2σ

j2
σl3p

l3(2Φ12Φ13Φ23 + Φ2)Nα1α2α3

123 (∆)Rα1(Y1)Rα2(Y2)ωα3(Y3)
∣∣∣∣
Y=0

.

N = Φ12N
α1α2α3

123 (∆)σi1σ
i1σj2σ

j2
σk3σ

k3
pn3pm3∆n3u1

∆u1v2∆v2m3
Rα1(Y1)Rα2(Y2)ωα3(Y3)

∣∣∣∣
Y=0

.

Φµν = ∆iµ
jν∆jν

iµ µ 6= ν , Φ ≡ Φ123 = ∆i1
j2

∆j2
k3

∆k3
i1 .

As a result any vertex I with

wα
1α2α3

123 (∆) =
(
2Φ12Φ13Φ23 + Φ2

)
vα

1α2α3

123 (∆)

is quasi-exact and, hence, is equivalent some lower derivative vertex.

Similarly one proceeds with further reductions of derivatives.

This mechanism works for d ≥ 6. In d = 4 quasi exact current vertices do

not exist. Hence 4d triangle vertices result from non-Abelian vertices.

Indeed, the list of independent 4d vertices is shorter than for any d.
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Comparison with flat space results

Minkowski vertices Metsaev (2005); Manvelyan, Mkrtchyan, Ruhl (2010)

s1 + s2 − s3 ≤ 2N ≤ s1 + s2 + s3

The vertices obtained in AdSd require si − 1 satisfy triangle inequalities

si + sj − sk − 1 ≥ 0 , i 6= j 6= k .

Vertices, that can be constructed in terms of connection one-forms and

curvature two-forms, should respect the triangle inequalities otherwise

otherwise contraction of indices between two-row Young diagrams gives

zero. The reason why some of vertices were missed is that we did not

consider vertices that contain Weyl 0-forms directly.

Particular examples:

The vertex with maximal number of derivatives s1 + s2 + s3 is not on

the list since all vertices considered considered so far contain at most

s1 + s2 + s3 − 2 derivatives since all R3 vertices are quasi exact.

25



interactions of a spin-s gauge field with two spin zero scalar fields. Scalar

is described by the zero-form C(x) and its derivatives = elements of the

Weyl module for the spin zero field. In this case of current interactions

between a spin-s gauge field and HS currents built from (derivatives) of

the scalar field the triangle inequalities are not respected.

To incorporate vertices of general type into the scheme it is necessary

extend First-On-Shell Theorem to the Central on-shell theorem that

contains the equations on zero-forms in the Weyl module C(x)

D̃C = 0 .
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Towards full nonlinear action

Extension to the full system of fields that enter the free unfolded formu-

lation of massless HS fields, including Weyl zero-forms, reduces analysis

of cubic HS interactions to the analysis of vertices that are on-shell-

closed by virtue of unfolded field equations. The idea is to look for a

nonlinear action

S =
∫
L ,

where d-form L is on-shell closed

dL ∼ 0

by virtue of the nonlinear unfolded equations and such that the quadratic

part of the action coincides with the standard free action of massless

fields.

Lagrangians of this type will describe HS dynamics modulo local field

redefinitions.
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Conclusions

Vertices with different numbers of derivatives are related in AdS

Vertex tri-complex classifies nontrivial vertices in AdSd

AdS–tri-complex contains a Minkowski sub-bicomplex

Vertex tri-complex applies to mixed symmetry type of general type and

higher-order vertices

HS vertices for symmetric fields are uniformally formulated as non-

Abelian and current interactions that carry s1 + s2 + s3 − 2 derivatives

Missed vertices do not respect triangle inequalities for spins, requiring

explicit appearance of the Weyl tensor and its derivatives

Full nonlinear Lagrangian as a on-shell closed form dL ∼ 0 by virtue of

full nonlinear unfolded equations
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The novel feature of our proposal is that the analysis of the nonlinear

action is (and, in fact, should be) on-shell beyond its free field part. This

suggestion changes the strategy of the action construction: instead of

looking for an action, that gives rise to the unfolded equations, having

unfolded equations one should find a lagrangian that is on-shell closed

by virtue of unfolded equations.

Such an approach fits very well the analysis of HS theory performed by

Giombi and X.Yin 2009, in the context of AdS/CFT interpretation of

HS theory, which is solely based on the unfolded dynamics approach.

Remarkably, this construction gets very similar to the effective action

construction of QFT.
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