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Higher-Spin interactions

Higher spins: s > 2

Higher-spin interactions
A.Bengtsson, I.Bengtsson, Brink (1983), Berends, Burgers, van Dam (1984)

S=824+83+ ...

§3 = Y (DPo) (DY) (D) HatrH30-3

p,q,T
s derivatives in interactions.
String: p~Va!
HS Gauge Theories (m = 0): Fradkin, M.V. (1987)
AdSy: (XO)? + (X2 = (X2 - (X2 - (X2 =p?,  p=2r7"

The p — oo limit is ill-defined at the interaction level

Cubic vertices in Minkowski space of any dimension Metsaev (2005)

$1+ 82 —s3 < 2N < 51+ so + s3

Manvelyan, Mkrtchyan, Ruhl; Sagnotti, Taronna; Fotopoulos, Tsulaya; (2010)
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Cartan gravity in the AdS,; covariant formalism

wAB = —wBA = da2wAB connection of AdSy

o(d — 1,2)—curvature
rAB — quAB 4y AC A B

w=wBt g = wF®L,, + NP,
Provided that % is nondegenerate
TAB(w) =0

implies that w’ 9 and e* describe AdS;. A~ ! is radius of AdS,.

Covariant definitions: compensator field V4(z) normalized to

VAV, = A~2. Lorentz algebra is the stability subalgebra of V4.
Convenient choice is the standard gauge vA = >\—16§‘. It leads to stan-

dard formulae from covariant definitions

EA=DvA=avA+w Py, WA =B N2(EAVE - EPVA).



Action

(—1)d+1 A1As A A3A
where
GAL-Ag = EAO"'AdVAOEAq_I_l ARERWAY Sy
GAl...Aq A EC — q G[Al...Aq_1<nAq]C . AQVCVAQ]> ‘
d+1—q
Generalized Einstein equations
(d—4) AsA A A
(GA1A2A3 - 4—>\2GA1A2A3A4A5 Ared 5) Artitz=0.



Symmetric higher-spin gauge fields

A spin s > 2 massless field can be described (2001) by a one-form
dawpA1--4s-1,B1--Bs—1 carrying the irreducible representation of o(d —1,2)
described by the traceless two-row rectangular Young diagram of length
s—1

w(Al---As—laAS)BQ---Bs—l — O, CUAl'"AS_?’CC Bq...Bs_1q —0.

)

Linearized HS curvature R; has simple form

RA1-~-AS—1>B1"'BS—1 — Do(wAl...AS_l,Bl...Bs_l) — dw

_|_(S_1>( (A1 oA fz‘b As-1):BrBs1 4 (Bl oA {11 As—lacBQ---Bs—l)),

Al---As—laBlu-Bs—l

AdS; background gauge field wéB satisfies the zero curvature condition
2 __

D§ = 0.

Bianchi identities: DgR; = 0.



Lorentz covariant irreducible fields dzw,%1%-1b1--% identify with those
components of dzw,414s-1,81.-Bs—1 that are parallel to V4 in some s—t—1
indices and transversal in the rest ¢ indices. The dynamical frame-like

and auxiliary Lorentz-like fields are those witht=0and t =1
eAl---As—l — wAl---As—laBl---Bs—lvBl . VBs—l
wAl---As—l ,C — ﬂVwAl---As—l7CBQ-HBs—lVB2 L VBs—l

The HS gauge fields with ¢t > 1 are called extra fields.

The free action that describes properly HS gauge fields is

1 s—2
So = 5 /Md ZO a(s,p)Vcl - VCQ(S_Q_p)GA1A2A3A4 N\
p:

A1B1..Bs 2 A>Cq..Cy_»_,D71...D Az
%) : STeTp PANRI®B,..B, o, p)Dl...Dp,

a(s,p) = b(s))\—Q(p-H)(d— 542(s—p—2))1(s—p—1)
| (s —p—2)!

The coefficients are chosen so that the variation of the action over all

Y

extra fields is identically zero: at the linearized level, only the frame-like

and Lorentz-like fields contribute to the action



First On-Shell Theorem

A, 1,B1..B

Ag... -1 A1...As,B1...B
R4 i ~ Eg g, N Eg g, CTLiPl s

Generalized Weyl tensors ¢A1--4sB1---Bs pagrametrize those components of
the curvatures that may remain nonzero when the field equations and

constraints on extra fields are imposed. CcA1---As,B1.--Bs js described by a

traceless V4—transversal two-row rectangular Young diagram of length -
(A1 As,Ag11)B2..Bs _ 0, A1 As 20D, By...Bg nop =0, CA1--As_1C,B1...Bs Vo=0
Consequences:
A
Ria VA~0,  Ria nBA~0,  aAop gl o
Dual curvature (d — 2)—form
R =G FGp
Ay..Ag_1,B1..Bs_1, — YAs_1Bs_1 FAq...Aq_>,GB1...Bs_> -

Important property: any d-form F(R’, R) bilinear in R and R’ is symmetric

F(R',R) ~F(R,R).



Cubic interactions

Current Q% defined via

553 = / Swa A QP (w) QP (w) = 857
Md ’ 5w¢ ’
respects gauge invariance under dwqg = Dowg if It Oobeys the conservation

condition
Do2® ~ 0.

in the case with several gauge fields the integrability condition should

be respected

A P
082 = (—1)PePA 082 .
5w¢ 5&)/\

It iIs this condition that makes difficult to introduce Noether current

interactions for a system of gauge fields of different types



Different types of vertices

Abelian vertices

3 _ D1 DD B
S —/MdV L7273 ARy oy ANRoopy N R3 g Ry ¢ = Dowg ,

3 _
$3 = /Md UCs;Cs,Css

C: dgeneralized Weyl tensors which parametrize on-shell nontrivial com-

ponents of the linearized curvatures Rq ¢

Current vertices

53 = /Md wo ANOP(C),  DeQ®(C) ~ 0

for a p-form wg and a Dgon shell—closed (d—p)—form Q®(C) (d—p) bilineatr

in the HS Weyl zero-forms



Non-Abelian curvatures

are typical for the actions constructed from bilinears of some non-Abelian
curvatures R = Rq + w? since the cubic part of the lagrangian L = %RE

has the structure Rjw?.

For the curvature
R® = dw® + f§ wPw?,

fg‘7 contribute linearly to the action while the on-shell analysis involves
only Abelian ( free) gauge transformation law.

For the cubic order analysis it does not matter whether or not f’g7 satisfy
the Jacobi identities.

What does matter is the symmetry property of the coefficients: the
existence of such an metric g,5 that the structure coefficients f,35, =

goépfg7 are totally (graded) antisymmetric

fozﬁy — _foryﬂ — _f5a7°



Chern-Simons vertices
w3—type vertices we call Chern-Simons vertices.

Except for the case of true Chern-Simons vertices where w3 is a d-
form, all other Chern-Simons vertices in AdS; are equivalent up to total

derivatives to some curvature-dependent vertices

Being true in AdS, this property may not be true in Minkowski geometry

where nontrivial Chern-Simons vertices can exist.



Minkowski versus AdS

The situation in AdS; geometry is different because of presence of the
dimensionfull parameter p = A~ 1.
Let V, 49 be a deformation of a Minkowski vertex V,,. It may happer

that it admits a representation

Vaas ~ A 2(dU gq5 + Vags)

with U and VAdS containing, respectively, N +1 and N 4+ 2 derivatives of
the dynamical fields. This implies that V,,¢ is equivalent to V4, for al

A # 0.

AdS; vertices that contain different numbers of derivatives can belong

to the same equivalence class



Vertex tri-complex

Consider a differential form
F(W,R]_lv, E) — GAlAqVC]' . VCpF[AlAq],C’le(val) p— GAlAqF[AlAq] ((J‘)7 _F

Direct computation gives dF = QF

Q= Qtop + )\QQSUb + chr’

0
topp — (1 d—q q GAl'“Aq—l RV
q 0
QMF = (-1)- - qGAQ“'Aq ANVA(d+1 =g+ VEZg) Fay ay (@ Ra|V)

_ o
QCWF — (—1)d QR%@F(w,Rl\V).

(Qtop)Q =0, (qub)Q =0, (chT)Q —0

{Qtop ’ qub} =0, {Qtop , chr} =0, {chr , qub} — 0.

Qtor, Qsub and QU form tri-complex.



Vertex cohomology

Let F'(w,R1) be a d—form. Consider the action

S=/MdF(w,R1).

Using convention ¢®;2:(R;) = 0 gauge variation is
0
- (8
5[ JFw. R) = [ - C(QF(w, k1)),
Gauge invariance requires

QF(w,R1) ~G(Ry).

Gauge invariant vertices: HY(Q).



Flat Iimit

Q= Ffl + AQqub’ Qfl — Qtop + chr .

A2 jin front of Q%% signals that Q5“YF contains at least two less space-time
derivatives than QPF and Q' F. Since the term with Q%% disappears in

the flat limit, vertices in Minkowski space are controlled by Qfl.
Gauge invariant vertices in Minkowski space: H4(Q/)).

Vertex F' is pure iff

F e HY(QM, Q% = 0 = QF =0

In terms of HS connections, pure vertices have the same form in Minkows
and AdS,.



Spin two

Two (Q-closed vertices
_ ~Aq... Ay, C
By =GV R A, Ra5,4,W45 C

— A1... A B
By = G R Ay A,WA3T WA, B -

B1 can be represented in the form

1
B = Q*“U, U= —5(—1)dGA1“'A6RA1 AsRAs AwAs Ag -

1
QPU =0,  QUU=-_G""RA 4,Ray4,Ra5 A

B1 is Qfl—closed. Since B; is Q%“’—exact, it is pure hence being gauge

invariant both in Minkowski space and AdS;.

B> is also pure. Both By and B, contain up to four space-time derivatives

of the vielbein: some combination of B; and B> should be Q/! exact.

(d—4)B1 —3Ba ~ (—=1)4Q/Y(Ey — (d — 4)E1)),



_ 4Aq1...A C __ 4Aq...A B
E1 =G 1OV RA) AWA5 AyWAs C By =G Mwa, " RA, A3wA, B -

However, being equivalent in Minkowski space, B; and B> are not equiv-
alent in AdS;. Indeed,

(d—4)By — 3B ~ (—1)U(Q — N?Q*“") (B — (d — 4)Eq),

AdS deformation of (d — 4)B; — 3B5>, that was trivial in Minkowski case

gives rise to the vertex
1
Va3 =_(-1)Q™" (B2 — (d— 4)E1).

V3 is @-closed since By and B> are. Being Qsu>—closed, V3 is pure. Its

explicit form is

— Aq.. A CyC A1A-A C D D
V3 = (d-3)GM-MVOVOR, s wacwa,o+GA1A243Y (wc WA AW A DFwA, Pw

V3 contains two derivatives, reproducing cubic part of the Einstein action

with the cosmological term.

Spin two example illustrates the general phenomenon that AdS defor-
mation of a higher-derivative vertex trivial in flat space may become

nontrivial in AdS;.



Spin three

Two pure vertices

ED

Y

F3 = gz CQ)y, (WAlB,AQE( — 2{wa,” cp, WP o)} = {wazp, o’ w

4

B F G B F G

+ wAlB,F0<2{wA2 CGHWAy , o)t g{wAQG, CrWA; c})> :

F3 contains three spin three fields that carry at most three derivatives.
Az A D E E

H° = gA1d24s 4VCVC?5"“(RA1G,A2 (2{wA3C,A4E7WCD,G } —3{waspp .G ywAay

E E E D
+6{wa,q.c" swaD,cEY +8{was” carwa,p.cEF F{was” carwaE C })>

H?® contains up to five derivatives. Using the on shell condition it is

straightforward, although somewhat lengthy, to check that

QtopHS ~ 0, qubHS ~ 0, chrHS ~ 0.

That H? is not Qt°r—exact is easy to see.
F3 is of Chern-Simons type. Hence it is equivalent to a higher-derivative

vertex.



Higher-spin algebra

Generic element
AY) =Y"Aa,. .4, B,. B, T 1A B1Bn
n
where the coefficients are projected to two-row traceless Young diagrams
A{Al---An,An—|-1}B2---Bn — O, AA]_...An_QCC Bl...Bn — O .
A(n),B(n) _ A(n),B(n) C(k),D(k) gF(1),G()
(Ao B) = % Toky,pekyr@y.ca (A B
HS algebra possesses the invariant trace operation

t?“(A O B) — tT(B O A) y t’l“(A) — AO y Ao — AA(O),B(O) .

R A(n),B(n) = AW A(n),B(n)(®) + (W(z) 0 Aw(Z)) A(n),B(n)



Cubic Action

1 s—2
5= E/Md;pzoa(s’p)vcl VC(sapy N
Bi..B. 1 Cq..Cs_>_,Dq...D / AaCy_1_1...Co¢_»_
tT(R 1 S 1, 1 s—2—plJ1 p+1/\RBl..-BS_1, 4“s—1—p 2(s—2 p)Dl---Dp—|—1) )

tr 1s the trace over matrix indices in the case of HS algebras with non-

Abelian Yang-Mills symmetries.

Choosing the coefficients in such a way that the on-shell (VA—independem

takes the form
1
SN—/ Tr(R A oR)
2 JMmd
implies its gauge invariance under the HS gauge transformations
5R — [R,E]o

due to the cyclic property of trace and on-shell property

F(R',R)~ F(R,R).



sp(2) invariance

In terms of generating functions

A Anp~-B n
A(Y) — ZAA]_A’H,,B]_BTLY]_ 1...Y1 2 1...Y2 .
n

That Ay, 4, B,.B, Obeys the properties of two-row traceless Young di-

agrams is encoded by the constraints

7i;A(Y) =0, AYA(Y) =0,
: 2
= yiAiA Ly kALAv - j
oyt 2 oY} OYA0Y 4 ;
i,j,...=1,2, aizeijaj, az-zajeji, eijeij:_ejia 612:1

7;; = T;; 9enerate sp(2) with the invariant symplectic form ¢;;.

Non-zero vertices are represented by sp,(2) singlets for all



Vertex generating functions

It is convenient to replace GAL--Aq by a product of anticommuting vari-

ables y41 ... y4a. Al o(d — 1,2) invariant contractions are represented by
operators

2
A = pd = O pin = V4
OY;10Y pjv ’L

0 A 0
aYAz’M’ J

General vertex

N
F(A) = F(A,p,0) [ Ap(Yp)
p=1

Yo=0

That A,(Y,) describes traceless tensors implies A¥7"A4,,(Y,) = 0.
F(A,p,0) should be sp,(2) invariant for any p.

Using labels v for A(Y,) = R1(Y.,), the on-shell conditions are

0 0

F~0
OY Aw dnp 4

piDF ~ 07



Non-Abelian and current vertices

In terms of generating functions pure non-Abelian vertex

1,2 1.3.2

1.2.3 3
L(V) = V558 Y (AR 1 (Y1)w2(Yo)w,3(Y3) : 193 “(A) = Vi35 ¢

i—

R'(Y) is the dual curvature (d — 2)—form.
L(V) is QP and Q5“’-closed because it does not contain the compensatoi

1. .23 2.3.1
ch?“L = (—1)d<vlc\¢23a « (A) — V20431Oz o (A))Réﬂ(Yl)Rag(YQ)wa3(Y3) L

i—

QerL(V) = 0 with totally antisymmetric V%$°®" in which case L(V) is
pure: QI'L(V) =0, Qs*L(V) =0

Pure current vertices

1.2 3

~ e~ 7 -2 3~
F(0) = -Q*"T(0) = 010" 0207 033" U155 (A)R 1 (Y1) R2(Y2)w,3(Y3)|

i —



Derivative reduction

All non-Abelian vertices L(V) and current vertices F(U) are pure vertices
with s; 4+ s» 4+ s3 — 2 derivatives. Since there exists just one nontrivial
Minkowski vertex of this order of derivatives, most of vertices L(V) anc
F(U) should be quasi exact.

Consider

alala3 1

I= 3 (B)0,0" 020 05t R (VD B2 (2)oa (1)) _

3 1.2.3 1 2,3
J = d_—4w82§)a )(A)ailaz 0j20k3A=7 & R_1(Y1)w 2(Y2)w, 3(Y3)

- - 1.2 .3 1.2 3 u
with arbitrary w{>5 “ (A) and wg‘i‘zg‘)o‘ )(A) = %ZM#V#p wgﬁg‘ (A .

One can see that

I+ J=(-1WQNH+W),

(a1a2a3) 1

. .21 3
H = W(103) (A)(A)o,10" o-jgakg,AJ k wal(Yl)wag(YQ)wag,(Y;g)‘Y:O

ala?a3

. . 3
W = ws§" (A)oriotoich0a0" Ry (Vw2 (Yo)uga(Va)|



T his implies that the sum of the current vertex I and non-Abelian vertex
J is quasi exact. (cf the case of spin two).

To perform further reduction more tricky consequences of the on-shell
conditions should be used

1 d 1 1.2.3
~ )50k10k 0207 oap’ (20121303 + PPINGHE @ (A)R,1 (Y1) Ry (Y

top

ala2ad i1 3 3.1 2 3 \
N = ®1oN7%5 ¢ (A)o,10" 0']20"7 Uksdk P3P, 3A" A 1 2AYT R 1(Y1)R 2(Yo,

Cb/u/ == A,L',uj Ajuzlu v’ # vV, b = CD123 — Ailj Ajgk Akg,z

AS a result any vertex I with

1.2 .3 1.2.3
wing “(A) = (2P12P13P23 + D7 )uog @ (A)

IS quasi-exact and, hence, is equivalent some lower derivative vertex.

Similarly one proceeds with further reductions of derivatives.

T his mechanism works for d > 6. In d = 4 quasi exact current vertices dc
not exist. Hence 4d triangle vertices result from non-Abelian vertices.

Indeed, the list of independent 4d vertices is shorter than for any d.



Comparison with flat space results

Minkowski vertices Metsaev (2005); Manvelyan, Mkrtchyan, Ruhl (2010)

$1+ 82— 83 < 2N < 81+ 83+ 83

The vertices obtained in AdS,; require s; — 1 satisfy triangle inequalities

sitsj—sp,—12>0, 1 #+= 7 #F k.

Vertices, that can be constructed in terms of connection one-forms and
curvature two-forms, should respect the triangle inequalities otherwise
otherwise contraction of indices between two-row Young diagrams dgives
zero. The reason why some of vertices were missed is that we did not

consider vertices that contain Weyl O-forms directly.

Particular examples:
The vertex with maximal number of derivatives s; 4+ so> 4+ s3 IS not on
the list since all vertices considered considered so far contain at most

s1 + so 4+ s3 — 2 derivatives since all R3 vertices are quasi exact.



interactions of a spin-s gauge field with two spin zero scalar fields. Scalat
Is described by the zero-form C(x) and its derivatives = elements of the
Weyl module for the spin zero field. In this case of current interactions
between a spin-s gauge field and HS currents built from (derivatives) of

the scalar field the triangle inequalities are not respected.

To incorporate vertices of general type into the scheme it is necessary
extend First-On-Shell Theorem to the Central on-shell theorem that

contains the equations on zero-forms in the Weyl module C(x)

DC =0.



Towards full nonlinear action

Extension to the full system of fields that enter the free unfolded formu-
lation of massless HS fields, including Weyl zero-forms, reduces analysis
of cubic HS interactions to the analysis of vertices that are on-shell-

closed by virtue of unfolded field equations. The idea is to look for @

Sz/L

where d-form L is on-shell closed

nonlinear action

dL ~ QO

by virtue of the nonlinear unfolded equations and such that the quadratic
part of the action coincides with the standard free action of massless
fields.

Lagrangians of this type will describe HS dynamics modulo local field

redefinitions.



Conclusions

Vertices with different numbers of derivatives are related in AdS

Vertex tri-complex classifies nontrivial vertices in AdS,

AdS—tri-complex contains a Minkowski sub-bicomplex

Vertex tri-complex applies to mixed symmetry type of general type and

higher-order vertices

HS vertices for symmetric fields are uniformally formulated as non-

Abelian and current interactions that carry si 4+ s> + s3 — 2 derivatives

Missed vertices do not respect triangle inequalities for spins, requiring

explicit appearance of the Weyl tensor and its derivatives

Full nonlinear Lagrangian as a on-shell closed form dL ~ O by virtue of

full nonlinear unfolded equations



The novel feature of our proposal is that the analysis of the nonlineat
action is (and, in fact, should be) on-shell beyond its free field part. This
suggestion changes the strategy of the action construction: instead of
looking for an action, that gives rise to the unfolded equations, having
unfolded equations one should find a lagrangian that is on-shell closec

by virtue of unfolded equations.

Such an approach fits very well the analysis of HS theory performed by
Giombi and X.Yin 2009, in the context of AdS/CFT interpretation of

HS theory, which is solely based on the unfolded dynamics approach.

Remarkably, this construction gets very similar to the effective action

construction of QFT.



