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“Pohlmeyer reduction”:
reformulation of gauge-fixed AdS5 × S5 superstring
in terms of current-type variables
preserving 2d Lorentz invariance:
a way towards exact solution of quantum AdS5 ×S5 superstring?

Aims:
solve string theory in AdS5 × S5

using conformal invariance,
global supersymmetry and integrability

find S-matrix and justify Bethe Ansatz for the spectrum
from first principles;
then understand theory in finite volume: closed string theory



How to solve quantum string theory in AdS5 × S5 ?

GS string on supercoset PSU(2,2|4)
SO(1,4)×SO(5)

not of known solvable type (cf. free oscillators; WZW)
analogy with exact solution of O(n) model (Zamolodchikovs) or
principal chiral model (Polyakov-Wiegmann, ...) ?
2d CFT – no quantum mass generation
one problem of direct approaches:
lack of manifest 2d Lorentz symmetry
S-matrix depends on two rapidities, not on their difference,
symmetry constraints on it are not obviously clear...
An alternative approach?
Classically equivalent 2d Lorentz invariant action
describing same physical degrees of freedom
formulation in terms of currents rather than coordinate fields:



“Pohlmeyer reduction”
Integrable + 2d conformally invariant (UV finite) model –
fermionic generalization of non-abelian Toda theory

• intimately related (at least classically) to AdS5 × S5 GS model
• contains fermions with standard kinetic terms
• has 2d Lorentz invariant S-matrix
for an equivalent set of 8+8 physical massive excitations
• interesting UV finite massive integrable model:
exact solution?
• deserves study regardless the issue of equivalence
to AdS5 × S5 superstring at the quantum level



Some history

K. Pohlmeyer (1976):
Discovery of integrability (existence of ∞ of conservation laws)
of classical O(3) sigma model via relation to sine-Gordon theory.
O(4) sigma model→ complex sine-Gordon theory.
Integrability of O(n) model: Backlund transformations to generate
solutions and higher conserved charges.

But why reduction relevant?
Assumed classical 2d conf. inv. which is broken at quantum level

Quantum O(3) and sin-Gordon theories are different
but integrability itself extends to quantum level
[Polyakov (1977); Zamolodchikov and Zamolodchikov (1979)]



Pohlmeyer reduction was not used much in the next 20 years...
but came to light again in the context of string theory:

Technical tool: to construct classical string solutions
• construction of classical string solutions in
constant-curvature spaces like de Sitter and anti de Sitter
[Barbashov, Nesterenko, 1981; de Vega, Sanchez, 1993]
• construction of classical string solutions in AdS5 × S5

representing semiclassical string states in AdS/CFT context
[Hofman, Maldacena, 2006; Dorey et al, 2006; Jevicki et al, 2007;
Hoare, Iwashita, AT, 2009; Hollowood, Miramontes, 2009; ...]
• construction of euclidean open-string world-surfaces related
to N = 4 SYM scattering amplitudes at strong coupling
[Alday, Maldacena, 2009; Alday, Gaiotto, Maldacena, 2009;
Dorn et al, 2009; Jevicki, Jin, 2009, ...]



Deeper role: reformulation/solution of quantum string theory

Quantum AdS5 × S5 string is UV finite: Pohlmeyer reduction
– reformulation in terms of integrable massive theory –
may lead to an equivalent theory also at the quantum level
[Grigoriev and A.T, 2007; Mikhailov and Schafer-Nameki, 2007]

A way to exact solution of AdS5 × S5 superstring?
• proof of UV finiteness of the reduced theory
[Roiban and A.T., 2009]
• equivalence of 1-loop quantum partition functions of string
theory and reduced theory [Hoare, Iwashita and A.T., 2009]
• derivation of perturbative S-matrix of reduced theory
and its similarity toAdS5×S5 magnon S-matrix [Hoare and A.T.]
tree-level (2009) and one-loop (2010, 2011)
• comparison of soliton spectra and soliton S-matrices
[Hollowood and Miramontes, 2010, 2011; Hoare et al, 2011]



Pohlmeyer reduction: bosonic coset models

Prototypical example: S2-sigma model → Sine-Gordon theory

L = ∂+X
m∂−X

m − Λ(XmXm − 1) , m = 1, 2, 3

Equations of motion:

∂+∂−X
m + ΛXm = 0 , Λ = ∂+X

m∂−X
m , XmXm = 1

Stress tensor: T±± = ∂±X
m∂±X

m

T+− = 0 , ∂+T−− = 0 , ∂−T++ = 0

implies T++ = f(σ+), T−− = h(σ−)

using the conformal transformations σ± → F±(σ±) can set

∂+X
m∂+X

m = µ2 , ∂−X
m∂−X

m = µ2 , µ = const

3 unit vectors in 3-dimensional Euclidean space:

Xm , Xm
+ = µ−1∂+X

m , Xm
− = µ−1∂−X

m



Xm is orthogonal to Xm
+ and Xm

− (Xm∂±X
m = 0)

remaining SO(3) invariant quantity is scalar product

∂+X
m∂−X

m = µ2 cos 2φ

then ∂+∂−φ+ µ2

2 sin 2φ = 0

following from sine-Gordon action (Pohlmeyer, 1976)

L̃ = ∂+φ∂−φ+
µ2

2
cos 2φ

2d Lorentz invariant despite explicit constraints
Classical solutions and integrable structures
(Lax pair, Backlund transformations, etc) are directly related
e.g., SG soliton mapped into rotating folded string on S2:
“giant magnon” in the J = ∞ limit (Hofman, Maldacena 06)



Analogous construction for S3 model gives
Complex sine-Gordon model (Pohlmeyer; Lund, Regge 76)

L̃ = ∂+φ∂−φ+ cot2 φ ∂+θ∂−θ +
µ2

2
cos 2φ

φ, θ are SO(4)-invariants:
µ2 cos 2φ = ∂+X

m∂−X
m

µ3 sin2 φ ∂±θ = ∓ 1
2ϵmnklX

m∂+X
n∂−X

k∂2±X
l

In the case of AdS2 or AdS3:
replace sinφ→ sinhϕ, etc.



String-theory interpretation: string on Rt × Sn

(i) conformal gauge and (ii) t = µτ to fix conformal diffeo’s:
∂±X

m∂±X
m = µ2 are Virasoro constraints

e.g., reduced theory for string on Rt × S3

L̃ = ∂+φ∂−φ+ cot2 φ ∂+θ∂−θ +
µ2

2
cos 2φ

Similar construction for AdSn case:
string on AdSn × S1

ψ with ψ = µτ

e.g., reduced theory for string on AdS3 × S1

L̃ = ∂+ϕ∂−ϕ+ coth2 φ ∂+χ∂−χ− µ2

2
cosh 2ϕ



Comments:

• Virasoro constraints are solved by a special choice of variables
related nonlocally to the original coordinates

• Reduced and string theories are equivalent as classical inte-
grable systems: the respective Lax pairs are gauge-equivalent

• Although the reduction is not explicitly Lorentz invariant the
resulting Lagrangian turns out to be 2d Lorentz invariant

• Reduced theory is formulated in terms of manifestly SO(n)
invariant variables: “blind” to original global symmetry

• PR may be thought of as a formulation in terms of physical
d.o.f. – coset space analog of flat-space l.c. gauge (where 2d
Lorentz is unbroken)



PR for bosonic string on F/G-coset

string on F/G×Rt:
PR-theory: G/H gauged WZW model + integrable potential
F/G-coset sigma model: symmetric space

f = p⊕ g , [g, g] ⊂ g , [g, p] ⊂ p , [p, p] ⊂ g

J = f−1df = A+ P , A ∈ g , P ∈ p .

L = −Tr(P+P−) , f ∈ F

G gauge transformations f → fg;
global F -symmetry: f → f0f , f0 ∈ F ;
classical conformal invariance
J = A+ P as fundamental variables
D+P− = 0 , D−P+ = 0 , D = d+ [A, ] – EOM
D−P+ −D+P− + [P+, P−] + F+− = 0 – Maurer-Cartan
Tr(P+P+) = −µ2 , Tr(P−P−) = −µ2 – Virasoro



Main idea: first solve EOM and Virasoro and then MC
special choice of G gauge condition and conformal diffs. →
find reduced action giving eqs. resulting from MC
gauge fixing that solves the first Virasoro constraint

P+ = µ T = const , T ∈ p = f⊖ g, Tr(TT ) = −1

choice of special element T → decomposition of algebra of F :

f = p⊕ g , p = T ⊕ n , g = m⊕ h , [T, h] = 0 ,

h is a centraliser of T in g

second Virasoro constraint is solved by

P− = µ g−1Tg , g ∈ G

EOM D−P+ = 0 is solved by A− = (A−)h ≡ A−

EOM D+P− = 0 is solved by A+ = g−1∂+g + g−1A+g

Thus new dynamical variables

G-valued g , h-valued A+, A−, [T,A±] = 0



remaining Maurer-Cartan eq on g,A± follows from
G/H gauged WZW action with potential:

L = −1

2
Tr(g−1∂+gg

−1∂−g) + WZ term

−Tr
(
A+ ∂−gg

−1 −A− g
−1∂+g − g−1A+gA− +A+A−

)
−µ2Tr(Tg−1Tg)

Pohlmeyer-reduced theory for F/G coset sigma model
[Bakas,Park,Shin 95; Grigoriev, AT 07; Miramontes 08]

PR theory for string on Rt × F/G or F/G× S1
ψ:

equivalent eqs of motion; equivalent integrable structure (Lax pairs)
special case of non-abelian Toda theory:
“symmetric space Sine-Gordon model”
[Hollowood, Miramontes et al 96]



Reduced equation of motion in the “on-shell” gauge A± = 0:
Non-abelian Toda equations:

∂−(g
−1∂+g)− µ2[T, g−1Tg] = 0

(g−1∂+g)h = 0 , (∂−gg
−1)h = 0

parametrization of g in Euler angles (gauge fixing)
g = eTn−2θn−2 ...eT1θ1e2TφeT1θ1 ...eTn−2θn−2

integrating out H = SO(n− 1) gauge field A±

leads to reduced theory that generalizes SG and CSG

L̃ = ∂+φ∂−φ+Gpq(φ, θ)∂+θ
p∂−θ

q +
µ2

2
cos 2φ

gWZW for G/H = SO(n)/SO(n− 1):

ds2n=2 = dφ2 , ds2n=3 = dφ2 + cot2 φ dθ2

ds2n=4 = dφ2 + cot2 φ (dθ1 + cot θ1 tan θ2dθ2)
2 + tan2 φ

dθ22
sin2 θ1



String Theory in AdS5 × S5

bosonic coset SO(2,4)
SO(1,4) ×

SO(6)
SO(5)

generalized to GS string: supercoset PSU(2,2|4)
SO(1,4)×SO(5)

S = T

∫
d2σ

[
Gmn(x)∂x

m∂xn + θ̄(D + F5)θ∂x

+ θ̄θθ̄θ∂x∂x+ ...
]
,

tension T = R2

2πα′ =
√
λ

2π

Conformal invariance: βmn = Rmn − (F5)
2
mn = 0

Classical integrability of coset model
translates also to κ-symmetric AdS5 × S5 superstring
Extends to quantum level: 1- and 2-loop computations and
comparison to Bethe ansatz (work of last 8 years)



AdS5 × S5 = SO(2,4)
SO(1,4) ×

SO(6)
SO(5)

Killing vectors and Killing spinors of AdS5 × S5 :
PSU(2, 2|4) symmetry

replace F̂
G = SuperPoincare

Lorentz in flat GS case by

F̂

G
=

PSU(2, 2|4)
SO(1, 4)× SO(5)

PSU(2, 2|4) invariant action:
I ∼

∫
Tr(f−1df)2F/G + WZ-term

J = f−1df = JmPm + JIαQα
I + JmnMmn

I =

√
λ

2π

[ ∫
d2σ(JmJm + aJ̄IJI) + b

∫
Jm ∧ J̄IΓmJJsIJ

]
as in flat space a = 0, b = ±1 required by κ-symmetry
unique action with right symmetry and right flat-space limit



Equivalent form of the GS action:
F
G = AdS5 × S5 = SU(2,2)

Sp(2,2) × SU(4)
Sp(4)

generalized to
F̂
G = PSU(2,2|4)

Sp(2,2)×Sp(4)

basic superalgebra f̂ = psu(2, 2|4)
bosonic part f = su(2, 2)⊕ su(4) ∼= so(2, 4)⊕ so(6)

admits Z4-grading:

f̂ = f0 ⊕ f1 ⊕ f2 ⊕ f3 , [fi, fj ] ⊂ fi+jmod 4

f0 = g = sp(2, 2)⊕ sp(4)

f2 = AdS5 × S5

current J = f−1∂af, f ∈ F̂ (notation change: J0 → A, etc)

Ja = f−1∂af = Aa +Q1a + Pa +Q2a

A ∈ f0, Q1 ∈ f1, P ∈ f2, Q2 ∈ f3 .



GS Lagrangian:

LGS =
1

2
STr(

√
−ggabPaPb + εabQ1aQ2b) ,

fermionic currents in WZ term only
conformal gauge:

√
−ggab = ηab

LGS = STr[P+P− +
1

2
(Q1+Q2− −Q1−Q2+)]

STr(P+P+) = 0 , STr(P−P−) = 0

Equations of motion in terms of currents: 1-st order form

EOM : ∂+P− + [A+, P−] + [Q2+, Q2−] = 0 ,

∂−P+ + [A−, P+] + [Q1−, Q1+] = 0 ,

[P+, Q1−] = 0 , [P−, Q2+] = 0 .

MC : ∂−J+ − ∂+J− + [J−, J+] = 0 .



partial κ-symmetry gauge: Q1− = 0 , Q2+ = 0

remaining EOM:

∂+P− + [A+, P−] = 0 , ∂−P+ + [A−, P+] = 0

Maurer-Cartan:
∂+A− − ∂−A+ + [A+,A−] + [P+, P−] + [Q1+, Q2−] = 0 ,

∂−Q1+ + [A−, Q1+]− [P+, Q2−] = 0 ,

∂+Q2− + [A+, Q2−]− [P−, Q1+] = 0 .

apply Pohlmeyer reduction:
(i) start with GS equations in terms of currents
(ii) solve conformal gauge constraints algebraically introducing
new set of field variables directly related to the currents
(iii) fix κ-symmetry gauge
(iv) reconstruct the action for new current variables
classical equivalence of original and “reduced” eqs:
both are integrable



Virasoro can be solved by fixing a special G-gauge
and residual conformal diffeomorpism gauge

P+ = µ T , P− = µ g−1Tg , µ = const

g ∈ G = Sp(2, 2)× Sp(4)

µ= an arbitary scale parameter – remnant of fixing
residual conformal diffeomorphisms, like p+ in l.c. gauge
T is a fixed constant matrix, e.g., diag(I,−I, I,−I), Str T 2 = 0

H ∈ G that commutes with T , [T, h] = 0, h ∈ H:
H = SU(2)× SU(2)× SU(2)× SU(2)

P− is invariant under g → hg if h ∈ H

implies extra H gauge invariance of e.o.m. for g

A+ ≡ gA+g
−1 + ∂+gg

−1 , A− ≡ (A−)h

Thus g ∈ G = Sp(2, 2)× Sp(4) and
A+, A− in h = su(2)⊕ su(2)⊕ su(2)⊕ su(2) of H
are new independent bosonic variables



impose partial κ-symmetry gauge

Q1− = 0 , Q2+ = 0 ,

define new fermionic variables

Ψ1 = Q1+ ∈ f̂1 , Ψ2 = gQ2−g
−1 ∈ f̂3

residual κ-symmetry fixed by Ψ1,2T = −TΨ1,2

then define new fermionic variables

Ψ
R
= 1√

µΨ
∥
1 , Ψ

L
= 1√

µΨ
∥
2

they are expressed in terms of real Grassmann
2× 2 matrices ξR,L and ηR,L: 8+8=16 components

Remarkably, exists local Lagrangian reproducing
resulting classical reduced equations:



Gauged WZW model for

G

H
=

Sp(2, 2)

SU(2)× SU(2)
× Sp(4)

SU(2)× SU(2)

with integrable potential and fermionic terms:

Ltot = LB + LF = LgWZW(g,A) + µ2 Str(g−1TgT )

+ Str
(
Ψ

L
TD+ΨL

+Ψ
R
TD−ΨR

+ µ g−1Ψ
L
gΨ

R

)
fields are represented by 8× 8 supermatrices, e.g.,
g = diag(a, b) , a ∈ Sp(2, 2), b ∈ Sp(4)

D±Ψ = ∂±Ψ+ [A±,Ψ], A± ∈ h = su(2)⊕ ...⊕ su(2)

T = i
2diag(1, 1,−1,−1, 1, 1,−1,−1);

[T, h] = 0, h ∈ H = [SU(2)]4,
invariant under H gauge transformations

g′ = h−1gh, A′
± = h−1A±h+ h−1∂±h, Ψ′

L,R
= h−1Ψ

L,R
h

[T, h] = 0, h ∈ H = [SU(2)]4



classically equivalent to GS model – integrable model:
Lax pair encoding equations of motion

L− = ∂− +A− + z−1√µg−1Ψ
L
g + z−2µg−1Tg ,

L+ = ∂+ + g−1∂+g + g−1A+g + z
√
µΨR + z2µT



• gWZW model coupled to fermions interacting
minimally and through the “Yukawa” term

• 2d Lorentz invariant action with Ψ
R
,Ψ

L
as 2d Majorana spinors

with standard kinetic terms

• 8 real bosonic and 16 real fermionic independent variables;
fermions link bosons from Sp(2, 2)× Sp(4):

• 2d supersymmetry? yes, at least at quadratic level and inAdS2×
S2 truncation: n = 2 super sine-Gordon model

• µ-dependent interactions are equal to GS Lagrangian;
gWZW produces MC eqs.: path integral derivation?

• action quadratic in fermions – in contrast to original GS
action [quartic terms reflecting curvature will appear if we in-
tegrate out A± as in susy gauged WZW case]

• linearisation of e.o.m. in the gauge A± = 0 around g = 1:
gives 8+8 bosonic and fermionic d.o.f. with mass µ – same as
in BMN limit



H gauge field A± can be gauged away on e.o.m. –
get fermionic generalization of non-abelian Toda equations:

∂−(g
−1∂+g) + µ2[g−1Tg, T ] + µ[g−1ΨLg,ΨR ] = 0,

T∂−ΨR
+ 1

2µ(g
−1Ψ

L
g)∥ = 0 ,

T∂+ΨL + 1
2µ(gΨRg

−1)∥ = 0 ,

(g−1∂+g − 1
2 [[T,ΨR ],ΨR ])h = 0 ,

(g∂−g
−1 − 1

2 [[T,ΨL
],Ψ

L
])h = 0

fermions carry representations of both Sp(2, 2) and Sp(4):
“intertwine” the two bosonic reduced sub-theories
Model resembles WZW models based on supergroups
rather than 2d supersymmetric WZW model
but fermions here have 1-st order kinetic term – a “hybrid”



Example: superstring on AdS2 × S2

PR Lagrangian: same as n = 2 supersymmetric sine-Gordon!

L̃ = ∂+φ∂−φ+ ∂+ϕ∂−ϕ+
µ2

2
(cos 2φ− cosh 2ϕ)

+ β∂−β + γ∂−γ + ν∂+ν + ρ∂+ρ

− 2µ [coshϕ cosφ (βν + γρ) + sinhϕ sinφ (βρ− γν)] .

equivalent to

L̃ = ∂+Φ∂−Φ
∗ − |W ′(Φ)|2 + ψ∗

L
∂+ψL

+ ψ∗
R
∂−ψR

+
[
W ′′(Φ)ψ

L
ψ

R
+W ∗′′(Φ∗)ψ∗

L
ψ∗

R

]
.

bosonic part is of AdS2 × S2 bosonic reduced model if

W (Φ) = µ cosΦ , |W ′(Φ)|2 =
µ2

2
(cosh 2ϕ− cos 2φ) .

ψL = ν + iρ , ψR = −β + iγ ,



UV finiteness of reduced theory
[R. Roiban, A.T., 2009]
Reduction procedure may work at quantum level
only in conformally invariant case (like AdS5 × S5 case)
Consistency requires that reduced theory is also UV finite
gWZW+ free fermions is finite;
µ is not renormalized, remains an arbitrary
conformal symmetry gauge fixing parameter at quantum level

Thus in contrast to l.c. gauge fixed GS superstring
the reduced model is 2d Lorentz invariant
and power counting renormalizable: in fact, finite.



Open questions

• Quantum equivalence of reduced theory and GS theory?

Path integral argument of equivalence?

Transformation may work only in quantum-conformal

case like AdS5 × S5

• Indication of equivalence: semiclassical expansion near

counterparts of rigid strings in AdS5 × S5 leads to same

characteristic frequencies – same 1-loop partition function

[Iwashita, Hoare, AAT 09]

• S-matrix for elementary excitations? [Hoare, AT, 09-11]

Relation to magnon S-matrix in BA?

• Solve reduced theory → solve AdS5 × S5 superstring



Recent work



Towards quantum S-matrix of the Pohlmeyer

reduced form of AdS5 × S5 superstring theory

Arkady Tseytlin

July 21, 2011



Based on Hoare, AAT, arXiv:1104.2423



Review of Pohlmeyer Reduction

Perturbative computation of S-matrix

q-deformed supersymmetry and exact S-matrix conjecture

Conclusions and open questions



Some history

• The Pohlmeyer reduction related the O(n) sigma models to
integrable Hamiltonian systems

• Led to the discovery of the integrability of the classical O(3)
sigma model via its relation to sine-Gordon.

Pohlmeyer, 1976

Luscher, Pohlmeyer, 1978

Pohlmeyer, Rehren, 1979

Eichenherr, Pohlmeyer, 1979

The Pohlmeyer reduction . . .

• relates the currents of the original theory to the fields of the
reduced theory.

• is carried out at the level of the equations of motion.

• gives rise to a 2-d Lorentz invariant integrable theory.



• Technical issue: equations of motion for higher dimensional
models, e.g. O(n), n > 3, apparently non-Lagrangian.

• Resolved by considering gauged WZW plus integrable poten-
tial.

Bakas, Park, Shin, 1996

Grigoriev, AAT, 2007

Miramontes, 2008

• Classical reduction - assumes conformal invariance, which is
broken at quantum level– no equivalence at quantum level

• O(n) sigma model was shown to be integrable at quantum level.

Polyakov, 1977

Zamolodchikov and Zamolodchikov, 1979



Pohlmeyer reduction in string theory

• Used in the construction of classical string solutions represent-
ing semiclassical closed string states in AdS/CFT context.

Hofman, Maldacena, 2006

Dorey et al, 2006

Jevicki, Spradlin, Volovich et al, 2007

Hoare, Iwashita, AAT, 2009

Hollowood, Miramontes, 2009

• Used in the construction of Euclidean open-string world-
surfaces related to N = 4 super Yang-Mills scattering am-
plitudes at strong coupling.

Alday, Maldacena, 2009

Alday, Gaiotto, Maldacena, 2009

Dorn et. al, 2009

Jevicki, Jin, 2009 ...



Quantum equivalence?

• Quantum AdS5 ×S5 is UV finite so Pohlmeyer reduction may
lead to an equivalent theory also at quantum level.

Grigoriev, AAT, 2007

Mikhailov, Schafer-Nameki, 2007

• Describes 8+8 physical degrees of freedom, solves Virasoro con-
straints and the resulting model is integrable – there exists a
Lax connection

• Resulting reduced model is UV finite.

Roiban, AAT, 2009

• One-loop corrections to soliton energies match string ones

Hoare, Iwashita, AAT, 2009

Iwashita, 2010

• Two-loop corrections?

• S-matrix?



Pohlmeyer reduction - Aims

• Investigate this theory and its truncations in the hope that
when fermions are included it will help us understand the quan-
tum string theory.

• Consider the perturbative S-matrix and try to extend to exact
S-matrix

• Construct solitons and conjecture exact S-matrix (cf. sine-
Gordon)

Hollowood, Miramontes, 2010, 2011

Zamolodchikov and Zamolodchikov, 1979

• Earlier exact results for bosonic models with abelian H.

Dorey, Hollowood, 1994

Miramontes, Hollowood et. al, 1995 - present



Pohlmeyer reduction example: Rt × S2

• classical sigma model on Rt × S2 – S2 embedded in R
3

L =
R2

4πα′

∫

d2x [−∂t∂t + ∂X · ∂X] + Λ(X · X − 1) (1)

• Coordinate on R
3– X = (X1, X2, X3)

Conventions

• Worldsheet coordinates – (τ, σ)

• Lightcone coordinates – x± = τ ± σ , ∂± = 1
2
(∂τ ± ∂σ)



• Fix conformal gauge and static gauge – t = µτ

Equations of motion

• with respect to X

∂+∂−X + (∂+X · ∂−X)X = 0 (2)

• with respect to 2d metric – Virasoro constraints

∂±X · ∂±X = µ2 (3)

• with respect to Λ – sphere constraints

X · X = 1 (4)



• “Solve” the Virasoro constraints: replace X by single field ϕ

∂+X · ∂−X = µ2 cos 2ϕ (5)

three vectors X, ∂+X, ∂−X span R
3.

• Therefore we can write ∂+∂+X and ∂−∂−X as linear combi-
nations.

• The equation of motion for ϕ is then

∂+∂−ϕ +
µ2

2
sin 2ϕ = 0 (6)

Pohlmeyer, 1976



• Sine-gordon equation of motion – single degree of freedom.

• Resulting equations of motion are Lorentz invariant, though
the reduction is not.

• Blind to original SO(3) global symmetry.

• implies classical integrability

• Method generalises to larger target spaces, e.g. Rt × S3 is
related to complex sine-Gordon.



AdS5 × S5 superstring

AdS5 × S5 superstring worldsheet sigma model

Metsaev, AAT, 1998

• Based on the coset

F̂

G
=

PSU(2, 2|4)

Sp(2, 2) × Sp(4)
(7)

• Bosonic part of the coset is SU(2,2)
Sp(2,2) × SU(4)

Sp(4)
∼= AdS5 × S5.

• Z4 decomposition of algebra

psu(2, 2|4) = f̂ = ⊕4
i=1 f̂i , [̂fi, f̂j ] ⊂ f̂i+j mod 4 (8)

ĝ = f̂0 = sp(2, 2) ⊕ sp(4) f̂1,3 fermionic (9)

f̂2 bosonic part of coset (10)



• Action is constructed by taking a group valued field

f ∈ PSU(2, 2|4) (11)

and considering the Maurer-Cartan one-form

J = f−1df ∈ f̂ (12)

• Under the Z4 decomposition J = A + Q1 + P + Q3

• Under the G-gauge symmetry – f → fg
– A transforms as a connection,
– P and Q1,3 transform covariantly.

• Action is constructed from P and Q1,3 – with the bosonic part
given by usual coset sigma model

L = STr(P+P−) + fermionic (13)

• In addition to G-gauge symmetry there is a global F̂ symmetry
– f → f0f



Pohlmeyer reduction – AdS5 × S5 superstring

• Solve the equations of motion and the Virasoro constraints
using G-gauge symmetry and κ-symmetry

• In solving the Virasoro constraints we introduce a mass µ and
a constant matrix T ∈ f̂2.

• Constant matrix T induces a further Z2 decomposition of the
algebra

f̂ = f̂‖ ⊕ f̂⊥ (14)

[̂f‖, f̂‖] ⊂ f̂⊥ [̂f‖, f̂⊥] ⊂ f̂‖ [̂f⊥, f̂⊥] ⊂ f̂⊥ (15)

• f̂⊥0 = [su(2)]4 is an algebra – denote h and the corresponding
group H

• The equations of motion for the reduced theory are given by
the flatness condition for J .



Action of Pohlmeyer reduced AdS5 × S5 superstring

• Reduced equations of motion have H × H-gauge symmetry

• If we gauge-fix to leave a H-gauge symmetry then the resulting
equations come from the following action

S = −
k

4π
STr

h1

2

Z

d2x g−1∂+gg
−1∂−g −

1

3

Z

d3x ǫmnlg−1∂mgg
−1∂ngg

−1∂lg

(16)

+

Z

d2x (A+∂−gg
−1 −A−g

−1∂+g − g−1A+gA− +A+A−) (17)

+

Z

d2x (Ψ
L
TD+Ψ

L
+ Ψ

R
TD−Ψ

R
+ µg−1Ψ

L
gΨ

R
+ µ2 g−1TgT )

i

(18)

• g ∈ G = Sp(2, 2) × Sp(4) • A± ∈ h = [su(2)]4

• Ψ
L
∈ f̂

‖
1 • Ψ

R
∈ f̂

‖
3

Grigoriev, AAT, 2007, 2008



Comments

• Fermionic extension of gauged WZW theory plus integrable
potential (generalised sine-Gordon model)

• Lorentz invariant • H-gauge symmetry

• If H is non-abelian – no global symmetry

• Classically integrable – Lax connection

• Blind to original global F̂ symmetry of string theory.

• No apparent supersymmetry – target-space or spacetime



Truncated models

For AdS3 × S3

• F̂ = SU(1, 1|2) × SU(1, 1|2)

• G = U(1, 1) × U(2) • H = [U(1)]4

• Complex sine-Gordon + complex sinh-Gordon coupled to
fermions

For AdS2 × S2

• F̂ = PSU(1, 1|2)

• G = SO(1, 1) × SO(2) • H is trivial

• N = 2 supersymmetric sine-Gordon theory



Tree-level S-matrix of the PR theory

• Lorentz invariant two-particle tree-level S-matrix for
Pohlmeyer reduced theory constructed using a particular
gauge choice.

Hoare, AAT, 2009

• Similar structure to the AdS5 × S5 light-cone gauge tree-level
S-matrix.

Klose, McLoughlin, Roiban, Zarembo, 2006

Arutyunov, Frolov, Zamaklar, 2006

• same group factorisation properties: arising from supersym-
metry in AdS5 × S5 case, not manifest in reduced theory.

• Suggests hidden fermionic symmetry.



Gauge choice

Under the H-gauge symmetry

• g → h−1gh • A± → h−1A±h + h−1∂±h

• Gauge fix A+ = 0

• Path-integral over A− gives the constraint equation appearing
as a delta-function

(g−1∂+g − [Ψ
R
T, Ψ

R
])|h = 0 (19)

• Can use this equation perturbatively to eliminate the unphys-
ical h part of g.

Explicitly

• write g = X + ξ, X ∈ g ⊖ h, ξ ∈ h

• solve perturbatively for ξ as function of X and Ψ
R
.



Using integration by parts and the linearised equations of motion
one can write the Lagrangian in the following local form

L =
k

4π
STr

“ 1

2
∂+X∂−X −

µ2

2
X2 + ψ

L
T∂+ψL

+ ψ
R
T∂−ψR

+ µψ
L
ψ

R
(20)

+
1

12
[X, ∂+X][X, ∂−X] +

µ2

24
[X, [X, T ]]2 (21)

−
1

4
[ψ

L
T, ψ

L
][X, ∂+X] −

1

4
[ψ

R
, Tψ

R
][X, ∂−X] (22)

−
µ

2
[X, ψ

R
][X, ψ

L
] +

1

2
[ψ

L
T, ψ

L
][ψ

R
, Tψ

R
] + . . .

”

(23)



Residual gauge symmetry - Lagrangian is invariant under the
global part of the gauge group H

(X, Ψ
R
, Ψ

L
) → h−1(X, Ψ

R
, Ψ

L
)h (24)

Lagrangian can be written in terms of fields transforming in rep-
resentations of H

X = Y + Z Ψ = ζ + χ (25)











SU(2)1 Y 0 ζ

Y SU(2)1̇ χ 0

0 χ SU(2)2 Z

ζ 0 Z SU(2)2̇











(26)

Fundamental indices of SU(2)1 and SU(2)2 – a and α

Fundamental indices of SU(2)1̇ and SU(2)2̇ – ȧ and α̇

Treat the indices a, ȧ as bosonic, i.e. [a] = [ȧ] = 0

Treat the indices α, α̇ as fermionic, i.e. [α] = [α̇] = 1



The fields transform as follows under the [SU(2)]4 symmetry

Yaȧ Zαα̇ ζaα̇ χαȧ (27)

Can also expand out the Lagrangian to give

L5 =
1

2
∂+Yaȧ∂−Y

ȧa
−

µ2

2
YaȧY

ȧa
+

1

2
∂+Zαα̇∂−Z

α̇α
−

µ2

2
Zαα̇Z

α̇α
(28)

+
i

2
ζ

L aα̇
∂+ζ

L
α̇a

+
i

2
ζ

R aα̇
∂−ζ

R
α̇a

− iµζ
L aα̇

ζ
R

α̇a
(29)

+
i

2
χ

L αȧ
∂+χ

L
ȧα

+
i

2
χ

R αȧ
∂−χ

R
ȧα

− iµχ
L αȧ

χ
R

ȧα
(30)

+
π

2k

»

−

2

3

`

YaȧY
ȧa

∂+Y
bḃ

∂−Y
ḃb

− Yaȧ∂+Y
ȧa

Y
bḃ

∂−Y
ḃb

+
µ2

2
YaȧY

ȧa
Y

bḃ
Y

ḃb´

(31)

+
2

3

`

Zαα̇Z
α̇α

∂+Z
ββ̇

∂−Z
β̇β

− Zαα̇∂+Z
α̇α

Z
ββ̇

∂−Z
β̇β

+
µ2

2
Zαα̇Z

α̇α
Z

ββ̇
Z

β̇β ´

(32)

+ i
`

ζ
L aα̇

ζ
L

α̇b
Y

ḃa
∂+Y

bḃ
+ ζ

R aα̇
ζ

R
α̇b

Y
ḃa

∂−Y
bḃ

+ µ ζ
R aα̇

ζ
L

α̇a
Y

bḃ
Y

ḃb´

(33)

− i
`

ζ
L aα̇

ζ
L

β̇a
Z

α̇β
∂+Z

ββ̇
+ ζ

R aα̇
ζ

R
β̇a

Z
α̇β

∂−Z
ββ̇

+ µ ζ
R aα̇

ζ
L

α̇a
Z

ββ̇
Z

β̇β ´

(34)

+ i
`

χ
L αȧ

χ
L

ḃα
Y

ȧb
∂+Y

bḃ
+ χ

R αȧ
χ

R
ḃα

Y
ȧb

∂−Y
bḃ

+ µ χ
R αȧ

χ
L

ȧα
Y

bḃ
Y

ḃb´

(35)

− i
`

χ
L αȧ

χ
L

ȧβ
Z

β̇α
∂+Z

ββ̇
+ χ

R αȧ
χ

R
ȧβ

Z
β̇α

∂−Z
ββ̇

+ µ χ
R αȧ

χ
L

ȧα
Z

ββ̇
Z

β̇β ´

(36)

+ 4iµ
`

ζ
R aα̇

χ
L βḃ

Y
ḃa

Z
α̇β

− χ
R αȧ

ζ
L bβ̇

Y
ȧb

Z
β̇α´

(37)

+ 2
`

ζ
L aα̇

ζ
L bβ̇

ζ
R

α̇b
ζ

R
β̇a

− χ
L αȧ

χ
L ββ̇

χ
R

ȧβ
χ

R
ḃα´

–

+ O(k
−2

) . (38)



Computation of tree-level S-matrix

• p1 and p2 are two on-shell momenta of the particles

• Convenient to use rapidities pi = µ sinh ϑi

• Lorentz symmetry: S-matrix only depends on θ = ϑ1 − ϑ2



• combine four fields Yaȧ, Zαα̇, ζaα̇, χαȧ in a single field

ΦAȦ , A = (a, α) (39)

• two-particle S-matrix takes the following form

S |ΦAȦ(ϑ1)ΦBḂ(ϑ2〉 = SCĊ,DḊ

AȦ,BḂ
(θ) |ΦCĊ(ϑ1)ΦDḊ(ϑ2)〉 (40)

• The tree-level S-matrix factorises as

SCĊ,DḊ

AȦ,BḂ
(θ) = (−1)[B][Ȧ]+[D][Ċ]SCD

AB (θ)SĊḊ
ȦḂ

(θ) (41)

• Same factorisation as in the light-cone gauge string theory

Klose, McLoughlin, Roiban, Zarembo, 2006

• There it relied on integrability and PSU(2|2) × PSU(2|2)
global symmetry

• We have integrability but no manifest supersymmetry



Tree-level result

SCD
AB (θ, k) = {

K1(θ, k)δc
aδd

b + K2(θ, k)δd
aδc

b ,

K3(θ, k)δγ
αδδ

β + K4(θ, k)δδ
αδγ

β ,

K5(θ, k)ǫabǫ
γδ , K6(θ, k)ǫαβǫcd ,

K7(θ, k)δd
aδγ

β , K8(θ, k)δδ
αδc

b ,

K9(θ, k)δc
aδδ

β , K10(θ, k)δγ
αδd

b ,

(42)

K1(θ, k) =K3(θ,−k) = 1 +
iπ

2k
tanh

θ

2
+ O(k−2) (43)

K2(θ, k) =K4(θ,−k) = − iπ

k
coth θ + O(k−2) (44)

K5(θ, k) = − K6(θ,−k) = − iπ

2k
sech

θ

2
+ O(k−2) (45)

K7(θ, k) = − K8(θ,−k) = − iπ

2k
cosech

θ

2
+ O(k−2) (46)

K9(θ, k) =K10(θ,−k) = 1 + O(k−2) (47)



Comments

• Have group factorisation, but not satisfaction of Yang-Baxter
– common to all theories with non-abelian H

• Light-cone gauge superstring theory result is not Lorentz in-
variant but does satisfy Yang-Baxter.

• Unitarity and crossing.

• Corresponding results for AdS3 ×S3 and AdS2 ×S2 do satisfy
Yang-Baxter – H is abelian (or trivial).

• Coefficients are exactly those of a quantum-deformed
psu(2|2) ⋉ R

3 R-matrix.
Beisert, Koroteev, 2008

Beisert, 2010

• However these coefficients parametrise the R-matrix in a de-
formed way that breaks the manifest SU(2)×SU(2) symmetry.



One-loop S-matrix of the PR theory

• Computation extended to one-loop – can be carried out with
just the quartic Lagrangian – standard perturbation theory

Hoare, AAT, 2011

• Relevant Feynman diagrams are bubble and tadpole

• tadpole has a vanishing finite contribution in 2d: not relevant



One-loop result - AdS5 × S5

Ki = p05
(θ, k) K̂i (48)

K̂1(θ, k) =K̂3(θ,−k) = 1 +
iπ

2k
tanh

θ

2
− 5π2

8k2
− iπθ

2k2
+ O(k−3) (49)

K̂2(θ, k) =K̂4(θ,−k) = − iπ

k
coth θ +

π2

2k2
+

iπθ

k2
+ O(k−3) (50)

K̂5(θ, k) = − K̂6(θ,−k) = − iπ

2k
sech

θ

2
+ O(k−3) (51)

K̂7(θ, k) = − K̂8(θ,−k) = − iπ

2k
cosech

θ

2
+ O(k−3) (52)

K̂9(θ, k) =K̂10(θ,−k) = 1 + O(k−3) (53)

p05
(θ, k) = 1 +

π cosech θ

4k2

(

i
[

2 + (iπ − 2θ) coth θ
]

− π cosech θ
)

(54)



Comments

• Coefficients are still similar to those of the q-deformed S-matrix
though no longer exactly the same – differ by extra θ terms.

• Coefficients of q-deformed S-matrix satisfy q-deformed crossing
relations whereas those of the perturbative S-matrix satisfy
standard relations.

• Phase factor is the same as the expansion of the N = 2 super-
symmetric sine-Gordon phase factor.

Zamolodchikov and Zamolodchikov, 1979

Shankar, Witten, 1978

Ahn, 1991

Kobayashi, Uematsu, 1991

Pohlmeyer reduced AdS2 × S2:

• The one-loop computation agrees with the exact results for the
N = 2 supersymmetric sine-Gordon S-matrix.

Kobayashi, Uematsu, 1991



Supersymmetry of the reduced theories - AdS2 × S2

The Pohlmeyer reduced AdS2 × S2 theory has a N = 2 susy

so(1, 1) A ([psu(1|1)]2 ⋉ R
2) (55)

• The algebra in the brackets is precisely f̂⊥.

• The projection to subalgebra of f̂ = psu(1, 1|2) defined by the
constant matrix T .

• The reduction procedure: different grades of the algebra under
the Lorentz group

R
2 : [P+] = 1 [P−] = −1 (56)

psu(1|1) : [QR] =
1

2
[QL] = −1

2
(57)



Digression: complex sine-Gordon model

• First perturbative study of S-matrix – local counterterms were
required at one-loop to restore satisfaction of the Yang-Baxter
equation.

de Vega and Maillet, 1981

• Semiclassical corrections to soliton masses, and conjecture of
exact quantum spectrum.

de Vega and Maillet, 1983

• Formulation of complex sine-Gordon as a SU(2)/U(1) gauged
WZW model plus integrable potential.

Bakas, Park, Shin, 1994



• Conjecture of full quantum S-matrix for soliton scattering.

Dorey and Hollowood, 1994

• Special points when k ∈ N – evidence that gauged WZW may
play an important role.

• Consider functional determinant that arises from solving the
delta-function in the path integral.

• This functional determinant gives rise to local counterterms
that precisely restore the satisfaction of the Yang-Baxter equa-
tion and match the expansion of the Dorey/Hollowood S-
matrix.

Hoare, AAT, 2010



Pohlmeyer reduction of superstring theory on AdS3 ×S3

• Like in complex sine-Gordon one-loop S-matrix does not satisfy
Yang-Baxter.

• Can be restored by the addition of local counterterms.

• Group factorisation is also restored.

• Counterterms can be derived from a functional determinant,
but a more complicated one than that arising from solving the
delta-function.

• Suggests there may be an alternative formulation of the action
that is more symmetric with bosons and fermions.

Pohlmeyer reduction of superstring theory on AdS5 × S5 –

• No counterterms required to restore group-factorisation.

• The functional determinant identified in the AdS3 × S3 case
gives vanishing correction when extended to the AdS5 × S5

case.



Reduced theory for AdS3 × S3

Drop down to AdS3 × S3 – easier to identify supersymmetry

Analogous to the AdS5 × S5 case –

• a, ȧ, α, α̇ are vector SO(2) indices

• The fields Yaȧ, Zαα̇, ζaα̇, χαȧ satisfy a constraint to reduce the
number of degrees of freedom to 4 + 4

Yaȧ = ǫabǫȧḃYbḃ etc. (58)

• The fields can be again packaged into a single field ΦAȦ

• With the addition of contribution of from local counterterms
restoring for Yang-Baxter the one-loop perturbative S-matrix
factorises

SCĊ,DḊ

AȦ,BḂ
(θ) = (−1)[B][Ȧ]+[D][Ċ]SCD

AB (θ)SĊḊ
ȦḂ

(θ) (59)



S-matrix of reduced AdS3 × S3 theory

SCD
AB = {

L1(θ, k)δacδbd + L2(θ, k)ǫacǫbd ,

L3(θ, k)δαγδβδ + L4(θ, k)ǫαγǫβδ ,

L5(θ, k)δacδβδ + L6(θ, k)ǫacǫβδ ,

L7(θ, k)δαγδbd + L8(θ, k)ǫαγǫbd ,

L9(θ, k)(δabδγδ + ǫabǫγδ) ,

L10(θ, k)(δαβδcd + ǫαβǫcd) ,

L11(θ, k)(δadδγβ + ǫadǫγβ) ,

L12(θ, k)(δαδδcb + ǫαδǫcb) ,

(60)

Li(θ, k) = p03
(θ, k) L̂i(θ, k) (61)

p03
= 1 +

π cosech θ

2k2

(

i
[

2 + (iπ − 2θ) coth θ
]

− π cosech θ
)

(62)



L̂1(θ, k) = L̂3(θ,−k) = 1 −
iπ

k
cosech θ −

π2

2k2
+ O(k−3) (63)

L̂2(θ, k) = L̂4(θ,−k) =
iπ

k
coth θ −

iπ

k2
coth θ −

iπ

2k2
(iπ − 2θ)( cosech θ)2 (64)

+
π2

2k2
coth θ cosech θ + O(k−3) (65)

L̂5(θ, k) = L̂7(θ,−k) = 1 + O(k−3) (66)

L̂6(θ, k) = L̂8(θ,−k) = −
iπ

k2
coth θ −

iπ

2k2
(iπ − 2θ)( cosech θ)2 (67)

+
π2

2k2
coth θ cosech θ + O(k−3) (68)

L̂9(θ, k) = −L̂10(θ,−k) =
iπ

2k
sech

θ

2
+ O(k−3) , (69)

L̂11(θ, k) = −L̂12(θ,−k) = −
iπ

2k
cosech

θ

2
+ O(k−3) (70)



Supersymmetry of the reduced theories - AdS3 × S3

bosonic symmetry of the Pohlmeyer reduced AdS3 × S3 theory

so(1, 1) A (u(1)3 ⊕ R
2) (71)

This is the bosonic subgroup of the full perpendicular algebra

f̂⊥ = so(1, 1) A ([u(1) A psu(1|1)]2 ⋉ u(1) ⋉ R
2) (72)

By analogy with AdS2 × S2 conjecture this to be the symmetry
of the PR AdS3 × S3 theory.

For invariance of one-loop perturbative S-matrix require quantum
deformation.



AdS3 × S3 supersymmetry – classical algebra

• Consider “half” the algebra

[u(1) A psu(1|1)] ⋉ u(1) ⋉ R
2 (73)

• This is the symmetry that should act on the factorised S-
matrix

• Central extensions act in the same way on both factors

• Classical algebra

[R, R] = 0 , [L, L] = 0 , (74)

[R, Q±±±∓∓∓] = ±iQ±±±∓∓∓ , [L, Q±±±∓∓∓] = ∓iQ±±±∓∓∓ , (75)

[R, S±±±∓∓∓] = ±iS±±±∓∓∓ , [L, S±±±∓∓∓] = ∓iS±±±∓∓∓ , (76)

{S±±±∓∓∓, Q±±±∓∓∓} = 0 , {S±±±∓∓∓, Q∓∓∓±±±} = ± i

2
(R + L) ≡ ±A , (77)

{Q±±±∓∓∓, Q±±±∓∓∓} = 0 , {Q±±±∓∓∓, Q∓∓∓±±±} = −P+ , (78)

{S±±±∓∓∓, S±±±∓∓∓} = 0 , {S±±±∓∓∓, S∓∓∓±±±} = P− . (79)



AdS3 × S3 q-deformed supersymmetry

• Bosonic subalgebra is abelian

• U(1) × U(1) invariant factorised S-matrix satisfies the Yang-
Baxter equation

• Therefore the quantum deformation of the supersymmetry
should affect only

{S±±±∓∓∓, Q∓∓∓±±±} = ±A (80)

• This is deformed to

{S±±±∓∓∓, Q∓∓∓±±±} = ±[A]q (81)

[x]q =
qx − q−x

q − q−1
, [0]q = 0, [1]q = 1 (82)

A quantum deformed N = 4 2-d spacetime supersymmetry, with
a U(1)3 bosonic R-symmetry.

Hoare, AAT, 2010



AdS3 × S3 q-deformed supersymmetry – coproduct

Usual Leibniz coproduct tells us the action of the symmetry on
the two-particle states

∆(J) = I ⊗ J + J ⊗ I (83)

Coproduct should respect the commutation relations – if we de-
form the algebra we need to deform the coproduct

• Bosonic generators (including momenta) have usual coproduct

• Fermionic generators

∆(Q±±±∓∓∓) = Q±±±∓∓∓⊗q−A + I ⊗ Q±±±∓∓∓ , (84)

∆(S±±±∓∓∓) = S±±±∓∓∓⊗I + qA ⊗ S±±±∓∓∓ , (85)



AdS3 × S3 – invariance of perturbative S-matrix

The perturbative PR AdS3 × S3 S-matrix is invariant under the
q-deformed supersymmetry for

q = 1 − 2iπ

k
− 2π2

k2
+ . . . (= e−

2iπ
k ) (86)

Assuming the quantum deformed supersymmetry is exact can con-
jecture an exact S-matrix for the Pohlmeyer reduced AdS3 × S3

• Phase factor is fixed by unitarity, crossing and matching with
the perturbative computation.

• S-matrix satisfies the Yang-Baxter equation.

• The perturbative expansion of the S-matrix agrees with the
one-loop computation



AdS3 × S3 exact S-matrix conjecture

L1,3(θ, k) =
1

2

h

P1(θ, k) cosh
“ θ

2
±
iπ

k

”

sech
θ

2
+ P2(θ, k) sinh

“ θ

2
∓
iπ

k

”

cosech
θ

2

i

(87)

L2,4(θ, k) =
1

2

h

P1(θ, k) cosh
“ θ

2
±
iπ

k

”

sech
θ

2
− P2(θ, k) sinh

“ θ

2
∓
iπ

k

”

cosech
θ

2

i

(88)

L5,7(θ, k) =
1

2

h

P1(θ, k) + P2(θ, k)
i

, L6,8(θ, k) =
1

2

h

P1(θ, k) − P2(θ, k)
i

(89)

L9,10(θ, k) =
i

2
P1(θ, k) sin

π

k
sech

θ

2
, L11,12(θ, k) = −

i

2
P2(θ, k) sin

π

k
cosech

θ

2
(90)

P1(θ, k) =

v

u

u

t

cosh
`

θ
2

+ iπ
k

´

cosh
`

θ
2
− iπ

k

´

∞
Y

l=1

Γ( iθ
2π

− 1
k

+ l− 1
2
)Γ( iθ

2π
+ 1

k
+ l + 1

2
)

Γ(− iθ
2π

− 1
k

+ l− 1
2
)Γ(− iθ

2π
+ 1

k
+ l+ 1

2
)

(91)

Γ(− iθ
2π

+ l − 1
2
)Γ(− iθ

2π
+ l+ 1

2
)

Γ( iθ
2π

+ l − 1
2
)Γ( iθ

2π
+ l + 1

2
)

(92)

P2(θ, k) =P1(iπ − θ)) (93)
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Summary of supersymmetry

PR AdS2 × S2:

f̂⊥ = so(1, 1) A ([psu(1|1)]2 ⋉ R
2) (94)

• There is nothing to quantum deform!

PR AdS3 × S3:

f̂⊥ = so(1, 1) A ([u(1) A psu(1|1)]2 ⋉ u(1) ⋉ R
2) (95)

• For Lorentz invariant S-matrix matching perturbative result
need to quantum-deform fermionic part of this symmetry

PR AdS5 × S5:

f̂⊥ = so(1, 1) A ([psu(2|2)]2 ⋉ R
2) (96)

• There a relativistic S-matrix with a q-deformed symmetry that
satisfies Yang-Baxter!



Given by g → ∞ limit of q-deformed [psu(2|2)]2 ⋉ R
3 R-matrix

constructed by Beisert and Koroteev.
Beisert, Koroteev, 2008

Beisert, 2010

Hoare, AAT, 2011

Similarities to the perturbative S-matrix.

However, the bosonic subgroup is non-abelian

– the quantum deformation affects it non-trivially

– lack of manifest H symmetry in S-matrix.

• Same story for non-abelian bosonic theories – conjectured that
the physical S-matrix for the solitons is the q-deformed one

Hollowood, Miramontes, 2009



How to match with perturbative computation?

Open question

• What excitations are we scattering? Are they physical? Soli-
tons?

• Maybe S-matrix for physical excitations is related by non-
unitarity rotation arising from subtlety in solving for the un-
physical field ξ.

Further evidence that f̂⊥ is the symmetry algebra for these theories
comes from study of solitons in the PR AdS5 × S5 theory.

Hollowood, Miramontes, 2010, 2011

• recent work of Hoare, Hollowood, Miramontes: – fusion pro-
cedure with the q-deformed S-matrix supports the mass spec-
trum of solitons computed by Hollowood and Miramontes.



Conclusions and open questions

• Important to understand perturbation theory in order to test
conjectures for exact results.

Bosonic models with abelian H, e.g. complex sine-Gordon –

• The perturbative S-matrix plus the contribution from the func-
tional determinant satisfies Yang-Baxter and agrees with the
conjectured exact result.

de Vega, Maillet, 1981, 1983

Dorey, Hollowood, 1994

Hoare, AAT, 2010

• gauged WZW plus potential correct way of defining the inte-
grable theory (extensions beyond one-loop?)



• What is the origin of the quantum-deformation from La-
grangian viewpoint?

• Relation of q-deformed supersymmetry of S-matrix to (non-
local) supersymmetry of the reduced theory action?

Goyhman, Ivanov, 2011

Hollowood, Miramontes, 2011

• Study of the solitons supports q-deformation.

Hollowood, Miramontes, 2009-2011

• Relation between quantum AdS5 ×S5 string theory and quan-
tum reduced theory?

• k vs.
√

λ ?

• classical equivalence; one-loop partition functions match

• 2-loop partition functions for infinite spin limit of folded string
are closely related: Catalan’s constant term matches, but there
are extra (ln 2)2 terms

suggests ln Z2 = ln Z
(string)
2 + a(ln Z

(string)
1 )2

Iwashita, Roiban, AT, to appear
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π
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S |ψ4ψ4〉 =
`

J3 + J4

´

|ψ4ψ4〉 (108)

S
˛

˛φaψβ

¸

= J7 δ
d
aδ

γ
β
|ψγφd〉 + J9 δ

c
aδ

δ
β |φcψδ〉 (109)

S |ψαφb〉 = J8 δ
δ
αδ

c
b |φcψδ〉 + J10 δ

γ
αδ

d
b |ψγφd〉 (110)



J1,3(θ, k) = P0(θ, k) cos
π

k
sech

θ

2
cosh

“ θ
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iπ

2k
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1 − cos
π
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”i
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π
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cosech θ (112)
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π

k
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π

2k
sech
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2
(113)
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π

2k
cosech

θ

2
(114)

J9,10(θ, k) = P0(θ, k) (115)

P0(θ, k) =

s

sinh θ − i sin π
k

sinh θ + i sin π
k

Y (θ, k) Y (iπ − θ, k) (116)
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Y
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Beisert, Koroteev, 2008

Beisert, 2010
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