D = 4 Black Holes From Geodesics

Mario Trigiante

Dipartimento di Fisica Politecnico di Torino

July 19, 2011

Prepared for SQS 2011.

Based on 0806.2310, 0903.2777, 1007.3209, 1103.0848 in collaboration with E. Bergshoeff, W. Chemissany, P. Fré,

A. Ploegh, A. Sorin, T. Van Riet, J. Rosseel

Introduction	D=3 Description as Geodesics	The Seed Geodesic	The Issue of Nilpotent Orbits and an Example	Conclusions

Outline

Introduction

- Black Holes in Extended D = 4 Supergravity
- D=3 Description as Geodesics
 - The global symmetry in *D* = 3
- 3 The Seed Geodesic
 - Seed Geodesic in Universal Submanifold
- 4 The Issue of Nilpotent Orbits and an Example

5 Conclusions

 Introduction
 D=3 Description as Geodesics
 The Seed Geodesic
 The Issue of Nilpotent Orbits and an Example
 Conclusions

 Black Holes in Extended D = 4 Supergravity
 Extended D = 4 Supergravity
 Extended D = 4 Supergravity
 Extended D = 4 Supergravity

Seed Solutions

• Global symmetry group G_4 of 4-dim. extended ($N \ge 2$) Supergravities

Seed Solutions

• Global symmetry group G_4 of 4-dim. extended ($N \ge 2$) Supergravities

• Isometry of the scalar manifold $\mathcal{M}_{scal} = \frac{G_4}{H_a}$

Introduction
• 00D=3 Description as Geodesics
ooThe Seed Geodesics
ooThe Issue of Nilpotent Orbits and an ExampleConclusions

Black Holes in Extended D = 4 Supergravity

- Global symmetry group G_4 of 4-dim. extended ($N \ge 2$) Supergravities
 - Isometry of the scalar manifold $\mathcal{M}_{scal} = \frac{G_4}{H_4}$
 - Symplectic electric-magnetic duality transformation on the n_v vector fieldstrengths $F^{\Lambda}_{\mu\nu}$ and their duals $G_{\Lambda\mu\nu}$

IntroductionD=3 Description as GeodesicsThe Seed GeodesicThe Issue of Nilpotent Orbits and an ExampleConclusions••<

Black Holes in Extended D = 4 Supergravity

- Global symmetry group G_4 of 4-dim. extended ($N \ge 2$) Supergravities
 - Isometry of the scalar manifold $\mathcal{M}_{scal} = \frac{G_4}{H_4}$
 - Symplectic electric-magnetic duality transformation on the n_v vector fieldstrengths $F^{\Lambda}_{\mu\nu}$ and their duals $G_{\Lambda\mu\nu}$
- Encodes String/M-theory dualities

 Introduction
 D=3 Description as Geodesics
 The Seed Geodesic
 The Issue of Nilpotent Orbits and an Example
 Conclusions

 •oo
 oo
 o

Black Holes in Extended D = 4 Supergravity

- Global symmetry group G_4 of 4-dim. extended ($N \ge 2$) Supergravities
 - Isometry of the scalar manifold $\mathcal{M}_{scal} = \frac{G_4}{H_4}$
 - Symplectic electric-magnetic duality transformation on the n_v vector fieldstrengths $F^{\Lambda}_{\mu\nu}$ and their duals $G_{\Lambda\mu\nu}$
- Encodes String/M-theory dualities
 - Relates different descriptions of the same microscopic d.o.f.

 Introduction
 D=3 Description as Geodesics
 The Seed Geodesic
 The Issue of Nilpotent Orbits and an Example
 Conclusions

 •oo
 oo
 o

Black Holes in Extended D = 4 Supergravity

- Global symmetry group G_4 of 4-dim. extended ($\mathcal{N} \ge 2$) Supergravities
 - Isometry of the scalar manifold $\mathcal{M}_{scal} = \frac{G_4}{H_4}$
 - Symplectic electric-magnetic duality transformation on the n_v vector fieldstrengths $F^{\Lambda}_{\mu\nu}$ and their duals $G_{\Lambda\mu\nu}$
- Encodes String/M-theory dualities
 - Relates different descriptions of the same microscopic d.o.f.
 - Microscopic d.o.f. of a solution described by duality invariant quantities (e.g. entropy of a black hole, the *fake* superpotential etc...)

 Introduction
 D=3 Description as Geodesics
 The Seed Geodesic
 The Issue of Nilpotent Orbits and an Example
 Conclusions

 •oo
 oo
 o

Black Holes in Extended D = 4 Supergravity

Seed Solutions

- Global symmetry group G_4 of 4-dim. extended ($\mathcal{N} \ge 2$) Supergravities
 - Isometry of the scalar manifold $\mathcal{M}_{scal} = \frac{G_4}{H_4}$
 - Symplectic electric-magnetic duality transformation on the n_v vector fieldstrengths $F^{\Lambda}_{\mu\nu}$ and their duals $G_{\Lambda\mu\nu}$
- Encodes String/M-theory dualities
 - Relates different descriptions of the same microscopic d.o.f.
 - Microscopic d.o.f. of a solution described by duality invariant quantities (e.g. entropy of a black hole, the *fake* superpotential etc...)

Seed solution: Simplest solution with all duality invariant properties of the most general one

Black Holes in Extended D = 4 Supergravity

Static, Asymtotically Flat Black Holes in D=4 SUGRAS

Bosonic field content

- n_S scalar fields ϕ^r $(r = 1, ..., n_S)$
- n_V vector fields A^{Λ}_{μ} $(\Lambda = 0, \dots, n_V 1)$
- Graviton $g_{\mu\nu}$

Black Holes in Extended D = 4 Supergravity

Static, Asymtotically Flat Black Holes in D=4 SUGRAS

Bosonic field content

- n_S scalar fields ϕ^r $(r = 1, ..., n_S)$
- n_V vector fields A^{\wedge}_{μ} ($\Lambda = 0, \dots, n_V 1$)
- Graviton $g_{\mu\nu}$

The ansatz

$$ds^2 = -e^{2U} dt^2 + e^{-2U} \left[rac{c^4}{\sinh^4(c\, au)} d au^2 + rac{c^2}{\sinh^2(c\, au)} \left(d heta^2 + \sin(heta) darphi^2
ight)
ight]$$

•
$$\phi^r = \phi^r(\tau), \ U = U(\tau), \quad \frac{d\tau}{dr} = \frac{\sinh^2(c\,\tau)}{c^2} = \frac{1}{(r-r_0)^2-c^2};$$

- *c* extremality parameter, two horizons: $r_{\pm} = r_0 \pm c$
- electric and magnetic charges e_{Λ} , m^{Λ} : $\Gamma^{M} \equiv (m^{\Lambda}, e_{\Lambda})$
- Extreme solutions c = 0: $\lim_{\tau \to -\infty} e^{-2U} = \frac{A_H}{4\pi} \tau^2$

Black Holes in Extended D = 4 Supergravity

Seed solution in maximal SUGRA

- 70 scalar fields $\phi^r \in \mathcal{M}_{scal} = \frac{G_4}{H_4} = \frac{E_{7(7)}}{SU(8)}$
- 28 vector fields A^A_µ
- Duality group is $E_{7(7)}$; $\Gamma^{M} = (m^{\Lambda}, e_{\Lambda}) \in 56$ symplectic representation
- Parameters of a black-hole encoded in central charges computed at infinity:
 Z_{AB}(φ_∞, Γ) ∈ 28 of SU(8)

Black Holes in Extended D = 4 Supergravity

Seed solution in maximal SUGRA

- 70 scalar fields $\phi^r \in \mathcal{M}_{scal} = \frac{G_4}{H_4} = \frac{E_{7(7)}}{SU(8)}$
- 28 vector fields A^A_µ
- Duality group is $E_{7(7)}$; $\Gamma^{M} = (m^{\Lambda}, e_{\Lambda}) \in 56$ symplectic representation

Parameters of a black-hole encoded in central charges computed at infinity:
 Z_{AB}(φ_∞, Γ) ∈ 28 of SU(8)

$$Z_{AB} \stackrel{\text{SU(8)}}{\longrightarrow} \begin{pmatrix} Z_1 \ \epsilon & 0 & 0 & 0 \\ 0 & Z_2 \ \epsilon & 0 & 0 \\ 0 & 0 & Z_3 \ \epsilon & 0 \\ 0 & 0 & 0 & Z_4 \ \epsilon \end{pmatrix}$$

Black Holes in Extended D = 4 Supergravity

Seed solution in maximal SUGRA

- 70 scalar fields $\phi^r \in \mathcal{M}_{scal} = \frac{G_4}{H_4} = \frac{E_{7(7)}}{SU(8)}$
- 28 vector fields A^A_µ
- Duality group is $E_{7(7)}$; $\Gamma^M = (m^{\Lambda}, e_{\Lambda}) \in 56$ symplectic representation
- Parameters of a black-hole encoded in central charges computed at infinity:
 Z_{AB}(φ_∞, Γ) ∈ 28 of SU(8)

$$Z_{AB} \stackrel{\rm SU(8)}{\to} \begin{pmatrix} Z_1 \, \epsilon & 0 & 0 & 0 \\ 0 & Z_2 \, \epsilon & 0 & 0 \\ 0 & 0 & Z_3 \, \epsilon & 0 \\ 0 & 0 & 0 & Z_4 \, \epsilon \end{pmatrix}$$

- (Z_k) can be identified with the charges (Z, Z̄_s, Z̄_t, Z̄_u) of a
 N = 2 STU truncation
- Five SU(8) invariants: $\rho_k = |Z_k|, \ \theta = \operatorname{Arg}(Z_1 Z_2 Z_3 Z_4)$
- Seed solution, also solution to the STU truncation, has 5 parameters

Introduction	D=3 Description as Geodesics	The Seed Geodesic	The Issue of Nilpotent Orbits and an Example	Conclusions

• $ds^2 = -e^{2U} (dt + B_i^0 dx^i)^2 + e^{-2U} g_{ij} dx^i dx^j$

Introduction	D=3 Description as Geodesics	The Seed Geodesic	The Issue of Nilpotent Orbits and an Example	Conclusions

- $ds^2 = -e^{2U} (dt + B_i^0 dx^i)^2 + e^{-2U} g_{ij} dx^i dx^j$
- Is solution to a D = 3 Euclidean theory obtained from time-reduction from the D = 4 one (Breitenlohner, Gibbons, Maison)

Introduction	D=3 Description as Geodesics	The Seed Geodesic	The Issue of Nilpotent Orbits and an Example	Conclusions

- $ds^2 = -e^{2U} (dt + B_i^0 dx^i)^2 + e^{-2U} g_{ij} dx^i dx^j$
- Is solution to a D = 3 Euclidean theory obtained from time-reduction from the D = 4 one (Breitenlohner, Gibbons, Maison)
- Dualizing in D = 3 vectors into scalars: A^Λ → ζ̃_Λ, B⁰ → a we end up with a sigma model coupled to gravity

- $ds^2 = -e^{2U} (dt + B_i^0 dx^i)^2 + e^{-2U} g_{ij} dx^i dx^j$
- Is solution to a D = 3 Euclidean theory obtained from time-reduction from the D = 4 one (Breitenlohner, Gibbons, Maison)
- Dualizing in D = 3 vectors into scalars: A^Λ → ζ̃_Λ, B⁰ → a we end up with a sigma model coupled to gravity
- Scalars $(\phi^l) = (U, a, \phi^r, \zeta^{\wedge} \equiv A_0^{\wedge}, \tilde{\zeta}_{\wedge})$ span a $n = 2 + n_S + 2n_V$ dim. coset manifold $\mathscr{M}_{scal}^{(3)} = \frac{G}{H}$.

- $ds^2 = -e^{2U} (dt + B_i^0 dx^i)^2 + e^{-2U} g_{ij} dx^i dx^j$
- Is solution to a D = 3 Euclidean theory obtained from time-reduction from the D = 4 one (Breitenlohner, Gibbons, Maison)
- Dualizing in D = 3 vectors into scalars: A^Λ → ζ̃_Λ, B⁰ → a we end up with a sigma model coupled to gravity
- Scalars $(\phi^l) = (U, a, \phi^r, \zeta^{\wedge} \equiv A_0^{\wedge}, \tilde{\zeta}_{\wedge})$ span a $n = 2 + n_S + 2n_V$ dim. coset manifold $\mathscr{M}_{scal}^{(3)} = \frac{G}{H}$.
- $\mathcal{M}_{scal}^{(3)}$ pseudo-Riemannian, *negative signature* directions along $\mathcal{Z}^{M} = (\zeta^{\Lambda}, \tilde{\zeta}_{\Lambda})$. $H \subset G$ is *non-compact* semisimple

- $ds^2 = -e^{2U} (dt + B_i^0 dx^i)^2 + e^{-2U} g_{ij} dx^i dx^j$
- Is solution to a D = 3 Euclidean theory obtained from time-reduction from the D = 4 one (Breitenlohner, Gibbons, Maison)
- Dualizing in D = 3 vectors into scalars: A^Λ → ζ̃_Λ, B⁰ → a we end up with a sigma model coupled to gravity
- Scalars $(\phi') = (U, a, \phi^r, \zeta^{\wedge} \equiv A_0^{\wedge}, \tilde{\zeta}_{\wedge})$ span a $n = 2 + n_S + 2n_V$ dim. coset manifold $\mathscr{M}_{scal}^{(3)} = \frac{G}{H}$.
- $\mathcal{M}_{scal}^{(3)}$ pseudo-Riemannian, *negative signature* directions along $\mathcal{Z}^{M} = (\zeta^{\Lambda}, \tilde{\zeta}_{\Lambda})$. $H \subset G$ is *non-compact* semisimple
- Spherical symmetry: $\phi^{I} = \phi^{I}(\tau)$, solution is a geodesic on $\mathscr{M}_{scal}^{(3)}$

- $ds^2 = -e^{2U} (dt + B_i^0 dx^i)^2 + e^{-2U} g_{ij} dx^i dx^j$
- Is solution to a D = 3 Euclidean theory obtained from time-reduction from the D = 4 one (Breitenlohner, Gibbons, Maison)
- Dualizing in D = 3 vectors into scalars: A^Λ → ζ̃_Λ, B⁰ → a we end up with a sigma model coupled to gravity
- Scalars $(\phi^l) = (U, a, \phi^r, \zeta^{\wedge} \equiv A_0^{\wedge}, \tilde{\zeta}_{\wedge})$ span a $n = 2 + n_S + 2n_V$ dim. coset manifold $\mathscr{M}_{scal}^{(3)} = \frac{G}{H}$.
- $\mathcal{M}_{scal}^{(3)}$ pseudo-Riemannian, *negative signature* directions along $\mathcal{Z}^{M} = (\zeta^{\Lambda}, \tilde{\zeta}_{\Lambda})$. $H \subset G$ is *non-compact* semisimple
- Spherical symmetry: $\phi^{I} = \phi^{I}(\tau)$, solution is a geodesic on $\mathscr{M}_{scal}^{(3)}$
- Invariant measure along the geodesic coincides with the extremality parameter: $G_{IJ}(\phi) \dot{\phi}^{I} \dot{\phi}^{J} = 2 c^{2}$

Mathematical description of the geodesic

Definitions...

• Let \mathfrak{g} , \mathfrak{H} be the Lie algebras of G and H. Involution $\sigma(\mathfrak{H}) = -\eta \mathfrak{H}^T \eta = \mathfrak{H}$ induces

the (pseudo-) Cartan decomposition:

$$\mathfrak{g}=\mathfrak{H}\oplus\mathfrak{K}$$

with $\sigma(\mathfrak{K}) = -\mathfrak{K}$

• Given coset representative $\mathcal{V}(\phi^{l}) \in e^{Solv}$ and geodesic $\phi^{l}(\tau)$, define $\mathcal{V}(\tau) \equiv \mathcal{V}(\phi^{l}(\tau))$:

 $\mathcal{V}^{-1}\dot{\mathcal{V}}(\tau) = V(\tau) + W(\tau) \ , \ V(\tau) \in \mathfrak{K} \ , \ W(\tau) \in \mathfrak{H}$

Mathematical description of the geodesic

Definitions...

• Let \mathfrak{g} , \mathfrak{H} be the Lie algebras of G and H. Involution $\sigma(\mathfrak{H}) = -\eta \mathfrak{H}^T \eta = \mathfrak{H}$ induces

the (pseudo-) Cartan decomposition:

$\mathfrak{g}=\mathfrak{H}\oplus\mathfrak{K}$

with $\sigma(\mathfrak{K}) = -\mathfrak{K}$

• Given coset representative $\mathcal{V}(\phi^{l}) \in e^{Solv}$ and geodesic $\phi^{l}(\tau)$, define $\mathcal{V}(\tau) \equiv \mathcal{V}(\phi^{l}(\tau))$:

$$\mathcal{V}^{-1}\dot{\mathcal{V}}(au) = V(au) + W(au)$$
 , $V(au) \in \mathfrak{K}$, $W(au) \in \mathfrak{H}$

Geodesic equation

• $\dot{V} + [W, V] = 0$, Lax Pair equation [Liouville i. system (1007.3209)]

Mathematical description of the geodesic

Definitions...

• Let \mathfrak{g} , \mathfrak{H} be the Lie algebras of G and H. Involution $\sigma(\mathfrak{H}) = -\eta \mathfrak{H}^T \eta = \mathfrak{H}$ induces

the (pseudo-) Cartan decomposition:

$\mathfrak{g}=\mathfrak{H}\oplus\mathfrak{K}$

with $\sigma(\mathfrak{K}) = -\mathfrak{K}$

• Given coset representative $\mathcal{V}(\phi^{l}) \in e^{Solv}$ and geodesic $\phi^{l}(\tau)$, define $\mathcal{V}(\tau) \equiv \mathcal{V}(\phi^{l}(\tau))$:

$$\mathcal{V}^{-1}\dot{\mathcal{V}}(au) = V(au) + W(au)$$
 , $V(au) \in \mathfrak{K}$, $W(au) \in \mathfrak{H}$

Geodesic equation

- V + [W, V] = 0, Lax Pair equation [Liouville i. system (1007.3209)]
- *Q* is the Noether charge matrix: $Q = 2 \mathcal{V}^{-T} V^T \mathcal{V}^T$

• Geodesic uniquely defined by initial point $\phi_0^I = \phi^I(\tau = 0)$ and initial velocity $V_0 = V(\tau = 0) \in \Re$

The global symmetry in D = 3

• Geodesic uniquely defined by initial point $\phi_0^I = \phi^I(\tau = 0)$ and initial velocity $V_0 = V(\tau = 0) \in \Re$

The global symmetry in D = 3

• Geodesic uniquely defined by initial point $\phi_0^I = \phi^I(\tau = 0)$ and initial velocity $V_0 = V(\tau = 0) \in \Re$

- Isometry group G is the global symmetry of the D = 3 theory
- Action of G on a geodesic (φ₀, V₀)
- Fix φ₀ ≡ 0, G-orbit of geodesic is H-orbit of V₀ ∈ ℜ

The global symmetry in D = 3

• Geodesic uniquely defined by initial point $\phi_0^I = \phi^I(\tau = 0)$ and initial velocity $V_0 = V(\tau = 0) \in \mathfrak{K}$

- Isometry group G is the global symmetry of the D = 3 theory
- Action of G on a geodesic (φ₀, V₀)
- Fix φ₀ ≡ 0, G-orbit of geodesic is H-orbit of V₀ ∈ ℜ

The global symmetry in D = 3

• Geodesic uniquely defined by initial point $\phi_0^I = \phi^I(\tau = 0)$ and initial velocity $V_0 = V(\tau = 0) \in \mathfrak{K}$

- Isometry group G is the global symmetry of the D = 3 theory
- Action of G on a geodesic (φ₀, V₀)
- Fix φ₀ ≡ 0, G-orbit of geodesic is H-orbit of V₀ ∈ ℜ

Introduction	D=3 Description as Geodesics ○●	The Seed Geodesic	The Issue of Nilpotent Orbits and an Example	Conclusions
The global symmetry in $D = 3$				

Some algebra....

• G is larger than G_4 : $G_4 \times SL(2, \mathbb{R})_E \subset G$. Its algebra decomposes as follows:

$$\mathfrak{g}=\mathfrak{sl}(2,\mathbb{R})_{\textit{E}}\oplus\mathfrak{g}_{4}\oplus(2,\textbf{R})$$

where ${\bf R}$ is the (symplectic) representation of the electric and magnetic charges under ${\it G}_4$

Introduction D=3 Description as Geodesics The Seed Geodesic The Issue of Nilpotent Orbits and an Example Conclusions O = 0 The global symmetry in D = 3

Some algebra....

• G is larger than G_4 : $G_4 \times SL(2, \mathbb{R})_E \subset G$. Its algebra decomposes as follows:

$$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R})_E \oplus \mathfrak{g}_4 \oplus (\mathbf{2},\mathbf{R})$$

where ${\bf R}$ is the (symplectic) representation of the electric and magnetic charges under ${\it G}_4$

Similarly:

$$\mathfrak{H} = \mathfrak{u}(1)_E \oplus \mathfrak{H}_4 \oplus \mathfrak{H}^{(\hat{R})}$$
, $\mathfrak{K} = \mathfrak{K}_E \oplus \mathfrak{K}_4 \oplus \mathfrak{K}^{(\hat{R})}$

Introduction D=3 Description as Geodesics The Seed Geodesic The Issue of Nilpotent Orbits and an Example Conclusions 0 = 0 The global symmetry in D = 3

Some algebra....

• G is larger than G_4 : $G_4 \times SL(2, \mathbb{R})_E \subset G$. Its algebra decomposes as follows:

$$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R})_E \oplus \mathfrak{g}_4 \oplus (\mathbf{2},\mathbf{R})$$

where ${\bf R}$ is the (symplectic) representation of the electric and magnetic charges under ${\it G}_4$

Similarly:

$$\mathfrak{H} = \mathfrak{u}(1)_E \oplus \mathfrak{H}_4 \oplus \mathfrak{H}^{(\hat{R})} \ , \ \mathfrak{K} = \mathfrak{K}_E \oplus \mathfrak{K}_4 \oplus \mathfrak{K}^{(\hat{R})}$$

 U(1)_E × H₄ ⊂ H is the maximal compact subgroup of H, ℌ^(Ĥ) generate non-compact *boosts* of H Introduction D=3 Description as Geodesics The Seed Geodesic The Issue of Nilpotent Orbits and an Example Conclusions of The alobal symmetry in D=3

Some algebra....

• G is larger than G_4 : $G_4 \times SL(2, \mathbb{R})_E \subset G$. Its algebra decomposes as follows:

$$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R})_E \oplus \mathfrak{g}_4 \oplus (\mathbf{2},\mathbf{R})$$

where ${\bf R}$ is the (symplectic) representation of the electric and magnetic charges under ${\it G}_4$

Similarly:

$$\mathfrak{H} = \mathfrak{u}(1)_E \oplus \mathfrak{H}_4 \oplus \mathfrak{H}^{(\hat{R})}$$
, $\mathfrak{K} = \mathfrak{K}_E \oplus \mathfrak{K}_4 \oplus \mathfrak{K}^{(\hat{R})}$

- U(1)_E × H₄ ⊂ H is the maximal compact subgroup of H, ℌ^(Ĥ) generate non-compact *boosts* of H
- $\mathfrak{H}^{(\hat{R})}$ and $\mathfrak{K}^{(\hat{R})}$ both transform in a same representation $\hat{\mathbf{R}}$ of $U(1)_E \times H_4$ which is the representation of the central and matter charges.

Introduction D=3 Description as Geodesics The Seed Geodesic The Issue of Nilpotent Orbits and an Example Conclusions of The alobal symmetry in D=3

Some algebra....

• G is larger than G_4 : $G_4 \times SL(2, \mathbb{R})_E \subset G$. Its algebra decomposes as follows:

$$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R})_E \oplus \mathfrak{g}_4 \oplus (\mathbf{2},\mathbf{R})$$

where ${\bf R}$ is the (symplectic) representation of the electric and magnetic charges under ${\it G}_4$

Similarly:

$$\mathfrak{H}=\mathfrak{u}(1)_{E}\oplus\mathfrak{H}_{4}\oplus\mathfrak{H}^{(\hat{R})}\ ,\ \mathfrak{K}=\mathfrak{K}_{E}\oplus\mathfrak{K}_{4}\oplus\mathfrak{K}^{(\hat{R})}$$

- U(1)_E × H₄ ⊂ H is the maximal compact subgroup of H, 𝔅^(Â) generate non-compact *boosts* of H
- $\mathfrak{H}^{(\hat{R})}$ and $\mathfrak{K}^{(\hat{R})}$ both transform in a same representation $\hat{\mathbf{R}}$ of $U(1)_E \times H_4$ which is the representation of the central and matter charges.
- $V_0 \in \mathfrak{K}, V_0 \bigcap \mathfrak{K}^{(\hat{R})} = Z_{AB} k^{AB} + Z_I k' + c.c.$

Introduction D=3 Description as Geodesics The Seed Geodesic The Issue of Nilpotent Orbits and an Example Conclusions of The global symmetry in D=3

Some algebra....

• G is larger than G_4 : $G_4 \times SL(2, \mathbb{R})_E \subset G$. Its algebra decomposes as follows:

$$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R})_E \oplus \mathfrak{g}_4 \oplus (\mathbf{2},\mathbf{R})$$

where ${\bf R}$ is the (symplectic) representation of the electric and magnetic charges under ${\it G}_4$

Similarly:

$$\mathfrak{H} = \mathfrak{u}(1)_E \oplus \mathfrak{H}_4 \oplus \mathfrak{H}^{(\hat{R})} \ , \ \mathfrak{K} = \mathfrak{K}_E \oplus \mathfrak{K}_4 \oplus \mathfrak{K}^{(\hat{R})}$$

- U(1)_E × H₄ ⊂ H is the maximal compact subgroup of H, 𝔅^(Â) generate non-compact *boosts* of H
- ℌ^(Â) and ℜ^(Â) both transform in a same representation of U(1)_E × H₄ which is the representation of the central and matter charges.
- $V_0 \in \mathfrak{K}, V_0 \bigcap \mathfrak{K}^{(\hat{R})} = Z_{AB} k^{AB} + Z_I k^I + c.c.$
- $\mathcal{N} = 8$ example:

 $G_4 = E_{7(7)}$, $H_4 = SU(8)$, $G = E_{8(8)}$, $H = SO^*(16)$

 $\bm{R}=\bm{56} \text{ of } \mathrm{E}_{7(7)} \text{ and } \hat{\bm{R}}=\bm{28}_{-1}+\overline{\bm{28}}_{+1} \text{ of } \mathrm{U}(1)_{\textit{E}}\times\textit{H}_{4}=\mathrm{U}(8)$

Seed Geodesic in Universal Submanifold

Any element of
 ^(R)
 ^(R)
 or
 ^(R)
 can be rotated by U(1)_E × H₄ into minimal *abelian* subalgebras
 ^(N)
 = Span(k_k) and
 ^(N)
 = Span(J_k), where k = 0,... p - 1 and

$$p = \operatorname{rank}\left(\frac{H}{\mathrm{U}(1)_E \times H_4}\right)$$

Together with $H_k = [J_k, k_k]$ they generate $SL(2, \mathbb{R})^p \subset G$
Seed Geodesic in Universal Submanifold

Any element of
 ^(R)
 or
 ^(R)
 can be rotated by U(1)_E × H₄ into minimal *abelian* subalgebras
 ^(N) = Span(k_k) and
 ^(N) = Span(J_k), where k = 0, ... p - 1 and

$$\rho = \operatorname{rank}\left(\frac{H}{\mathrm{U}(1)_{E} \times H_{4}}\right)$$

Together with $H_k = [J_k, k_k]$ they generate $\mathrm{SL}(2, \mathbb{R})^p \subset G$

• $\mathcal{N} = 8$ example: $p = \operatorname{rank}\left(\frac{\operatorname{SO}^*(16)}{\operatorname{U}(8)}\right) = 4$

$$V_0 \bigcap \mathfrak{K}^{(\hat{R})} = Z_{AB} \, k^{AB} - \overline{Z}^{AB} \, k_{AB} \quad \stackrel{\mathrm{U}(8)}{\longrightarrow} \quad \sum_{k=1}^4 \rho_k k_k \quad \text{(normal form of } \mathbf{28}_{+1}\text{)}$$

Notice θ rotated away! Seed geodesic is a 4-parameter solution

Seed Geodesic in Universal Submanifold

Any element of
 ^(R)
 or
 ^(R)
 can be rotated by U(1)_E × H₄ into minimal abelian subalgebras
 ^(N) = Span(k_k) and
 ^(N) = Span(J_k), where k = 0, ... p - 1 and

$$\rho = \operatorname{rank}\left(\frac{H}{\mathrm{U}(1)_{E} \times H_{4}}\right)$$

Together with $H_k = [J_k, k_k]$ they generate $\mathrm{SL}(2, \mathbb{R})^p \subset G$

• $\mathcal{N} = 8$ example: $p = \operatorname{rank}\left(\frac{\operatorname{SO}^*(16)}{\operatorname{U}(8)}\right) = 4$

$$V_0 \bigcap \mathfrak{K}^{(\hat{R})} = Z_{AB} \, k^{AB} - \overline{Z}^{AB} \, k_{AB} \quad \stackrel{\mathrm{U}(8)}{\longrightarrow} \quad \sum_{k=1}^4 \rho_k \, k_k \quad \text{(normal form of } \mathbf{28}_{+1}\text{)}$$

Notice θ rotated away! Seed geodesic is a 4-parameter solution

Seed geodesic is a p-charge solution within (arXiv:0806.2310)

$$\mathcal{M}_N = \left(\frac{\mathrm{SL}(2,\mathbb{R})}{\mathrm{SO}(1,1)}\right)^p \times \mathrm{SO}(1,1)^{r-p} \subset \frac{G}{H}$$

Seed Geodesic in Universal Submanifold

Any element of
 ^(Â)
 or
 ^(Â)
 can be rotated by U(1)_E × H₄ into minimal abelian subalgebras
 ^(N)
 = Span(k_k) and
 ^(N)
 = Span(J_k), where k = 0,...p - 1 and

$$\rho = \operatorname{rank}\left(\frac{H}{\mathrm{U}(1)_{E} \times H_{4}}\right)$$

Together with $H_k = [J_k, k_k]$ they generate $SL(2, \mathbb{R})^p \subset G$

• $\mathcal{N} = 8$ example: $p = \operatorname{rank}\left(\frac{\operatorname{SO}^*(16)}{\operatorname{U}(8)}\right) = 4$

$$V_0 \bigcap \mathfrak{K}^{(\hat{R})} = Z_{AB} \, k^{AB} - \overline{Z}^{AB} \, k_{AB} \quad \stackrel{\mathrm{U}(8)}{\longrightarrow} \quad \sum_{k=1}^4 \rho_k k_k \quad \text{(normal form of } \mathbf{28}_{+1}\text{)}$$

Notice θ rotated away! Seed geodesic is a 4-parameter solution

Seed geodesic is a p-charge solution within (arXiv:0806.2310)

$$\mathcal{M}_N = \left(\frac{\mathrm{SL}(2,\mathbb{R})}{\mathrm{SO}(1,1)}\right)^p \times \mathrm{SO}(1,1)^{r-p} \subset \frac{G}{H}$$

True for all V₀-diagonalizable cases. V₀ non-diagonalizable (e.g. extremal solutions) only geodesics originating from regular solutions (A_H > 0).

Seed Geodesic in Universal Submanifold

• Seed geodesic from regular D = 4 black holes lies within products of $p dS_2$ spaces times SO(1, 1) factors:

Seed Geodesic in Universal Submanifold

• Seed geodesic from regular D = 4 black holes lies within products of $p dS_2$ spaces times SO(1, 1) factors:

Seed Geodesic in Universal Submanifold

• Seed geodesic from regular D = 4 black holes lies within products of $p dS_2$ spaces times SO(1, 1) factors:

 Regular extremal solutions, c² ∝ tr(V₀²) = 0, are characterized by a nilpotent Lax matrix V₀^k = 0, k ≤ k₀. Unfolds in the (dS₂)^p factor

Seed Geodesic in Universal Submanifold

• Seed geodesic from regular D = 4 black holes lies within products of $p dS_2$ spaces times SO(1, 1) factors:

- Regular extremal solutions, c² ∝ tr(V₀²) = 0, are characterized by a nilpotent Lax matrix V₀^k = 0, k ≤ k₀. Unfolds in the (dS₂)^p factor
- Construction of the seed geodesic within a universal submanifold common to a broad class of models. E.g. *p* = 4: *N* = 8, *N* = 2 with rank-3 symmetric SK manifolds (*STU*) etc.

The Issue of Nilpotent Orbits

• Orbits of nilpotent generators $X \in \mathfrak{K}$ under $H: \mathcal{O}_X^{(H)} = H^{-1}XH$

The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under $H: \mathcal{O}_X^{(H)} = H^{-1}XH$
- Generic $X \in \mathfrak{K}$ element of a *triple* $\{h, X, Y\}$:

[h, X] = 2X; [h, Y] = 2Y; [X, Y] = h, with $h \in \mathfrak{H}^{(\hat{R})}; X, Y \in \mathfrak{K}$

The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under $H: \mathcal{O}_X^{(H)} = H^{-1}XH$
- Generic $X \in \mathfrak{K}$ element of a *triple* $\{h, X, Y\}$:

[h, X] = 2X; [h, Y] = 2Y; [X, Y] = h, with $h \in \mathfrak{H}^{(\hat{R})}; X, Y \in \mathfrak{K}$

Kostant-Sekiguchi bijection:

$$\mathcal{O}_{X}^{(G)} = G^{-1}XG \iff \mathcal{O}_{(X-Y)}^{(H_{\mathbb{C}})} = H_{\mathbb{C}}^{-1}(X-Y)H_{\mathbb{C}}$$

G-orbits of X labeled by the $H_{\mathbb{C}}$ -invariant spectrum of $\frac{ad_{X-Y}(\mathfrak{H}_{\mathbb{C}})}{ad_{X-Y}(\mathfrak{H}_{\mathbb{C}})}$ (β -labels)

The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under $H: \mathcal{O}_X^{(H)} = H^{-1}XH$
- Generic $X \in \mathfrak{K}$ element of a *triple* {h, X, Y}:

[h, X] = 2X; [h, Y] = 2Y; [X, Y] = h, with $h \in \mathfrak{H}^{(\hat{R})}; X, Y \in \mathfrak{K}$

• Kostant-Sekiguchi bijection:

$$\mathcal{O}_{X}^{(G)} = G^{-1}XG \iff \mathcal{O}_{(X-Y)}^{(H_{\mathbb{C}})} = H_{\mathbb{C}}^{-1}(X-Y)H_{\mathbb{C}}$$

G-orbits of *X* labeled by the $H_{\mathbb{C}}$ -invariant spectrum of $ad_{X-Y}(\mathfrak{H}_{\mathbb{C}})$ (β -labels)

 G-orbits of X split into different H-orbits, labeled by the H-invariant spectrum of ad_h(s̃_j) (γ-labels) [for the t³-model: Kim, Hornlund, Palmkvist, Virmani, 1004.5242]

The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under $H: \mathcal{O}_X^{(H)} = H^{-1}XH$
- Generic $X \in \mathfrak{K}$ element of a *triple* {h, X, Y}:

[h, X] = 2X; [h, Y] = 2Y; [X, Y] = h, with $h \in \mathfrak{H}^{(\hat{R})}; X, Y \in \mathfrak{K}$

• Kostant-Sekiguchi bijection:

$$\mathcal{O}_{X}^{(G)} = G^{-1}XG \iff \mathcal{O}_{(X-Y)}^{(H_{\mathbb{C}})} = H_{\mathbb{C}}^{-1}(X-Y)H_{\mathbb{C}}$$

G-orbits of *X* labeled by the $H_{\mathbb{C}}$ -invariant spectrum of $ad_{X-Y}(\mathfrak{H}_{\mathbb{C}})$ (β -labels)

 G-orbits of X split into different H-orbits, labeled by the H-invariant spectrum of ad_h(s₀) (γ-labels) [for the t³-model: Kim, Hornlund, Palmkvist, Virmani, 1004.5242]

The *t*³-model

- D = 4, N = 2 SUGRA coupled to 1 vector multiplet
- Complex scalar t in $\frac{SL(2,\mathbb{R})}{SO(2)} [\mathcal{F}(t) = t^3]$ coupled to 2 vectors; 4 charges $\Gamma = (m^0, m^1, e_0, e_1)$ [(D6, D4, D0, D2) brane-charges]

The *t*³-model

- D = 4, N = 2 SUGRA coupled to 1 vector multiplet
- Complex scalar *t* in $\frac{SL(2,\mathbb{R})}{SO(2)} [\mathcal{F}(t) = t^3]$ coupled to 2 vectors; 4 charges $\Gamma = (m^0, m^1, e_0, e_1)$ [(*D*6, *D*4, *D*0, *D*2) brane-charges]

• Time-reduction to
$$D = 3 \rightarrow \frac{G}{H} = \frac{G_{2(2)}}{SL(2,\mathbb{R}) \times SL(2,\mathbb{R})}$$
 (pseudo-quaternionic)

The t³-model

- D = 4, N = 2 SUGRA coupled to 1 vector multiplet
- Complex scalar t in $\frac{SL(2,\mathbb{R})}{SO(2)} [\mathcal{F}(t) = t^3]$ coupled to 2 vectors; 4 charges $\Gamma = (m^0, m^1, e_0, e_1)$ [(*D*6, *D*4, *D*0, *D*2) brane-charges]
- Time-reduction to $D = 3 \rightarrow \frac{G}{H} = \frac{G_{2(2)}}{SL(2,\mathbb{R}) \times SL(2,\mathbb{R})}$ (pseudo-quaternionic)
- *p*=rank (H/H_c) = rank (SL(2,ℝ)×SL(2,ℝ) / SO(2)²) = 2 ⇒ the seed geodesic describes a two-charge solution (take e₀, m¹ or e₁, m⁰)

The *t*³-model

- D = 4, N = 2 SUGRA coupled to 1 vector multiplet
- Complex scalar *t* in $\frac{SL(2,\mathbb{R})}{SO(2)} [\mathcal{F}(t) = t^3]$ coupled to 2 vectors; 4 charges $\Gamma = (m^0, m^1, e_0, e_1)$ [(*D*6, *D*4, *D*0, *D*2) brane-charges]
- Time-reduction to $D = 3 \rightarrow \frac{G}{H} = \frac{G_{2(2)}}{SL(2,\mathbb{R}) \times SL(2,\mathbb{R})}$ (pseudo-quaternionic)
- *p*=rank (H/H_c) = rank (SL(2,ℝ)×SL(2,ℝ))/SO(2)²) = 2 ⇒ the seed geodesic describes a two-charge solution (take *e*₀, *m*¹ or *e*₁, *m*⁰)

• Seed geodesic for extremal b.h. unfolds in $(dS_2)^2 = \frac{SL(2,\mathbb{R})_{e_0}}{SO(1,1)} \times \frac{SL(2,\mathbb{R})_{m1}}{SO(1,1)}$

 $\begin{cases} \mathfrak{sl}(2,\mathbb{R})_{e_0} = \operatorname{Span}\{J_0,k_0,\mathcal{H}_0\}; \ \mathfrak{so}(1,1) = \operatorname{Span}\{J_0\}; \ \text{coset gen.s} = \{k_0,\mathcal{H}_0\}\\ \mathfrak{sl}(2,\mathbb{R})_{m^1} = \operatorname{Span}\{J_1,k_1,\mathcal{H}_1\}; \ \mathfrak{so}(1,1) = \operatorname{Span}\{J_1\}; \ \text{coset gen.s} = \{k_1,\mathcal{H}_1\}\end{cases}$

The *t*³-model

- D = 4, N = 2 SUGRA coupled to 1 vector multiplet
- Complex scalar t in $\frac{SL(2,\mathbb{R})}{SO(2)} [\mathcal{F}(t) = t^3]$ coupled to 2 vectors; 4 charges $\Gamma = (m^0, m^1, e_0, e_1)$ [(*D*6, *D*4, *D*0, *D*2) brane-charges]
- Time-reduction to $D = 3 \rightarrow \frac{G}{H} = \frac{G_{2(2)}}{SL(2,\mathbb{R}) \times SL(2,\mathbb{R})}$ (pseudo-quaternionic)
- *p*=rank (H/H_c) = rank (SL(2,R)×SL(2,R) / SO(2)²) = 2 ⇒ the seed geodesic describes a two-charge solution (take *e*₀, *m*¹ or *e*₁, *m*⁰)

• Seed geodesic for extremal b.h. unfolds in $(dS_2)^2 = \frac{SL(2,\mathbb{R})_{e_0}}{SO(1,1)} \times \frac{SL(2,\mathbb{R})_{m1}}{SO(1,1)}$

 $\begin{cases} \mathfrak{sl}(2,\mathbb{R})_{e_0} = \operatorname{Span}\{J_0, k_0, \mathcal{H}_0\}; \ \mathfrak{so}(1,1) = \operatorname{Span}\{J_0\}; \ \text{coset gen.s} = \{k_0, \mathcal{H}_0\} \\ \mathfrak{sl}(2,\mathbb{R})_{m^1} = \operatorname{Span}\{J_1, k_1, \mathcal{H}_1\}; \ \mathfrak{so}(1,1) = \operatorname{Span}\{J_1\}; \ \text{coset gen.s} = \{k_1, \mathcal{H}_1\} \end{cases}$

• Explicit matrix representation: $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $k = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\mathcal{H} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Seed Geodesic

Construct the extremal geodesics in
$$\mathcal{M}_N = \left(\frac{\mathrm{SL}(2,\mathbb{R})}{\mathrm{SO}(1,1)}\right)^2$$

Seed Geodesic

Construct the extremal geodesics in
$$\mathcal{M}_N = \left(\frac{\mathrm{SL}(2,\mathbb{R})}{\mathrm{SO}(1,1)}\right)^2$$

V₀ ∈ [sl(2) ⊖ so(1,1)]² nilpotent. For each SL(2), V₀ must expand in one of the two nilp. generators in the coset: n[±]_k = H_k ∓ k_k:

$$X = V_0 = a_0 n_0^{-\varepsilon_0} + a_1 n_i^{\varepsilon_1} = a_0 (H_0 - \varepsilon_0 k_0) + a_1 (\mathcal{H}_1 + \varepsilon_1 k_1)$$

where $\varepsilon_k = \pm 1$

Seed Geodesic

Construct the extremal geodesics in
$$\mathcal{M}_{\textit{N}}=\left(rac{\mathrm{SL}(2,\mathbb{R})}{\mathrm{SO}(1,1)}
ight)^2$$

V₀ ∈ [sl(2) ⊖ so(1,1)]² nilpotent. For each SL(2), V₀ must expand in one of the two nilp. generators in the coset: n[±]_k = H_k ∓ k_k:

$$X = V_0 = a_0 n_0^{-\varepsilon_0} + a_1 n_i^{\varepsilon_1} = a_0 (H_0 - \varepsilon_0 k_0) + a_1 (\mathcal{H}_1 + \varepsilon_1 k_1)$$

where $\varepsilon_k = \pm 1$

• Solution in terms of U, t, Z^M :

$$e^{-2U} = \sqrt{H_0(H_1)^3}; \ t = -i\sqrt{\frac{H_0}{H_1}} \ , \ \ \mathcal{Z}^0 = \frac{\varepsilon_0 a_0 \, \tau}{H_0}; \ \mathcal{Z}_1 = \sqrt{3} \, \frac{\varepsilon_1 a_1 \, \tau}{H_1}$$

 $\mathbf{H}_k = 1 - \sqrt{2} a_k \tau$. Charges are: $e_0 = \varepsilon_0 a_0, m^1 = -\varepsilon_1 a_1$

• Regular solution: $a_k > 0 \Rightarrow \beta$ -label = γ -label.

• At the horizon $\tau \to -\infty$:

$$arphi_i o arphi_i^{ ext{fix}}$$
 (stable attractor) , $e^{-2U} o rac{A_H}{4\pi} au^2$

where

$$\frac{A_H}{4\pi} = \sqrt{4 a_0 (a_1)^3} = \sqrt{4 \varepsilon e_0 (m^1)^3} = \sqrt{\varepsilon I_4(e,m)}$$

 $\varepsilon = \varepsilon_0 \varepsilon_1$, $I_4(e, m)$ quartic invariant: $I_4(e, m) = 4 e_0 (m^1)^3 \neq 0$

• At the horizon $\tau \to -\infty$:

$$arphi_i o arphi_i^{ extsf{fix}}$$
 (stable attractor) , $e^{-2U} o rac{A_H}{4 \, \pi} \, au^2$

where

$$\frac{A_{H}}{4\pi} = \sqrt{4 a_{0} (a_{1})^{3}} = \sqrt{4 \varepsilon e_{0} (m^{1})^{3}} = \sqrt{\varepsilon I_{4}(e, m)^{3}}$$

 $\varepsilon = \varepsilon_0 \varepsilon_1, l_4(e, m)$ quartic invariant: $l_4(e, m) = 4 e_0 (m^1)^3 \neq 0$ • BPS solution $\varepsilon_0 = \varepsilon_1 = 1, l_4 > 0$; non-BPS solution $\varepsilon_0 = -\varepsilon_1 = 1, l_4 < 0$

• At the horizon $\tau \to -\infty$:

$$arphi_i o arphi_i^{ extsf{fix}}$$
 (stable attractor) , $e^{-2U} o rac{A_H}{4 \, \pi} \, au^2$

where

$$\frac{A_H}{4\pi} = \sqrt{4 a_0 (a_1)^3} = \sqrt{4 \varepsilon e_0 (m^1)^3} = \sqrt{\varepsilon I_4(e, m)^3}$$

 $\varepsilon = \varepsilon_0 \varepsilon_1$, $I_4(e, m)$ quartic invariant: $I_4(e, m) = 4 e_0 (m^1)^3 \neq 0$

• BPS solution $\varepsilon_0 = \varepsilon_1 = 1$, $l_4 > 0$; non-BPS solution $\varepsilon_0 = -\varepsilon_1 = 1$, $l_4 < 0$

• $|a_k| = 1$ modulo action of SO(1, 1)² \subset H

$$\begin{array}{c|c} G_{\mathbb{C}^-} \\ \text{orbit} \end{array} & \beta \text{-labels} \\ \hline \\ g_{\mathbb{C}} \\ g$$

 Introduction
 D=3 Description as Geodesics
 The Seed Geodesic
 The Issue of Nilpotent Orbits and an Example
 Conclusions

 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0

Other Orbits and Tensor Classifiers

- Other two orbits with $I_4 = 0$, X step-2 nilpotent:
 - **a** \mathcal{O}_1 : $m^1 \rightarrow 0$ (doubly-critical) small-bh
 - **b** \mathcal{O}_2 : $e_0 \rightarrow 0$ (lightlike) small-bh
- Last orbit: X step-7 nilpotent. No regular single-center, regular multicenter solution [Bossard, Ruef, 1106.5806]
- Describe orbits through H-invariants from Lax matrix. Define symmetric H-covariant tensors whose signature is H-invariant [Fre', Sorin, M.T., 1103.0848]

Tensor Classifiers

$$V_0 = \Delta^{lpha A} K_{lpha A}, \qquad \Delta^{lpha A} \in (\mathbf{2}, \mathbf{4}) ext{ of } H = \mathrm{SL}(2, \mathbb{R})_1 imes \mathrm{SL}(2, \mathbb{R})_2$$

$$\begin{split} \mathcal{T}^{xy} &= \epsilon_{\alpha\beta} \Delta^{\alpha A} \Delta^{\beta B} \Pi^{xy}_{AB} \in (\mathbf{1},\mathbf{3}) \times_{s} (\mathbf{1},\mathbf{3}) \\ \mathfrak{T}^{xy} &= (s^{a})_{\alpha\beta} (s_{a})_{\gamma\delta} (t^{x})_{AB} (t^{y})_{CD} \Delta^{\alpha A} \Delta^{\beta B} \Delta^{\gamma C} \Delta^{\delta D} \in (\mathbf{1},\mathbf{3}) \times_{s} (\mathbf{1},\mathbf{3}) \\ \mathbb{T}^{ab} &= (s^{a})_{\alpha\beta} (s^{b})_{\gamma\delta} (t^{x})_{AB} (t_{x})_{CD} \Delta^{\alpha A} \Delta^{\beta B} \Delta^{\gamma C} \Delta^{\delta D} \in (\mathbf{3},\mathbf{1}) \times_{s} (\mathbf{3},\mathbf{1}) \end{split}$$

where $\mathfrak{sl}(2,\mathbb{R})_1 = \operatorname{Span}\{s_a\}, \, \mathfrak{sl}(2,\mathbb{R})_2 = \operatorname{Span}\{t_x\}. \text{ BPS solution} \Leftrightarrow \mathcal{T}^{xy} \equiv 0$

Conclusions

 Geodesic description in D = 3 of D = 4 regular, asymtotically flat, static black hole solutions:

- Geodesic description in D = 3 of D = 4 regular, asymtotically flat, static black hole solutions:
 - Advantage: Larger global symmetry group, simpler seed solution

- Geodesic description in D = 3 of D = 4 regular, asymtotically flat, static black hole solutions:
 - Advantage: Larger global symmetry group, simpler seed solution
 - Disadvantage: Sophisticated mathematical tools, involved computational methods

- Geodesic description in D = 3 of D = 4 regular, asymtotically flat, static black hole solutions:
 - Advantage: Larger global symmetry group, simpler seed solution
 - Disadvantage: Sophisticated mathematical tools, involved computational methods
- Intrinsic characterization of the seed geodesic for regular solutions within simple universal submanifolds. Applies to all extended SUGRAS with symmetric scalar manifolds (symmetric SUGRAS)

- Geodesic description in D = 3 of D = 4 regular, asymtotically flat, static black hole solutions:
 - Advantage: Larger global symmetry group, simpler seed solution
 - Disadvantage: Sophisticated mathematical tools, involved computational methods
- Intrinsic characterization of the seed geodesic for regular solutions within simple universal submanifolds. Applies to all extended SUGRAS with symmetric scalar manifolds (symmetric SUGRAS)
- Defined *Wick rotation* mapping (extremal) BPS into (extremal) non-BPS geodesics from relation between the corresponding seed solutions.

- Geodesic description in D = 3 of D = 4 regular, asymtotically flat, static black hole solutions:
 - Advantage: Larger global symmetry group, simpler seed solution
 - Disadvantage: Sophisticated mathematical tools, involved computational methods
- Intrinsic characterization of the seed geodesic for regular solutions within simple universal submanifolds. Applies to all extended SUGRAS with symmetric scalar manifolds (symmetric SUGRAS)
- Defined *Wick rotation* mapping (extremal) BPS into (extremal) non-BPS geodesics from relation between the corresponding seed solutions.

Work in progress:

 Classify H-orbits for all symmetric SUGRAS and extend the definition of Tensor Classifiers

- Geodesic description in D = 3 of D = 4 regular, asymtotically flat, static black hole solutions:
 - Advantage: Larger global symmetry group, simpler seed solution
 - Disadvantage: Sophisticated mathematical tools, involved computational methods
- Intrinsic characterization of the seed geodesic for regular solutions within simple universal submanifolds. Applies to all extended SUGRAS with symmetric scalar manifolds (symmetric SUGRAS)
- Defined *Wick rotation* mapping (extremal) BPS into (extremal) non-BPS geodesics from relation between the corresponding seed solutions.

Work in progress:

- Classify H-orbits for all symmetric SUGRAS and extend the definition of Tensor Classifiers
- Apply analysis to multicenter and rotating solutions, characterizing their seed solutions in *D* = 3 within universal truncations

Parametrization of the scalar manifold

• \mathscr{M}_{scal} is globally isometric to a solvable group: $\mathscr{M}_{scal} \sim e^{Solv_4[\phi']}$

Parametrization of the scalar manifold

*M*_{scal} is globally isometric to a solvable group: *M*_{scal} ~ e^{Solv₄[φ']}
 M⁽³⁾_{scal}, being pseudo-Riemannian, is only *locally* isometric to a solvable group: *M*⁽³⁾_{scal} ~ e^{Solv[φ']}

Parametrization of the scalar manifold

- $\mathscr{M}_{\mathit{scal}}$ is globally isometric to a solvable group: $\mathscr{M}_{\mathit{scal}} \sim e^{\mathit{Solv}_4[\phi']}$
- $\mathcal{M}_{scal}^{(3)}$, being pseudo-Riemannian, is only *locally* isometric to a solvable group: $\mathcal{M}_{scal}^{(3)} \sim e^{Solv[\phi']}$
- Physical fields φ^l are *local* coordinates (physical patch) for *M*⁽³⁾_{scal}, while φ^r are global coordinates on *M*_{scal}

Parametrization of the scalar manifold

- \mathscr{M}_{scal} is globally isometric to a solvable group: $\mathscr{M}_{scal} \sim e^{Solv_4[\phi']}$
- $\mathscr{M}_{scal}^{(3)}$, being pseudo-Riemannian, is only *locally* isometric to a solvable group: $\mathscr{M}_{scal}^{(3)} \sim e^{Solv[\phi']}$
- Physical fields φ^l are *local* coordinates (physical patch) for *M*⁽³⁾_{scal}, while φ^r are global coordinates on *M*_{scal}

Example $dS_2 \equiv \frac{SL(2,\mathbb{R})}{SO(1,1)}$ • $-(X^0)^2 + (X^1)^2 + (X^2)^2 = 2$ • Solvable coords. $e^{-\phi} = X^0 + X^1 > 0, e^{-\phi}\chi = \sqrt{2}X^2$ • Metric: $ds^2 = -2d\phi^2 + \frac{1}{2}e^{-2\phi}d\chi^2$

Parametrization of the scalar manifold

- \mathscr{M}_{scal} is globally isometric to a solvable group: $\mathscr{M}_{scal} \sim e^{Solv_4[\phi']}$
- $\mathscr{M}_{scal}^{(3)}$, being pseudo-Riemannian, is only *locally* isometric to a solvable group: $\mathscr{M}_{scal}^{(3)} \sim e^{Solv[\phi']}$
- Physical fields φ^l are *local* coordinates (physical patch) for *M*⁽³⁾_{scal}, while φ^l are global coordinates on *M*_{scal}

