$D=4$ Black Holes From Geodesics

Mario Trigiante

Dipartimento di Fisica
Politecnico di Torino

July 19, 2011

Prepared for SQS 2011.

Based on 0806.2310, 0903.2777, 1007.3209, 1103.0848 in collaboration with E. Bergshoeff, W. Chemissany, P. Fré,
A. Ploegh, A. Sorin, T. Van Riet, J. Rosseel

Outline

(1) Introduction

- Black Holes in Extended $D=4$ Supergravity

2 $D=3$ Description as Geodesics

- The global symmetry in $D=3$
(3) The Seed Geodesic
- Seed Geodesic in Universal Submanifold

4 The Issue of Nilpotent Orbits and an Example
(5) Conclusions

Seed Solutions

- Global symmetry group G_{4} of 4-dim. extended $(\mathcal{N} \geq 2)$ Supergravities

Seed Solutions

- Global symmetry group G_{4} of 4-dim. extended $(\mathcal{N} \geq 2)$ Supergravities
- Isometry of the scalar manifold $\mathscr{M}_{\text {scal }}=\frac{G_{4}}{H_{4}}$

Seed Solutions

- Global symmetry group G_{4} of 4-dim. extended $(\mathcal{N} \geq 2)$ Supergravities
- Isometry of the scalar manifold $\mathscr{M}_{\text {scal }}=\frac{G_{4}}{H_{4}}$
- Symplectic electric-magnetic duality transformation on the n_{ν} vector fieldstrengths $F_{\mu \nu}^{\wedge}$ and their duals $G_{\Lambda \mu \nu}$

Seed Solutions

- Global symmetry group G_{4} of 4-dim. extended $(\mathcal{N} \geq 2)$ Supergravities
- Isometry of the scalar manifold $\mathscr{M}_{\text {scal }}=\frac{G_{4}}{H_{4}}$
- Symplectic electric-magnetic duality transformation on the n_{ν} vector fieldstrengths $F_{\mu \nu}^{\wedge}$ and their duals $G_{\Lambda \mu \nu}$
- Encodes String/M-theory dualities

Seed Solutions

- Global symmetry group G_{4} of 4-dim. extended $(\mathcal{N} \geq 2)$ Supergravities
- Isometry of the scalar manifold $\mathscr{M}_{\text {scal }}=\frac{G_{4}}{H_{4}}$
- Symplectic electric-magnetic duality transformation on the n_{ν} vector fieldstrengths $F_{\mu \nu}^{\wedge}$ and their duals $G_{\Lambda \mu \nu}$
- Encodes String/M-theory dualities
- Relates different descriptions of the same microscopic d.o.f.

Seed Solutions

- Global symmetry group G_{4} of 4-dim. extended $(\mathcal{N} \geq 2)$ Supergravities
- Isometry of the scalar manifold $\mathscr{M}_{\text {scal }}=\frac{G_{4}}{H_{4}}$
- Symplectic electric-magnetic duality transformation on the n_{ν} vector fieldstrengths $F_{\mu \nu}^{\wedge}$ and their duals $G_{\Lambda \mu \nu}$
- Encodes String/M-theory dualities
- Relates different descriptions of the same microscopic d.o.f.
- Microscopic d.o.f. of a solution described by duality invariant quantities (e.g. entropy of a black hole, the fake superpotential etc...)

Seed Solutions

- Global symmetry group G_{4} of 4-dim. extended $(\mathcal{N} \geq 2)$ Supergravities
- Isometry of the scalar manifold $\mathscr{M}_{\text {scal }}=\frac{G_{4}}{H_{4}}$
- Symplectic electric-magnetic duality transformation on the n_{ν} vector fieldstrengths $F_{\mu \nu}^{\wedge}$ and their duals $G_{\Lambda \mu \nu}$
- Encodes String/M-theory dualities
- Relates different descriptions of the same microscopic d.o.f.
- Microscopic d.o.f. of a solution described by duality invariant quantities (e.g. entropy of a black hole, the fake superpotential etc...)

Seed solution: Simplest solution with all duality invariant properties of the most general one

Static, Asymtotically Flat Black Holes in D=4 SUGRAS

Bosonic field content

- n_{S} scalar fields $\phi^{r} \quad\left(r=1, \ldots, n_{S}\right)$
- n_{V} vector fields $A_{\mu}^{\wedge} \quad\left(\Lambda=0, \ldots, n_{V}-1\right)$
- Graviton $g_{\mu \nu}$

Static, Asymtotically Flat Black Holes in D=4 SUGRAS

Bosonic field content

- n_{S} scalar fields $\phi^{r} \quad\left(r=1, \ldots, n_{S}\right)$
- n_{V} vector fields $A_{\mu}^{\wedge} \quad\left(\Lambda=0, \ldots, n_{V}-1\right)$
- Graviton $g_{\mu \nu}$

The ansatz

$$
d s^{2}=-e^{2 U} d t^{2}+e^{-2 U}\left[\frac{c^{4}}{\sinh ^{4}(c \tau)} d \tau^{2}+\frac{c^{2}}{\sinh ^{2}(c \tau)}\left(d \theta^{2}+\sin (\theta) d \varphi^{2}\right)\right]
$$

- $\phi^{r}=\phi^{r}(\tau), U=U(\tau), \quad \frac{d \tau}{d r}=\frac{\sinh ^{2}(c \tau)}{c^{2}}=\frac{1}{\left(r-r_{0}\right)^{2}-c^{2}}$;
- c extremality parameter, two horizons: $r_{ \pm}=r_{0} \pm c$
- electric and magnetic charges $e_{\Lambda}, m^{\wedge}: \Gamma^{M} \equiv\left(m^{\wedge}, e_{\Lambda}\right)$
- Extreme solutions $c=0: \quad \lim _{\tau \rightarrow-\infty} e^{-2 U}=\frac{A_{H}}{4 \pi} \tau^{2}$

Seed solution in maximal SUGRA

- 70 scalar fields $\phi^{r} \in \mathscr{M}_{\text {scal }}=\frac{G_{4}}{H_{4}}=\frac{\mathrm{E}_{7(7)}}{\operatorname{SU}(8)}$
- 28 vector fields A_{μ}^{\wedge}
- Duality group is $\mathrm{E}_{7(7)} ; \quad \Gamma^{M}=\left(m^{\wedge}, e_{\Lambda}\right) \in \mathbf{5 6}$ symplectic representation
- Parameters of a black-hole encoded in central charges computed at infinity: $Z_{A B}\left(\phi_{\infty}, \Gamma\right) \in 28$ of $\operatorname{SU}(8)$

Seed solution in maximal SUGRA

- 70 scalar fields $\phi^{r} \in \mathscr{M}_{\text {scal }}=\frac{G_{4}}{H_{4}}=\frac{\mathrm{E}_{7(7)}}{\operatorname{SU}(8)}$
- 28 vector fields A_{μ}^{\wedge}
- Duality group is $\mathrm{E}_{7(7)} ; \quad \Gamma^{M}=\left(m^{\wedge}, e_{\Lambda}\right) \in \mathbf{5 6}$ symplectic representation
- Parameters of a black-hole encoded in central charges computed at infinity: $Z_{A B}\left(\phi_{\infty}, \Gamma\right) \in 28$ of $\operatorname{SU}(8)$

$$
Z_{A B} \xrightarrow{\operatorname{su}(8)}\left(\begin{array}{cccc}
Z_{1} \epsilon & 0 & 0 & 0 \\
0 & Z_{2} \epsilon & 0 & 0 \\
0 & 0 & Z_{3} \epsilon & 0 \\
0 & 0 & 0 & Z_{4} \epsilon
\end{array}\right)
$$

Black Holes in Extended $D=4$ Supergravity

Seed solution in maximal SUGRA

- 70 scalar fields $\phi^{r} \in \mathscr{M}_{\text {scal }}=\frac{G_{4}}{H_{4}}=\frac{\mathrm{E}_{7(7)}}{\operatorname{SU(8)}}$
- 28 vector fields A_{μ}^{\wedge}
- Duality group is $\mathrm{E}_{7(7)} ; \quad \Gamma^{M}=\left(m^{\wedge}, e_{\Lambda}\right) \in \mathbf{5 6}$ symplectic representation
- Parameters of a black-hole encoded in central charges computed at infinity:

$$
Z_{A B}\left(\phi_{\infty}, \Gamma\right) \in 28 \text { of } \mathrm{SU}(8)
$$

$$
Z_{A B} \xrightarrow{\operatorname{su}(8)}\left(\begin{array}{cccc}
Z_{1} \epsilon & 0 & 0 & 0 \\
0 & Z_{2} \epsilon & 0 & 0 \\
0 & 0 & Z_{3} \epsilon & 0 \\
0 & 0 & 0 & Z_{4} \epsilon
\end{array}\right)
$$

- $\left(Z_{k}\right)$ can be identified with the charges $\left(Z, \bar{Z}_{s}, \bar{Z}_{t}, \bar{Z}_{u}\right)$ of a $\mathcal{N}=2$ STU truncation
- Five $\operatorname{SU}(8)$ invariants: $\rho_{k}=\left|Z_{k}\right|, \theta=\operatorname{Arg}\left(Z_{1} Z_{2} Z_{3} Z_{4}\right)$
- Seed solution, also solution to the STU truncation, has 5 parameters

$D=3$ description of $D=4$ stationary solutions

- $d s^{2}=-e^{2 U}\left(d t+B_{i}^{0} d x^{i}\right)^{2}+e^{-2 U} g_{i j} d x^{i} d x^{j}$

$D=3$ description of $D=4$ stationary solutions

- $d s^{2}=-e^{2 U}\left(d t+B_{i}^{0} d x^{i}\right)^{2}+e^{-2 U} g_{i j} d x^{i} d x^{j}$
- Is solution to a $D=3$ Euclidean theory obtained from time-reduction from the $D=4$ one (Breitenlohner, Gibbons, Maison)

$D=3$ description of $D=4$ stationary solutions

- $d s^{2}=-e^{2 U}\left(d t+B_{i}^{0} d x^{i}\right)^{2}+e^{-2 U} g_{i j} d x^{i} d x^{j}$
- Is solution to a $D=3$ Euclidean theory obtained from time-reduction from the $D=4$ one (Breitenlohner, Gibbons, Maison)
- Dualizing in $D=3$ vectors into scalars: $A^{\wedge} \rightarrow \tilde{\zeta}_{\Lambda}, B^{0} \rightarrow$ a we end up with a sigma model coupled to gravity

$D=3$ description of $D=4$ stationary solutions

- $d s^{2}=-e^{2 U}\left(d t+B_{i}^{0} d x^{i}\right)^{2}+e^{-2 U} g_{i j} d x^{i} d x^{j}$
- Is solution to a $D=3$ Euclidean theory obtained from time-reduction from the $D=4$ one (Breitenlohner, Gibbons, Maison)
- Dualizing in $D=3$ vectors into scalars: $A^{\wedge} \rightarrow \tilde{\zeta}_{\Lambda}, B^{0} \rightarrow$ a we end up with a sigma model coupled to gravity
- Scalars $\left(\phi^{\prime}\right)=\left(U\right.$, a, $\left.\phi^{r}, \zeta^{\wedge} \equiv A_{0}^{\wedge}, \tilde{\zeta}_{\wedge}\right)$ span a $n=2+n_{S}+2 n_{V}$ dim. coset manifold $\mathscr{M}_{\text {scal }}^{(3)}=\frac{G}{H}$.

$D=3$ description of $D=4$ stationary solutions

- $d s^{2}=-e^{2 U}\left(d t+B_{i}^{0} d x^{i}\right)^{2}+e^{-2 U} g_{i j} d x^{i} d x^{j}$
- Is solution to a $D=3$ Euclidean theory obtained from time-reduction from the $D=4$ one (Breitenlohner, Gibbons, Maison)
- Dualizing in $D=3$ vectors into scalars: $A^{\wedge} \rightarrow \tilde{\zeta}_{\Lambda}, B^{0} \rightarrow$ a we end up with a sigma model coupled to gravity
- Scalars $\left(\phi^{\prime}\right)=\left(U\right.$, a, $\left.\phi^{r}, \zeta^{\wedge} \equiv A_{0}^{\wedge}, \tilde{\zeta}_{\Lambda}\right)$ span a $n=2+n_{S}+2 n_{V}$ dim. coset manifold $\mathscr{M}_{\text {scal }}^{(3)}=\frac{G}{H}$.
- $\mathscr{M}_{\text {scal }}^{(3)}$ pseudo-Riemannian, negative signature directions along $\mathcal{Z}^{M}=\left(\zeta^{\wedge}, \tilde{\zeta}_{\Lambda}\right) . H \subset G$ is non-compact semisimple

$D=3$ description of $D=4$ stationary solutions

- $d s^{2}=-e^{2 U}\left(d t+B_{i}^{0} d x^{i}\right)^{2}+e^{-2 U} g_{i j} d x^{i} d x^{j}$
- Is solution to a $D=3$ Euclidean theory obtained from time-reduction from the $D=4$ one (Breitenlohner, Gibbons, Maison)
- Dualizing in $D=3$ vectors into scalars: $A^{\wedge} \rightarrow \tilde{\zeta}_{\Lambda}, B^{0} \rightarrow$ a we end up with a sigma model coupled to gravity
- Scalars $\left(\phi^{\prime}\right)=\left(U, a, \phi^{r}, \zeta^{\wedge} \equiv A_{0}^{\wedge}, \tilde{\zeta}_{\Lambda}\right)$ span a $n=2+n_{S}+2 n_{V}$ dim. coset manifold $\mathscr{M}_{\text {scal }}^{(3)}=\frac{G}{H}$.
- $\mathscr{M}_{\text {scal }}^{(3)}$ pseudo-Riemannian, negative signature directions along $\mathcal{Z}^{M}=\left(\zeta^{\wedge}, \tilde{\zeta}_{\Lambda}\right) . H \subset G$ is non-compact semisimple
- Spherical symmetry: $\phi^{\prime}=\phi^{\prime}(\tau)$, solution is a geodesic on $\mathscr{M}_{\text {scal }}^{(3)}$

$D=3$ description of $D=4$ stationary solutions

- $d s^{2}=-e^{2 U}\left(d t+B_{i}^{0} d x^{i}\right)^{2}+e^{-2 U} g_{i j} d x^{i} d x^{j}$
- Is solution to a $D=3$ Euclidean theory obtained from time-reduction from the $D=4$ one (Breitenlohner, Gibbons, Maison)
- Dualizing in $D=3$ vectors into scalars: $A^{\wedge} \rightarrow \tilde{\zeta}_{\Lambda}, B^{0} \rightarrow$ a we end up with a sigma model coupled to gravity
- Scalars $\left(\phi^{\prime}\right)=\left(U, a, \phi^{r}, \zeta^{\wedge} \equiv A_{0}^{\wedge}, \tilde{\zeta}_{\Lambda}\right)$ span a $n=2+n_{S}+2 n_{V}$ dim. coset manifold $\mathscr{M}_{\text {scal }}^{(3)}=\frac{G}{H}$.
- $\mathscr{M}_{\text {scal }}^{(3)}$ pseudo-Riemannian, negative signature directions along $\mathcal{Z}^{M}=\left(\zeta^{\wedge}, \tilde{\zeta}_{\Lambda}\right) . H \subset G$ is non-compact semisimple
- Spherical symmetry: $\phi^{\prime}=\phi^{\prime}(\tau)$, solution is a geodesic on $\mathscr{M}_{\text {scal }}^{(3)}$
- Invariant measure along the geodesic coincides with the extremality parameter: $\quad G_{J J}(\phi) \dot{\phi}^{\prime} \dot{\phi}^{J}=2 c^{2}$

Mathematical description of the geodesic

Definitions...

- Let $\mathfrak{g}, \mathfrak{H}$ be the Lie algebras of G and H. Involution $\sigma(\mathfrak{H})=-\eta \mathfrak{H}^{T} \eta=\mathfrak{H}$ induces the (pseudo-) Cartan decomposition:

$$
\mathfrak{g}=\mathfrak{H} \oplus \mathfrak{K}
$$

with $\sigma(\mathfrak{K})=-\mathfrak{K}$

- Given coset representative $\mathcal{V}\left(\phi^{\prime}\right) \in e^{S o l v}$ and geodesic $\phi^{\prime}(\tau)$, define $\mathcal{V}(\tau) \equiv \mathcal{V}\left(\phi^{\prime}(\tau)\right):$

$$
\mathcal{V}^{-1} \dot{\mathcal{V}}(\tau)=V(\tau)+W(\tau), \quad V(\tau) \in \mathfrak{K}, \quad W(\tau) \in \mathfrak{H}
$$

Mathematical description of the geodesic

Definitions...

- Let $\mathfrak{g}, \mathfrak{H}$ be the Lie algebras of G and H. Involution $\sigma(\mathfrak{H})=-\eta \mathfrak{H}^{T} \eta=\mathfrak{H}$ induces the (pseudo-) Cartan decomposition:

$$
\mathfrak{g}=\mathfrak{H} \oplus \mathfrak{K}
$$

with $\sigma(\mathfrak{K})=-\mathfrak{K}$

- Given coset representative $\mathcal{V}\left(\phi^{\prime}\right) \in e^{\text {Solv }}$ and geodesic $\phi^{\prime}(\tau)$, define $\mathcal{V}(\tau) \equiv \mathcal{V}\left(\phi^{\prime}(\tau)\right):$

$$
\mathcal{V}^{-1} \dot{\mathcal{V}}(\tau)=V(\tau)+W(\tau), \quad V(\tau) \in \mathfrak{K}, \quad W(\tau) \in \mathfrak{H}
$$

Geodesic equation

- $\dot{V}+[W, V]=0$, Lax Pair equation [Liouville i. system (1007.3209)]

Mathematical description of the geodesic

Definitions...

- Let $\mathfrak{g}, \mathfrak{H}$ be the Lie algebras of G and H. Involution $\sigma(\mathfrak{H})=-\eta \mathfrak{H}^{T} \eta=\mathfrak{H}$ induces the (pseudo-) Cartan decomposition:

$$
\mathfrak{g}=\mathfrak{H} \oplus \mathfrak{K}
$$

with $\sigma(\mathfrak{K})=-\mathfrak{K}$

- Given coset representative $\mathcal{V}\left(\phi^{\prime}\right) \in e^{\text {Solv }}$ and geodesic $\phi^{\prime}(\tau)$, define $\mathcal{V}(\tau) \equiv \mathcal{V}\left(\phi^{\prime}(\tau)\right):$

$$
\mathcal{V}^{-1} \dot{\mathcal{V}}(\tau)=V(\tau)+W(\tau), \quad V(\tau) \in \mathfrak{K}, \quad W(\tau) \in \mathfrak{H}
$$

Geodesic equation

- $\dot{V}+[W, V]=0$, Lax Pair equation [Liouville i. system (1007.3209)]
- Q is the Noether charge matrix: $Q=2 \mathcal{V}^{-T} V^{T} \mathcal{V}^{T}$
- Geodesic uniquely defined by initial point $\phi_{0}^{\prime}=\phi^{\prime}(\tau=0)$
and initial velocity
$V_{0}=V(\tau=0) \in \mathfrak{K}$
- Geodesic uniquely defined by initial point $\phi_{0}^{\prime}=\phi^{\prime}(\tau=0)$ and initial velocity
$V_{0}=V(\tau=0) \in \mathfrak{K}$

- Geodesic uniquely defined by initial point $\phi_{0}^{\prime}=\phi^{\prime}(\tau=0)$ and initial velocity

$$
V_{0}=V(\tau=0) \in \mathfrak{K}
$$

- Isometry group G is the global symmetry of the $D=3$ theory
- Action of G on a geodesic $\left(\phi_{0}, V_{0}\right)$
- Fix $\phi_{0} \equiv 0$, G-orbit of geodesic is H-orbit of $V_{0} \in \mathfrak{K}$
- Geodesic uniquely defined by initial point $\phi_{0}^{\prime}=\phi^{\prime}(\tau=0)$ and initial velocity

$$
V_{0}=V(\tau=0) \in \mathfrak{K}
$$

- Isometry group G is the global symmetry of the $D=3$ theory
- Action of G on a geodesic $\left(\phi_{0}, V_{0}\right)$
- Fix $\phi_{0} \equiv 0$, G-orbit of geodesic is H-orbit of $V_{0} \in \mathfrak{K}$
- Geodesic uniquely defined by initial point $\phi_{0}^{\prime}=\phi^{\prime}(\tau=0)$ and initial velocity

$$
V_{0}=V(\tau=0) \in \mathfrak{K}
$$

- Isometry group G is the global symmetry of the $D=3$ theory
- Action of G on a geodesic $\left(\phi_{0}, V_{0}\right)$
- Fix $\phi_{0} \equiv 0$, G-orbit of geodesic is H-orbit of $V_{0} \in \mathfrak{K}$

000 O

The global symmetry in $D=3$

Some algebra....

- G is larger than $G_{4}: G_{4} \times \operatorname{SL}(2, \mathbb{R})_{E} \subset G$. Its algebra decomposes as follows:

$$
\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})_{E} \oplus \mathfrak{g}_{4} \oplus(\mathbf{2}, \mathbf{R})
$$

where \mathbf{R} is the (symplectic) representation of the electric and magnetic charges under G_{4}

000 O.

The global symmetry in $D=3$

Some algebra....

- G is larger than $G_{4}: G_{4} \times \operatorname{SL}(2, \mathbb{R})_{E} \subset G$. Its algebra decomposes as follows:

$$
\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})_{E} \oplus \mathfrak{g}_{4} \oplus(\mathbf{2}, \mathbf{R})
$$

where \mathbf{R} is the (symplectic) representation of the electric and magnetic charges under G_{4}

- Similarly:

$$
\mathfrak{H}=\mathfrak{u}(1)_{E} \oplus \mathfrak{H}_{4} \oplus \mathfrak{H}^{(\hat{R})}, \quad \mathfrak{K}=\mathfrak{K}_{E} \oplus \mathfrak{K}_{4} \oplus \mathfrak{K}^{(\hat{R})}
$$

The global symmetry in $D=3$

Some algebra....

- G is larger than $G_{4}: G_{4} \times \operatorname{SL}(2, \mathbb{R})_{E} \subset G$. Its algebra decomposes as follows:

$$
\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})_{E} \oplus \mathfrak{g}_{4} \oplus(\mathbf{2}, \mathbf{R})
$$

where \mathbf{R} is the (symplectic) representation of the electric and magnetic charges under G_{4}

- Similarly:

$$
\mathfrak{H}=\mathfrak{u}(1)_{E} \oplus \mathfrak{H}_{4} \oplus \mathfrak{H}^{(\hat{R})} \quad, \quad \mathfrak{K}=\mathfrak{K}_{E} \oplus \mathfrak{K}_{4} \oplus \mathfrak{K}^{(\hat{R})}
$$

- $\mathrm{U}(1)_{E} \times H_{4} \subset H$ is the maximal compact subgroup of $H, \mathfrak{H}^{(\hat{})}$ generate non-compact boosts of H

The global symmetry in $D=3$

Some algebra....

- G is larger than $G_{4}: G_{4} \times \operatorname{SL}(2, \mathbb{R})_{E} \subset G$. Its algebra decomposes as follows:

$$
\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})_{E} \oplus \mathfrak{g}_{4} \oplus(\mathbf{2}, \mathbf{R})
$$

where \mathbf{R} is the (symplectic) representation of the electric and magnetic charges under G_{4}

- Similarly:

$$
\mathfrak{H}=\mathfrak{u}(1)_{E} \oplus \mathfrak{H}_{4} \oplus \mathfrak{H}^{(\hat{R})}, \quad \mathfrak{K}=\mathfrak{K}_{E} \oplus \mathfrak{K}_{4} \oplus \mathfrak{K}^{(\hat{R})}
$$

- $\mathrm{U}(1)_{E} \times H_{4} \subset H$ is the maximal compact subgroup of $H, \mathfrak{H}^{(\hat{})}$ generate non-compact boosts of H
- $\mathfrak{H}^{(\hat{R})}$ and $\mathfrak{K}^{(\hat{R})}$ both transform in a same representation $\hat{\mathbf{R}}$ of $\mathrm{U}(1)_{E} \times H_{4}$ which is the representation of the central and matter charges.

The global symmetry in $D=3$

Some algebra....

- G is larger than $G_{4}: G_{4} \times \operatorname{SL}(2, \mathbb{R})_{E} \subset G$. Its algebra decomposes as follows:

$$
\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})_{E} \oplus \mathfrak{g}_{4} \oplus(\mathbf{2}, \mathbf{R})
$$

where \mathbf{R} is the (symplectic) representation of the electric and magnetic charges under G_{4}

- Similarly:

$$
\mathfrak{H}=\mathfrak{u}(1)_{E} \oplus \mathfrak{H}_{4} \oplus \mathfrak{H}^{(\hat{R})}, \quad \mathfrak{K}=\mathfrak{K}_{E} \oplus \mathfrak{K}_{4} \oplus \mathfrak{K}^{(\hat{R})}
$$

- $\mathrm{U}(1)_{E} \times H_{4} \subset H$ is the maximal compact subgroup of $H, \mathfrak{H}^{(\hat{})}$ generate non-compact boosts of H
- $\mathfrak{H}^{(\hat{R})}$ and $\mathfrak{K}^{(\hat{R})}$ both transform in a same representation $\hat{\mathbf{R}}$ of $\mathrm{U}(1)_{E} \times H_{4}$ which is the representation of the central and matter charges.
- $V_{0} \in \mathfrak{K}, V_{0} \bigcap_{\left.\mathfrak{K}^{(\hat{R}}\right)}=Z_{A B} k^{A B}+Z_{I} k^{\prime}+$ c.c.

The global symmetry in $D=3$

Some algebra....

- G is larger than $G_{4}: G_{4} \times \operatorname{SL}(2, \mathbb{R})_{E} \subset G$. Its algebra decomposes as follows:

$$
\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})_{E} \oplus \mathfrak{g}_{4} \oplus(\mathbf{2}, \mathbf{R})
$$

where \mathbf{R} is the (symplectic) representation of the electric and magnetic charges under G_{4}

- Similarly:

$$
\mathfrak{H}=\mathfrak{u}(1)_{E} \oplus \mathfrak{H}_{4} \oplus \mathfrak{H}^{(\hat{R})}, \quad \mathfrak{K}=\mathfrak{K}_{E} \oplus \mathfrak{K}_{4} \oplus \mathfrak{K}^{(\hat{R})}
$$

- $\mathrm{U}(1)_{E} \times H_{4} \subset H$ is the maximal compact subgroup of $H, \mathfrak{H}^{(\hat{})}$ generate non-compact boosts of H
- $\mathfrak{H}^{(\hat{R})}$ and $\mathfrak{K}^{(\hat{R})}$ both transform in a same representation $\hat{\mathbf{R}}$ of $\mathrm{U}(1)_{E} \times H_{4}$ which is the representation of the central and matter charges.
- $V_{0} \in \mathfrak{K}, V_{0} \bigcap_{\left.\mathfrak{K}^{(\hat{R}}\right)}=Z_{A B} k^{A B}+Z_{l} k^{\prime}+$ c.c.
- $\mathcal{N}=8$ example:

$$
G_{4}=\mathrm{E}_{7(7)}, \quad H_{4}=\mathrm{SU}(8), \quad G=\mathrm{E}_{8(8)}, \quad H=\mathrm{SO}^{*}(16)
$$

$\mathbf{R}=\mathbf{5 6}$ of $\mathrm{E}_{7(7)}$ and $\hat{\mathbf{R}}=\mathbf{2 8}_{-1}+\overline{\mathbf{2 8}}_{+1}$ of $\mathrm{U}(1)_{E} \times \mathrm{H}_{4}=\mathrm{U}(8)$

Seed Geodesic in Universal Submanifold

- Any element of $\mathfrak{K}^{(\hat{R})}$ or $\mathfrak{H}^{(\hat{R})}$ can be rotated by $\mathrm{U}(1)_{E} \times H_{4}$ into minimal abelian subalgebras $\mathfrak{K}^{(N)}=\operatorname{Span}\left(k_{k}\right)$ and $\mathfrak{H}^{(N)}=\operatorname{Span}\left(J_{k}\right)$, where $k=0, \ldots p-1$ and

$$
p=\operatorname{rank}\left(\frac{H}{\mathrm{U}(1)_{E} \times H_{4}}\right)
$$

Together with $H_{k}=\left[J_{k}, k_{k}\right]$ they generate $\operatorname{SL}(2, \mathbb{R})^{p} \subset G$

Seed Geodesic in Universal Submanifold

- Any element of $\mathfrak{K}^{(\hat{R})}$ or $\mathfrak{H}^{(\hat{R})}$ can be rotated by $\mathrm{U}(1)_{E} \times H_{4}$ into minimal abelian subalgebras $\mathfrak{K}^{(N)}=\operatorname{Span}\left(k_{k}\right)$ and $\mathfrak{H}^{(N)}=\operatorname{Span}\left(J_{k}\right)$, where $k=0, \ldots p-1$ and

$$
p=\operatorname{rank}\left(\frac{H}{U(1)_{E} \times H_{4}}\right)
$$

Together with $H_{k}=\left[J_{k}, k_{k}\right]$ they generate $\operatorname{SL}(2, \mathbb{R})^{p} \subset G$

- $\mathcal{N}=8$ example: $p=\operatorname{rank}\left(\frac{\mathrm{SO}^{*}(16)}{\mathrm{U}(8)}\right)=4$

$$
V_{0} \bigcap_{\mathfrak{K}^{(\hat{R})}}=Z_{A B} k^{A B}-\bar{Z}^{A B} k_{A B} \quad \xrightarrow{\mathrm{U}(8)} \quad \sum_{k=1}^{4} \rho_{k} k_{k} \quad \text { (normal form of } \mathbf{2 8}_{+1} \text {) }
$$

Notice θ rotated away! Seed geodesic is a 4-parameter solution

Seed Geodesic in Universal Submanifold

- Any element of $\mathfrak{K}^{(\hat{R})}$ or $\mathfrak{H}^{(\hat{R})}$ can be rotated by $\mathrm{U}(1)_{E} \times H_{4}$ into minimal abelian subalgebras $\mathfrak{K}^{(N)}=\operatorname{Span}\left(k_{k}\right)$ and $\mathfrak{H}^{(N)}=\operatorname{Span}\left(J_{k}\right)$, where $k=0, \ldots p-1$ and

$$
p=\operatorname{rank}\left(\frac{H}{U(1)_{E} \times H_{4}}\right)
$$

Together with $H_{k}=\left[J_{k}, k_{k}\right]$ they generate $\operatorname{SL}(2, \mathbb{R})^{p} \subset G$

- $\mathcal{N}=8$ example: $p=\operatorname{rank}\left(\frac{\mathrm{SO}^{*}(16)}{\mathrm{U}(8)}\right)=4$

$$
V_{0} \bigcap_{\mathfrak{K}^{(\hat{R})}}=Z_{A B} k^{A B}-\bar{Z}^{A B} k_{A B} \xrightarrow{\mathrm{U}(8)} \quad \sum_{k=1}^{4} \rho_{k} k_{k} \quad \text { (normal form of } \mathbf{2 8}_{+1} \text {) }
$$

Notice θ rotated away! Seed geodesic is a 4-parameter solution

- Seed geodesic is a p-charge solution within (arXiv:0806.2310)

$$
\mathcal{M}_{N}=\left(\frac{\mathrm{SL}(2, \mathbb{R})}{\mathrm{SO}(1,1)}\right)^{p} \times \mathrm{SO}(1,1)^{r-p} \subset \frac{G}{H}
$$

Seed Geodesic in Universal Submanifold

- Any element of $\mathfrak{K}^{(\hat{R})}$ or $\mathfrak{H}^{(\hat{R})}$ can be rotated by $\mathrm{U}(1)_{E} \times H_{4}$ into minimal abelian subalgebras $\mathfrak{K}^{(N)}=\operatorname{Span}\left(k_{k}\right)$ and $\mathfrak{H}^{(N)}=\operatorname{Span}\left(J_{k}\right)$, where $k=0, \ldots p-1$ and

$$
p=\operatorname{rank}\left(\frac{H}{U(1)_{E} \times H_{4}}\right)
$$

Together with $H_{k}=\left[J_{k}, k_{k}\right]$ they generate $\operatorname{SL}(2, \mathbb{R})^{p} \subset G$

- $\mathcal{N}=8$ example: $p=\operatorname{rank}\left(\frac{\mathrm{SO}^{*}(16)}{\mathrm{U}(8)}\right)=4$

$$
V_{0} \bigcap_{\mathfrak{K}^{(\hat{R})}}=Z_{A B} k^{A B}-\bar{Z}^{A B} k_{A B} \xrightarrow{\mathrm{U}(8)} \quad \sum_{k=1}^{4} \rho_{k} k_{k} \quad \text { (normal form of } \mathbf{2 8}_{+1} \text {) }
$$

Notice θ rotated away! Seed geodesic is a 4-parameter solution

- Seed geodesic is a p-charge solution within (arXiv:0806.2310)

$$
\mathcal{M}_{N}=\left(\frac{\mathrm{SL}(2, \mathbb{R})}{\mathrm{SO}(1,1)}\right)^{p} \times \mathrm{SO}(1,1)^{r-p} \subset \frac{G}{H}
$$

- True for all V_{0}-diagonalizable cases. V_{0} non-diagonalizable (e.g. extremal solutions) only geodesics originating from regular solutions $\left(A_{H}>0\right)$.
- Seed geodesic from regular $D=4$ black holes lies within products of $p d S_{2}$ spaces times $\mathrm{SO}(1,1)$ factors:
- Seed geodesic from regular $D=4$ black holes lies within products of $p d S_{2}$ spaces times $\mathrm{SO}(1,1)$ factors:

- Seed geodesic from regular $D=4$ black holes lies within products of $p d S_{2}$ spaces times $\mathrm{SO}(1,1)$ factors:

- Regular extremal solutions, $c^{2} \propto \operatorname{tr}\left(V_{0}^{2}\right)=0$, are characterized by a nilpotent Lax matrix $V_{0}^{k}=0, k \leq k_{0}$. Unfolds in the $\left(d S_{2}\right)^{p}$ factor
- Seed geodesic from regular $D=4$ black holes lies within products of $p d S_{2}$ spaces times $\mathrm{SO}(1,1)$ factors:

- Regular extremal solutions, $c^{2} \propto \operatorname{tr}\left(V_{0}^{2}\right)=0$, are characterized by a nilpotent Lax matrix $V_{0}^{k}=0, k \leq k_{0}$. Unfolds in the $\left(d S_{2}\right)^{p}$ factor
- Construction of the seed geodesic within a universal submanifold common to a broad class of models. E.g. $p=4$: $N=8, N=2$ with rank-3 symmetric SK manifolds (STU) etc.

The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under $H: \mathcal{O}_{X}^{(H)}=H^{-1} X H$

The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under $H: \mathcal{O}_{X}^{(H)}=H^{-1} X H$
- Generic $X \in \mathfrak{K}$ element of a triple $\{h, X, Y\}$:

$$
[h, X]=2 X ;[h, Y]=2 Y ;[X, Y]=h \text {, with } h \in \mathfrak{H}^{(\hat{R})} ; X, Y \in \mathfrak{K}
$$

The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under $H: \mathcal{O}_{X}^{(H)}=H^{-1} X H$
- Generic $X \in \mathfrak{K}$ element of a triple $\{h, X, Y\}$: $[h, X]=2 X ;[h, Y]=2 Y ;[X, Y]=h$, with $h \in \mathfrak{H}^{(\hat{R})} ; X, Y \in \mathfrak{K}$
- Kostant-Sekiguchi bijection:

$$
\mathcal{O}_{X}^{(G)}=G^{-1} X G \leftrightarrow \mathcal{O}_{(X-Y)}^{\left(H_{\mathbb{C}}\right)}=H_{\mathbb{C}}^{-1}(X-Y) H_{\mathbb{C}}
$$

G-orbits of X labeled by the $H_{\mathbb{C}}$-invariant spectrum of $\operatorname{ad}_{X-Y}\left(\mathfrak{H}_{\mathbb{C}}\right)$ (β-labels)

The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under $H: \mathcal{O}_{X}^{(H)}=H^{-1} X H$
- Generic $X \in \mathfrak{K}$ element of a triple $\{h, X, Y\}$: $[h, X]=2 X ;[h, Y]=2 Y ;[X, Y]=h$, with $h \in \mathfrak{H}^{(\hat{R})} ; X, Y \in \mathfrak{K}$
- Kostant-Sekiguchi bijection:

$$
\mathcal{O}_{X}^{(G)}=G^{-1} X G \leftrightarrow \mathcal{O}_{(X-Y)}^{\left(H_{\mathbb{C}}\right)}=H_{\mathbb{C}}^{-1}(X-Y) H_{\mathbb{C}}
$$

G-orbits of X labeled by the $H_{\mathbb{C}}$-invariant spectrum of $\operatorname{ad}{ }_{X-Y}\left(\mathfrak{H}_{\mathbb{C}}\right)$ (β-labels)

- G-orbits of X split into different H-orbits, labeled by the H-invariant spectrum of $\operatorname{ad}_{h}(\mathfrak{H})$ (γ-labels) [for the t^{3}-model: Kim, Hornlund, Palmkvist, Virmani, 1004.5242]

The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under $H: \mathcal{O}_{X}^{(H)}=H^{-1} X H$
- Generic $X \in \mathfrak{K}$ element of a triple $\{h, X, Y\}$:
$[h, X]=2 X ;[h, Y]=2 Y ;[X, Y]=h$, with $h \in \mathfrak{H}^{(\hat{R})} ; X, Y \in \mathfrak{K}$
- Kostant-Sekiguchi bijection:

$$
\mathcal{O}_{X}^{(G)}=G^{-1} X G \leftrightarrow \mathcal{O}_{(X-Y)}^{\left(H_{\mathbb{C}}\right)}=H_{\mathbb{C}}^{-1}(X-Y) H_{\mathbb{C}}
$$

G-orbits of X labeled by the $H_{\mathbb{C}}$-invariant spectrum of $\operatorname{ad}{ }_{X-Y}\left(\mathfrak{H}_{\mathbb{C}}\right)$ (β-labels)

- G-orbits of X split into different H-orbits, labeled by the H-invariant spectrum of $\operatorname{ad}_{h}(\mathfrak{H})$ (γ-labels) [for the t^{3}-model: Kim, Hornlund, Palmkvist, Virmani, 1004.5242]

The t^{3}-model

- $D=4, N=2$ SUGRA coupled to 1 vector multiplet
- Complex scalar t in $\frac{\operatorname{SL}(2, \mathbb{R})}{\operatorname{SO}(2)}\left[\mathcal{F}(t)=t^{3}\right]$ coupled to 2 vectors; 4 charges $\Gamma=\left(m^{0}, m^{1}, e_{0}, e_{1}\right) \quad[(D 6, D 4, D 0, D 2)$ brane-charges $]$

The t^{3}-model

- $D=4, N=2$ SUGRA coupled to 1 vector multiplet
- Complex scalar t in $\frac{\operatorname{SL}(2, \mathbb{R})}{\operatorname{SO}(2)}\left[\mathcal{F}(t)=t^{3}\right]$ coupled to 2 vectors; 4 charges $\Gamma=\left(m^{0}, m^{1}, e_{0}, e_{1}\right) \quad[(D 6, D 4, D 0, D 2)$ brane-charges $]$
- Time-reduction to $D=3 \rightarrow \frac{G}{H}=\frac{G_{2(2)}}{\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})}$ (pseudo-quaternionic)

The t^{3}-model

- $D=4, N=2$ SUGRA coupled to 1 vector multiplet
- Complex scalar t in $\frac{\operatorname{SL}(2, \mathbb{R})}{\operatorname{SO}(2)}\left[\mathcal{F}(t)=t^{3}\right]$ coupled to 2 vectors; 4 charges $\Gamma=\left(m^{0}, m^{1}, e_{0}, e_{1}\right) \quad[(D 6, D 4, D 0, D 2)$ brane-charges $]$
- Time-reduction to $D=3 \rightarrow \frac{G}{H}=\frac{G_{2(2)}}{\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})}$ (pseudo-quaternionic)
- $p=\operatorname{rank}\left(\frac{H}{H_{c}}\right)=\operatorname{rank}\left(\frac{\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})}{\operatorname{SO}(2)^{2}}\right)=2 \Rightarrow$ the seed geodesic describes a two-charge solution (take e_{0}, m^{1} or e_{1}, m^{0})

The t^{3}-model

- $D=4, N=2$ SUGRA coupled to 1 vector multiplet
- Complex scalar t in $\frac{\operatorname{SL}(2, \mathbb{R})}{\operatorname{SO}(2)}\left[\mathcal{F}(t)=t^{3}\right]$ coupled to 2 vectors; 4 charges $\Gamma=\left(m^{0}, m^{1}, e_{0}, e_{1}\right) \quad[(D 6, D 4, D 0, D 2)$ brane-charges $]$
- Time-reduction to $D=3 \rightarrow \frac{G}{H}=\frac{G_{2(2)}}{\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})}$ (pseudo-quaternionic)
- $p=\operatorname{rank}\left(\frac{H}{H_{c}}\right)=\operatorname{rank}\left(\frac{\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})}{\operatorname{SO}(2)^{2}}\right)=2 \Rightarrow$ the seed geodesic describes a two-charge solution (take e_{0}, m^{1} or e_{1}, m^{0})
- Seed geodesic for extremal b.h. unfolds in $\left(d S_{2}\right)^{2}=\frac{\operatorname{SL}(2, \mathbb{R})_{e_{0}}}{\operatorname{SO}(1,1)} \times \frac{\mathrm{SL}(2, \mathbb{R})_{m^{1}}}{\operatorname{SO}(1,1)}$

$$
\left\{\begin{array}{l}
\mathfrak{s l}(2, \mathbb{R})_{e_{0}}=\operatorname{Span}\left\{J_{0}, k_{0}, \mathcal{H}_{0}\right\} ; \mathfrak{s o}(1,1)=\operatorname{Span}\left\{J_{0}\right\} ; \text { coset gen.s }=\left\{k_{0}, \mathcal{H}_{0}\right\} \\
\mathfrak{s l}(2, \mathbb{R})_{m^{1}}=\operatorname{Span}\left\{J_{1}, k_{1}, \mathcal{H}_{1}\right\} ; \mathfrak{s o}(1,1)=\operatorname{Span}\left\{J_{1}\right\} ; \operatorname{coset} \text { gen.s }=\left\{k_{1}, \mathcal{H}_{1}\right\}
\end{array}\right.
$$

The t^{3}-model

- $D=4, N=2$ SUGRA coupled to 1 vector multiplet
- Complex scalar t in $\frac{\operatorname{SL}(2, \mathbb{R})}{\operatorname{SO}(2)}\left[\mathcal{F}(t)=t^{3}\right]$ coupled to 2 vectors; 4 charges $\Gamma=\left(m^{0}, m^{1}, e_{0}, e_{1}\right) \quad[(D 6, D 4, D 0, D 2)$ brane-charges $]$
- Time-reduction to $D=3 \rightarrow \frac{G}{H}=\frac{G_{2(2)}}{\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})}$ (pseudo-quaternionic)
- $p=\operatorname{rank}\left(\frac{H}{H_{c}}\right)=\operatorname{rank}\left(\frac{\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})}{\operatorname{SO}(2)^{2}}\right)=2 \Rightarrow$ the seed geodesic describes a two-charge solution (take e_{0}, m^{1} or e_{1}, m^{0})
- Seed geodesic for extremal b.h. unfolds in $\left(d S_{2}\right)^{2}=\frac{\operatorname{SL}(2, \mathbb{R})_{e_{0}}}{\operatorname{SO}(1,1)} \times \frac{\mathrm{SL}(2, \mathbb{R})_{m^{1}}}{\operatorname{SO}(1,1)}$

$$
\left\{\begin{array}{l}
\mathfrak{s l}(2, \mathbb{R})_{e_{0}}=\operatorname{Span}\left\{J_{0}, k_{0}, \mathcal{H}_{0}\right\} ; \mathfrak{s o}(1,1)=\operatorname{Span}\left\{J_{0}\right\} ; \text { coset gen.s }=\left\{k_{0}, \mathcal{H}_{0}\right\} \\
\mathfrak{s l}(2, \mathbb{R})_{m^{1}}=\operatorname{Span}\left\{J_{1}, k_{1}, \mathcal{H}_{1}\right\} ; \mathfrak{s o}(1,1)=\operatorname{Span}\left\{J_{1}\right\} ; \operatorname{coset} \text { gen.s }=\left\{k_{1}, \mathcal{H}_{1}\right\}
\end{array}\right.
$$

- Explicit matrix representation: $J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), k=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \mathcal{H}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Seed Geodesic

Construct the extremal geodesics in $\mathcal{M}_{N}=\left(\frac{\mathrm{SL}(2, \mathbb{R})}{\operatorname{SO}(1,1)}\right)^{2}$

Seed Geodesic

Construct the extremal geodesics in $\mathcal{M}_{N}=\left(\frac{\operatorname{SL}(2, \mathbb{R})}{\operatorname{SO}(1,1)}\right)^{2}$

- $V_{0} \in[\mathfrak{s l}(2) \ominus \mathfrak{s o}(1,1)]^{2}$ nilpotent. For each $\operatorname{SL}(2), V_{0}$ must expand in one of the two nilp. generators in the coset: $n_{k}^{ \pm}=H_{k} \mp k_{k}$:

$$
X=V_{0}=a_{0} n_{0}^{-\varepsilon_{0}}+a_{1} n_{i}^{\varepsilon_{1}}=a_{0}\left(H_{0}-\varepsilon_{0} k_{0}\right)+a_{1}\left(\mathcal{H}_{1}+\varepsilon_{1} k_{1}\right)
$$

where $\varepsilon_{k}= \pm 1$

Seed Geodesic

Construct the extremal geodesics in $\mathcal{M}_{N}=\left(\frac{\mathrm{SL}(2, \mathbb{R})}{\mathrm{SO}(1,1)}\right)^{2}$

- $V_{0} \in[\mathfrak{s l}(2) \ominus \mathfrak{s o}(1,1)]^{2}$ nilpotent. For each $\operatorname{SL}(2), V_{0}$ must expand in one of the two nilp. generators in the coset: $n_{k}^{ \pm}=H_{k} \mp k_{k}$:

$$
X=V_{0}=a_{0} n_{0}^{-\varepsilon_{0}}+a_{1} n_{i}^{\varepsilon_{1}}=a_{0}\left(H_{0}-\varepsilon_{0} k_{0}\right)+a_{1}\left(\mathcal{H}_{1}+\varepsilon_{1} k_{1}\right)
$$

where $\varepsilon_{k}= \pm 1$

- Solution in terms of U, t, \mathcal{Z}^{M} :

$$
e^{-2 U}=\sqrt{\mathbf{H}_{0}\left(\mathbf{H}_{1}\right)^{3}} ; t=-i \sqrt{\frac{\mathbf{H}_{0}}{\mathbf{H}_{1}}}, \quad \mathcal{Z}^{0}=\frac{\varepsilon_{0} a_{0} \tau}{\mathbf{H}_{0}} ; \quad \mathcal{Z}_{1}=\sqrt{3} \frac{\varepsilon_{1} a_{1} \tau}{\mathbf{H}_{1}}
$$

$\mathbf{H}_{k}=1-\sqrt{2} a_{k} \tau$. Charges are: $e_{0}=\varepsilon_{0} a_{0}, m^{1}=-\varepsilon_{1} a_{1}$

- Regular solution: $a_{k}>0 \quad \Rightarrow \quad \beta$-label $=\gamma$-label.
- At the horizon $\tau \rightarrow-\infty$:

$$
\varphi_{i} \rightarrow \varphi_{i}^{f i x} \text { (stable attractor), } \quad e^{-2 U} \rightarrow \frac{A_{H}}{4 \pi} \tau^{2}
$$

where

$$
\frac{A_{H}}{4 \pi}=\sqrt{4 a_{0}\left(a_{1}\right)^{3}}=\sqrt{4 \varepsilon e_{0}\left(m^{1}\right)^{3}}=\sqrt{\varepsilon l_{4}(e, m)}
$$

$\varepsilon=\varepsilon_{0} \varepsilon_{1}, I_{4}(e, m)$ quartic invariant: $I_{4}(e, m)=4 e_{0}\left(m^{1}\right)^{3} \neq 0$

- At the horizon $\tau \rightarrow-\infty$:

$$
\varphi_{i} \rightarrow \varphi_{i}^{f i x} \text { (stable attractor), } \quad e^{-2 U} \rightarrow \frac{A_{H}}{4 \pi} \tau^{2}
$$

where

$$
\frac{A_{H}}{4 \pi}=\sqrt{4 a_{0}\left(a_{1}\right)^{3}}=\sqrt{4 \varepsilon e_{0}\left(m^{1}\right)^{3}}=\sqrt{\varepsilon l_{4}(e, m)}
$$

$\varepsilon=\varepsilon_{0} \varepsilon_{1}, I_{4}(e, m)$ quartic invariant: $I_{4}(e, m)=4 e_{0}\left(m^{1}\right)^{3} \neq 0$

- BPS solution $\varepsilon_{0}=\varepsilon_{1}=1, I_{4}>0$; non-BPS solution $\varepsilon_{0}=-\varepsilon_{1}=1, I_{4}<0$
- At the horizon $\tau \rightarrow-\infty$:

$$
\varphi_{i} \rightarrow \varphi_{i}^{f i x} \text { (stable attractor), } \quad e^{-2 U} \rightarrow \frac{A_{H}}{4 \pi} \tau^{2}
$$

where

$$
\frac{A_{H}}{4 \pi}=\sqrt{4 a_{0}\left(a_{1}\right)^{3}}=\sqrt{4 \varepsilon e_{0}\left(m^{1}\right)^{3}}=\sqrt{\varepsilon l_{4}(e, m)}
$$

$\varepsilon=\varepsilon_{0} \varepsilon_{1}, I_{4}(e, m)$ quartic invariant: $I_{4}(e, m)=4 e_{0}\left(m^{1}\right)^{3} \neq 0$

- BPS solution $\varepsilon_{0}=\varepsilon_{1}=1, I_{4}>0$; non-BPS solution $\varepsilon_{0}=-\varepsilon_{1}=1, I_{4}<0$
- $\left|a_{k}\right|=1$ modulo action of $\operatorname{SO}(1,1)^{2} \subset H$

Other Orbits and Tensor Classifiers

- Other two orbits with $I_{4}=0, X$ step-2 nilpotent:
a $\mathcal{O}_{1}: m^{1} \rightarrow 0$ (doubly-critical) small-bh
b $\mathcal{O}_{2}: e_{0} \rightarrow 0$ (lightlike) small-bh
- Last orbit: X step-7 nilpotent. No regular single-center, regular multicenter solution [Bossard, Ruef, 1106.5806]
- Describe orbits through H-invariants from Lax matrix. Define symmetric H-covariant tensors whose signature is H-invariant [Fre', Sorin, M.T., 1103.0848]

Tensor Classifiers

$$
V_{0}=\Delta^{\alpha A} K_{\alpha A}, \quad \Delta^{\alpha A} \in(\mathbf{2}, \mathbf{4}) \text { of } H=\operatorname{SL}(2, \mathbb{R})_{1} \times \operatorname{SL}(2, \mathbb{R})_{2}
$$

$$
\mathcal{T}^{x y}=\epsilon_{\alpha \beta} \Delta^{\alpha A} \Delta^{\beta B} \Pi_{A B}^{x y} \in(\mathbf{1}, \mathbf{3}) \times_{s}(\mathbf{1}, \mathbf{3})
$$

$$
\mathfrak{T}^{x y}=\left(s^{a}\right)_{\alpha \beta}\left(s_{a}\right)_{\gamma \delta}\left(t^{x}\right)_{A B}\left(t^{y}\right)_{C D} \Delta^{\alpha A} \Delta^{\beta B} \Delta^{\gamma C} \Delta^{\delta D} \in(\mathbf{1}, \mathbf{3}) \times_{s}(\mathbf{1}, \mathbf{3})
$$

$$
\mathbb{T}^{a b}=\left(s^{a}\right)_{\alpha \beta}\left(s^{b}\right)_{\gamma \delta}\left(t^{x}\right)_{A B}\left(t_{x}\right)_{C D} \Delta^{\alpha A} \Delta^{\beta B} \Delta^{\gamma C} \Delta^{\delta D} \in(\mathbf{3}, \mathbf{1}) \times_{s}(\mathbf{3}, \mathbf{1})
$$

where $\mathfrak{s l}(2, \mathbb{R})_{1}=\operatorname{Span}\left\{s_{a}\right\}, \mathfrak{s l}(2, \mathbb{R})_{2}=\operatorname{Span}\left\{t_{x}\right\} . \operatorname{BPS}$ solution $\Leftrightarrow \mathcal{T}^{x y} \equiv 0$

Conclusions

- Geodesic description in $D=3$ of $D=4$ regular, asymtotically flat, static black hole solutions:

Conclusions

- Geodesic description in $D=3$ of $D=4$ regular, asymtotically flat, static black hole solutions:
- Advantage: Larger global symmetry group, simpler seed solution

Conclusions

- Geodesic description in $D=3$ of $D=4$ regular, asymtotically flat, static black hole solutions:
- Advantage: Larger global symmetry group, simpler seed solution
- Disadvantage: Sophisticated mathematical tools, involved computational methods

Conclusions

- Geodesic description in $D=3$ of $D=4$ regular, asymtotically flat, static black hole solutions:
- Advantage: Larger global symmetry group, simpler seed solution
- Disadvantage: Sophisticated mathematical tools, involved computational methods
- Intrinsic characterization of the seed geodesic for regular solutions within simple universal submanifolds. Applies to all extended SUGRAS with symmetric scalar manifolds (symmetric SUGRAS)

Conclusions

- Geodesic description in $D=3$ of $D=4$ regular, asymtotically flat, static black hole solutions:
- Advantage: Larger global symmetry group, simpler seed solution
- Disadvantage: Sophisticated mathematical tools, involved computational methods
- Intrinsic characterization of the seed geodesic for regular solutions within simple universal submanifolds. Applies to all extended SUGRAS with symmetric scalar manifolds (symmetric SUGRAS)
- Defined Wick rotation mapping (extremal) BPS into (extremal) non-BPS geodesics from relation between the corresponding seed solutions.

Conclusions

- Geodesic description in $D=3$ of $D=4$ regular, asymtotically flat, static black hole solutions:
- Advantage: Larger global symmetry group, simpler seed solution
- Disadvantage: Sophisticated mathematical tools, involved computational methods
- Intrinsic characterization of the seed geodesic for regular solutions within simple universal submanifolds. Applies to all extended SUGRAS with symmetric scalar manifolds (symmetric SUGRAS)
- Defined Wick rotation mapping (extremal) BPS into (extremal) non-BPS geodesics from relation between the corresponding seed solutions.

Work in progress:

- Classify H -orbits for all symmetric SUGRAS and extend the definition of Tensor Classifiers

Conclusions

- Geodesic description in $D=3$ of $D=4$ regular, asymtotically flat, static black hole solutions:
- Advantage: Larger global symmetry group, simpler seed solution
- Disadvantage: Sophisticated mathematical tools, involved computational methods
- Intrinsic characterization of the seed geodesic for regular solutions within simple universal submanifolds. Applies to all extended SUGRAS with symmetric scalar manifolds (symmetric SUGRAS)
- Defined Wick rotation mapping (extremal) BPS into (extremal) non-BPS geodesics from relation between the corresponding seed solutions.

Work in progress:

- Classify H -orbits for all symmetric SUGRAS and extend the definition of Tensor Classifiers
- Apply analysis to multicenter and rotating solutions, characterizing their seed solutions in $D=3$ within universal truncations

Parametrization of the scalar manifold

- $\mathscr{M}_{\text {scal }}$ is globally isometric to a solvable group: $\mathscr{M}_{\text {scal }} \sim e^{\text {Solv }_{4}\left[\phi^{t}\right]}$

Parametrization of the scalar manifold

- $\mathscr{M}_{\text {scal }}$ is globally isometric to a solvable group: $\mathscr{M}_{\text {scal }} \sim e^{\text {Solv }_{4}\left[\phi^{\prime}\right]}$
- $\mathscr{M}_{\text {scal }}^{(3)}$, being pseudo-Riemannian, is only locally isometric to a solvable group: $\mathscr{M}_{\text {scal }}^{(3)} \sim e^{\operatorname{Solv}\left[\phi^{\prime}\right]}$

Parametrization of the scalar manifold

- $\mathscr{M}_{\text {scal }}$ is globally isometric to a solvable group: $\mathscr{M}_{\text {scal }} \sim e^{\text {Solv }_{4}\left[\phi^{t}\right]}$
- $\mathscr{M}_{\text {scal }}^{(3)}$, being pseudo-Riemannian, is only locally isometric to a solvable group: $\mathscr{M}_{\text {scal }}^{(3)} \sim e^{\operatorname{Solv}\left[\phi{ }^{\prime}\right]}$
- Physical fields ϕ^{\prime} are local coordinates (physical patch) for $\mathscr{M}_{\text {scal }}^{(3)}$, while ϕ^{r} are global coordinates on $\mathscr{M}_{\text {scal }}$

Parametrization of the scalar manifold

- $\mathscr{M}_{\text {scal }}$ is globally isometric to a solvable group: $\mathscr{M}_{\text {scal }} \sim e^{\text {Solv }_{4}\left[\phi^{t}\right]}$
- $\mathscr{M}_{\text {scal }}^{(3)}$, being pseudo-Riemannian, is only locally isometric to a

- Physical fields ϕ^{\prime} are local coordinates (physical patch) for $\mathscr{M}_{\text {scal }}^{(3)}$, while ϕ^{r} are global coordinates on $\mathscr{M}_{\text {scal }}$

Example $d S_{2} \equiv \frac{\operatorname{SL}(2, \mathbb{R})}{\operatorname{SO}(1,1)}$

- $-\left(X^{0}\right)^{2}+\left(X^{1}\right)^{2}+\left(X^{2}\right)^{2}=2$
- Solvable coords.

$$
e^{-\phi}=X^{0}+X^{1}>0, e^{-\phi} \chi=\sqrt{2} X^{2}
$$

- Metric: $d s^{2}=-2 d \phi^{2}+\frac{1}{2} e^{-2 \phi} d \chi^{2}$

Parametrization of the scalar manifold

- $\mathscr{M}_{\text {scal }}$ is globally isometric to a solvable group: $\mathscr{M}_{\text {scal }} \sim e^{\text {Solv }_{4}\left[\phi^{t}\right]}$
- $\mathscr{M}_{\text {scal }}^{(3)}$, being pseudo-Riemannian, is only locally isometric to a solvable group: $\mathscr{M}_{\text {scal }}^{(3)} \sim e^{\operatorname{Solv}\left[\phi^{\prime}\right]}$
- Physical fields ϕ^{\prime} are local coordinates (physical patch) for $\mathscr{M}_{\text {scal }}^{(3)}$, while ϕ^{r} are global coordinates on $\mathscr{M}_{\text {scal }}$

Example $d S_{2} \equiv \frac{\mathrm{SL}(2, \mathbb{R})}{\mathrm{SO}(1,1)}$

- $-\left(X^{0}\right)^{2}+\left(X^{1}\right)^{2}+\left(X^{2}\right)^{2}=2$
- Solvable coords.

$$
e^{-\phi}=X^{0}+X^{1}>0, e^{-\phi} \chi=\sqrt{2} X^{2}
$$

- Metric: $d s^{2}=-2 d \phi^{2}+\frac{1}{2} e^{-2 \phi} d \chi^{2}$

