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The 1D N-Extended Superalgebra, with A/ odd
generators Q; (I = 1,2,...,N) and a single even
generator H satisfying the (anti)-commutation
relations

{Q,Q} 617 H,
[H, Q] 0,
The minimal linear representations (also called
irreducible supermultiplets) are given by the min-
imal number n,,;, of bosonic
(fermionic) fields for a given value of N.

N = 8l+m,
nmin — 24ZG(m)7
where I =0,1,2,...and m=1,2.3,4,5,6,7,8.

G'(m) appearing in (1) is the Radon-Hurwitz func-
tion

m |1 2 3 4 5 6 7 8
Gm)|1 2 4 4 8 8 8 8

The maximal finite number ny,qe OFf bosonic
(fermionic) fields entering a non-minimal repre-
sesentation

N-1

Nmax —



D-module reps of N-extended 1D susy:
minimal linear irreps: admissible field contents:
(n1,m2,n3,...)

Pashnev-F T, Kuznetsova-Rojas-FT.

graphs (adinkras) Gates-Faux

admissible connectivities, Kuznetsova-FT.

Nonminimal (indecomposable) linear reps. Gonzales-
Khodaee-FT.

Nonlinear reps.

Inhomogeneous reps.



Minimal linear supermultiplets of extended su-
persymmetry in one dimension are usually for-
mulated with homogeneous transformations for
their component fields. In some selected cases
it is possible to add an inhomogeneous term.
This is admissible at

e N=2 for the supermultiplet (0, 2,2)

e N=4 for the supermultiplets (0,4,4) and
(1,4,3)

e N=3 for the supermultiplets (0,8, 8), (1,8,7),
(2,8,6) and (3,8, 5)

The remaining N = 2,4,8 supermultiplets do
not admit an inhomogeneous extension.

For (1,4,3): Ivanov-Krivonos-Pashnev 1991.
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Examples:

(0,4,4). For the N=4 (0,4,4) multiplet, we
have (i,7,k =1,2,3, €103 =1)

Qov =g, Qo¥;j=yg;,
Qog=v , Qogj=1v;,
Qv =9, Qi = —0i9 + €Kk ;
Qig = =¥, Qig; = 0% — € jkVk

and we may choose

g1 =91, Ggx=gp but gz=gsz+c.

(1,4,3). N=4 (1,4,3).

Qor =1 , QoY =z ,
QoY = g; , Qogj = ¥j ,
Qir = ; , Qi = —g; ,

Qivj = 045 + €Kk Qigj = —0i;¥ — €1V
with the same g, as in (0,4,4).



A special case of N=8 (2,8,6) sigma-model
(Bellucci-Krivonos-Nersessian-Schcherbakov) is
a 2D N=8 SCQM.

Gonzales-Rojas-FT: for N > 4 and the presence
of at least one physical boson one can set (man-
ifest N=4)

S = [dL=[dt 1020304 F(a,y,...) ,

where F'(x,y,...) is an unconstrained prepoten-
tial.

N=8 constraint:

QZ,C = 8th for l:5,6,7,8

imposes constraints on F.

In order to obtain scale invariance, the action

should not contain any dimensionful coupling

parameter, and therefore, due to [Q;] = % we

demand that [F] = —1.



The inhomogeneous term gives rise to a Calogero-
type potential.

The action may be complemented by the addi-
tion of a Fayet-Iliopoulos term

Spr = /dt Z(Qigi + i fi) with  [g;] = [r;] = 1

FI = the DFF oscillatorial damping of conformal
mechanics.

Action S ~ 2(#)2+ ...

Usual action recovered with the coordinate change

2

r — /F3W™.

N|—



Example: N=4 (1,4,3) multiplet (only =z and g;,
no y or f;), the proper choice for the prepotential
IS

F(z) = %wlnaj —
L+ Lpr = F'(@)@*+97 + cg3)+ a9 +
+ fermaons.

After eliminating the auxiliary components g;
via their equations of motion and putting the
fermions to zero, one gets

1 1

1

/ _ /! -2 2 2 /!
ﬁbos = F'(z)(z —ZC) —Z%‘ JF7(x) — §CQ3
1. .5 15 5 1
= Z(az — ¢ )/x — gix — 5C 43
1 .2 1 2 -2 1 2 92 1
= —w" ——cw — —g;wT — —C )
> 3 297, > 43
and we have recovered the standard conformal
1 2

action after the coordinate change x = SWw=.



For N=8 (2,8,6) the prepotential F(xz,y) must
be harmonic,
The general solution is encoded in a meromor-
phic function H(z) via

F(z,y) = H(z)+ H(z)

The bosonic metric g,z = H.,+Hzz is special
Kahler of rigid type (Fre).

The harmonic prepotential with the correct scal-
ing dimension [H] = —1 is

1
H(z) = ézlnz

The Lagrangian is determined by

1l =«
b = -
41242
—~ 1
d = -7
412 +4-y2

In the bosonic limit, obtained by setting all fermions

equal to zero, we obtain

Lbos + £FI = ¢ (5572 + yi‘F 9z‘2 + fiz) +
c(Pgz+ Pf3)+qig; +rifi -
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After eliminating the auxiliary fields via their al-
gebraic equations of motion, we get

r #2492 (FHrP)@2+y?)

Lhos = 22442 4 .

L43TFT3Y c?

2x 16x
= K — V|,

Setting =z = Sw?
Lhos = —(1+72) L(w? + > — —(1-|-72)(q12—|-r2)/

1 62

—5clastrsy) ——o— .

where v = 2y/w?.
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D-module reps of SCA’'s: example sl(2|1) for
(1,2,1) multiplet:

o 0 0 O
_ 0 8 0 O
0 = (o 0 & o>’
0O 0 0 &
0O 0 0 O
0O 0 0 O
W= (o 0 0 1>’
0 0 -1 0
(tat—A 0 0 0
0 t0 + 1 — A 0 0
b= 0 0 t + 3 — A 0 )
\ 0 0 0 to + 2 — A
/—t28t-|—2>\t 0 0 (
K = 0 —t20; + (21 — 2)t 0 (
- 0 0 —t20; + (2\ — 1)t (
\ 0 0 0 128, + |
0O 01 0
_ 0O 0 0 &
@1 = & 0 0 0 |
0O 1 0 O
o 0 o0 1
_ 0O 0 -8 O
Q2 = (0 1 0 0>’
Oy 0 0] 0
0 0 ¢ 0
g, = ( 0 0 0 t@t—2)\—|—1>
1= 8 — 2\ 0 0 0 )
0 ¢ 0 0
0 0 0 ¢
5, = ( 0 0 —t0, 4+ 21— 1 o)
2 = 0 —t 0 o |-
0 — 2\ 0 0 0
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2 SCA:

The twisted N
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Common subalgebra: the si(2|1) Borel subalge-
bra:

B:{D:%(S—S*), H W=24+72
RQi1=Q+Qy—Q, Q2=Q—-Qy—Q}.

Ordinary N =2 SCA:(Y(t);£1(t),&>(t); g(t))
Twisted N =2 SCA: (X(t); W(t),W(t);b(t)).

With a convenient normalization we can present
the free Lagrangians as

L = %('24-92—6151—5252),

L8 = 2 —bpX 4+ V.
In order to identify them (£ = £), we have to

provide the invertible ‘“twist transformation” T
linking the two sets of fields. We have

X = V2iY,

b = \%(ngiY),
1

Vo= ﬁ(&—&),

U = ——(& +&).

V2
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BRST cohomologies:

The N = 2 free Lagrangian is invariant under
the 6 nilpotent fermionic generators, provided
that A = 3.

/ dtL = / dt ('1ub” — V' XY + W)
- / dtQ (W (b — X)) = — / dtQ (W nu (b — X))
[ @Qay (#n,,v7) = -

I
I
——

S
L
)
<
€

=
T
<

= [ dtQoQ (Fni) = -

— /dthQV (%b“nwjby> = — dt@c@v (—b'un/wby> .
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Interactions:

the supersymmetric interaction is introduced in
term of the “prepotential” W[XH].

A manifest @Q-invariant term can be added to
the action by setting

_ﬂ(sW) W . 82W

Loy = GHEZ ) = ph 2 G W,
nt Q( SX 1 5 X M SXHEXV

The Q, Qy, Q and Qy invariances, modulo a
time derivative, of L;,,; are warranted because

Lintg = QQ(W)=QQy(W)=—-QQy (W).
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The Qg, Q¢ invariances, modulo a time deriva-
tive, of L;,; imply the following condition on the
prepotential:

W“aW — X" "W V=0 = i(X“ﬁ—w) = 0.
oxXV OXHOXV o0XP OXH

T herefore, the condition for having a Q-invariance
S

oWw
XHt—— = C,
OXH
whose general solution is

0

W = CInR—I—f(%)

C' is an arbitrary constant and f is an arbitrary
function of the non-dimensional quantities )%,
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T he target-space reparametrization covariant ac-
tion with worldline N = 2 supersymmetry is ex-
pressed by the Lagrangian

1 o _ :
L = _Zqu,]/XVXV + W'Lb(guywy ‘I_

| 1 _ _
o XPWY) 4 ZRWpawaawVwV.

The t-dependent coordinates X#(t) are bosons,
while WH(t) and WH(t) are fermions.

Using an auxiliary field b#(t), one can express L
as

The general covariance in the curved target-
space with coordinates X* is explicit for the ac-
tion . However, such an important invariance is
only enforced after the elimination from the ac-
tion of the auxiliary fields b#* via their algebraic
equations of motion by = g X" — T, 1,V W,
[atr = QQy [ d(Fgu v

= ~QQy [ d(Tgu ).
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Very economical way to implement the N = 2
SCA: invariance under

gﬁnzn — {Q) QC) C, Ngh}

Ngh .= S—I—g,

while
1 _ d
D = —(S-8S)=t—+d
2( ) dt+ s

contains the diagonal matrix ds with the engi-
neering or scaling dimension of the component
fields. The ghost number and the scale dimen-
sions are given by

Ngh ds
X 0 —%
b 0 5
U 1 0]
] —1 0
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In particular the si(2) conformal invariance of
the one-dimensional conformal quantum mechan-
iICS is obtained as a bonus:

on an arbitrary s-dimensional field ®4(t) (in our

case s = —5 for X, s =0 for W and ¥, s = 3
for b):
d
L1 = —,
! dt
d
L = t— + s,
0 17 +
d
L1 = —t°— —2st.
dt
The non-vanishing commutators are
(Lo, L+1] = £L4q,
[L1,L_1] = 2Lo.
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