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The 1D N -Extended Superalgebra, with N odd
generators QI (I = 1,2, . . . ,N ) and a single even
generator H satisfying the (anti)-commutation
relations

{QI , QJ} = δIJH,

[H,QI] = 0,

The minimal linear representations (also called
irreducible supermultiplets) are given by the min-
imal number nmin of bosonic
(fermionic) fields for a given value of N .

N = 8l +m,

nmin = 24lG(m),

where l = 0,1,2, . . . and m = 1,2,3,4,5,6,7,8.

G(m) appearing in (1) is the Radon-Hurwitz func-
tion

m 1 2 3 4 5 6 7 8
G(m) 1 2 4 4 8 8 8 8

The maximal finite number nmax of bosonic
(fermionic) fields entering a non-minimal repre-
sesentation

nmax = 2N−1.



D-module reps of N-extended 1D susy:

minimal linear irreps: admissible field contents:

(n1, n2, n3, . . .)

Pashnev-FT, Kuznetsova-Rojas-FT.

graphs (adinkras) Gates-Faux

admissible connectivities, Kuznetsova-FT.

Nonminimal (indecomposable) linear reps. Gonzales-

Khodaee-FT.

Nonlinear reps.

Inhomogeneous reps.
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Minimal linear supermultiplets of extended su-

persymmetry in one dimension are usually for-

mulated with homogeneous transformations for

their component fields. In some selected cases

it is possible to add an inhomogeneous term.

This is admissible at

• N= 2 for the supermultiplet (0,2,2)

• N= 4 for the supermultiplets (0,4,4) and

(1,4,3)

• N= 8 for the supermultiplets (0,8,8), (1,8,7),

(2,8,6) and (3,8,5)

The remaining N = 2,4,8 supermultiplets do

not admit an inhomogeneous extension.

For (1,4,3): Ivanov-Krivonos-Pashnev 1991.
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Examples:

(0,4,4). For the N= 4 (0,4,4) multiplet, we

have (i, j, k = 1,2,3, ε123 = 1)

Q0ψ = g , Q0ψj = gj ,
Q0g = ψ̇ , Q0gj = ψ̇j ,
Qiψ = gi , Qiψj = −δijg + εijkg̃k ,

Qig = −ψ̇i , Qigj = δijψ̇ − εijkψ̇k ,
and we may choose

g̃1 = g1 , g̃2 = g2 but g̃3 = g3 + c .

(1,4,3). N= 4 (1,4,3):

Q0x = ψ , Q0ψ = ẋ ,
Q0ψj = gj , Q0gj = ψ̇j ,

Qix = ψi , Qiψ = −gi ,
Qiψj = δijẋ+ εijkg̃k , Qigj = −δijψ̇ − εijkψ̇k ,

with the same g̃k as in (0,4,4).
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A special case of N=8 (2,8,6) sigma-model

(Bellucci-Krivonos-Nersessian-Schcherbakov) is

a 2D N=8 SCQM.

Gonzales-Rojas-FT: for N ≥ 4 and the presence

of at least one physical boson one can set (man-

ifest N=4)

S =
∫
dtL =

∫
dt Q1Q2Q3Q4 F (x, y, . . .) ,

where F (x, y, . . .) is an unconstrained prepoten-

tial.

N=8 constraint:

QlL = ∂tWl for l = 5,6,7,8

imposes constraints on F .

In order to obtain scale invariance, the action

should not contain any dimensionful coupling

parameter, and therefore, due to [Qi] = 1
2, we

demand that [F ] = −1.
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The inhomogeneous term gives rise to a Calogero-

type potential.

The action may be complemented by the addi-

tion of a Fayet-Iliopoulos term

SFI =
∫
dt
∑
i

(qigi + rifi) with [qi] = [ri] = 1

FI⇒ the DFF oscillatorial damping of conformal

mechanics.

Action S ∼ 1
x(ẋ)2 + . . ..

Usual action recovered with the coordinate change

x = 1
2w

2.
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Example: N=4 (1,4,3) multiplet (only x and gi,

no y or fi), the proper choice for the prepotential

is

F (x) =
1

4
x lnx −→

L+ LFI = F ′′(x)(ẋ2 + g2
i + c g3) + qigi +

+fermions.

After eliminating the auxiliary components gi
via their equations of motion and putting the

fermions to zero, one gets

L′bos = F ′′(x)(ẋ2 −
1

4
c2) −

1

4
q2
i /F

′′(x) −
1

2
c q3

=
1

4
(ẋ2 −

1

4
c2)/x − g2

i x −
1

2
c q3

=
1

2
ẇ2 −

1

8
c2w−2 −

1

2
g2
i w

2 −
1

2
c q3 ,

and we have recovered the standard conformal

action after the coordinate change x = 1
2w

2.
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For N=8 (2,8,6) the prepotential F (x, y) must
be harmonic,

∆F ≡ Fxx + Fyy = 0.

The general solution is encoded in a meromor-
phic function H(z) via

F (x, y) = H(z) +H(z)

The bosonic metric gzz̄ = Hzz+H̄z̄z̄ is special
Kähler of rigid type (Fre).

The harmonic prepotential with the correct scal-
ing dimension [H] = −1 is

H(z) =
1

8
z ln z

The Lagrangian is determined by

Φ =
1

4

x

x2+y2

Φ̃ =
1

4

y

x2+y2

In the bosonic limit, obtained by setting all fermions
equal to zero, we obtain

Lbos + LFI = Φ (ẋ2 + ẏ2 + gi
2 + fi

2) +

c (Φ g3 + Φ̃f3) + qigi + rifi .
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After eliminating the auxiliary fields via their al-

gebraic equations of motion, we get

L′bos =
x

x2+y2

ẋ2 + ẏ2

4
−

(q2
i +r2

i )(x2+y2)

x
−

c
q3x+r3y

2x
−

c2

16x
=: K − V ,

Setting x = 1
2w

2

L′bos =
1

2
(1+γ2)−1(ẇ2 +

ẏ2

w2) −
1

2
(1+γ2)(q2

i +r2
i )w2 −

−
1

2
c (q3+r3γ) −−

c2

8w2
,

where γ = 2y/w2.
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D-module reps of SCA’s: example sl(2|1) for
(1,2,1) multiplet:

H =

(
∂t 0 0 0
0 ∂t 0 0
0 0 ∂t 0
0 0 0 ∂t

)
,

W =

( 0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

)
,

D =

 t∂t − λ 0 0 0
0 t∂t + 1− λ 0 0
0 0 t∂t + 1

2
− λ 0

0 0 0 t∂t + 1
2
− λ

 ,

K =

 −t2∂t + 2λt 0 0 0
0 −t2∂t + (2λ− 2)t 0 0
0 0 −t2∂t + (2λ− 1)t 0
0 0 0 −t2∂t + (2λ− 1)t

 ,

Q1 =

( 0 0 1 0
0 0 0 ∂t
∂t 0 0 0
0 1 0 0

)
,

Q2 =

( 0 0 0 1
0 0 −∂t 0
0 −1 0 0
∂t 0 0 0

)
,

Q̃1 =

( 0 0 t 0
0 0 0 t∂t − 2λ+ 1

t∂t − 2λ 0 0 0
0 t 0 0

)
,

Q̃2 =

( 0 0 0 t
0 0 −t∂t + 2λ− 1 0
0 −t 0 0

t∂t − 2λ 0 0 0

)
.

(1)
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The twisted N=2 SCA:

Q =

( 0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

)
, Q̄ =

( 0 0 0 1
0 0 0 0
0 −1 0 0
0 0 0 0

)
,

QV =

( 0 0 0 1
0 0 0 ∂t
∂t −1 0 0
0 0 0 0

)
, Q̄V =

( 0 0 1 0
0 0 ∂t 0
0 0 0 0
−∂t 1 0 0

)
,

QC =

( 0 0 t 0
0 0 λ 0
0 0 0 0
−λ t 0 0

)
, Q̄C =

( 0 0 0 t
0 0 0 λ
λ −t 0 0
0 0 0 0

)
,

H =

(
∂t 0 0 0
0 ∂t 0 0
0 0 ∂t 0
0 0 0 ∂t

)
, c =

(
λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ

)
,

S =

(
t∂t − λ 0 0 0

0 t∂t + 1− λ 0 0
0 0 t∂t + 1− λ 0
0 0 0 t∂t − λ

)
, S̄ =

( −t∂t + λ 0 0 0
0 −t∂t + λ− 1 0 0
0 0 −t∂t + λ 0
0 0 0 −t∂t + λ− 1

)
,

Z =

( 0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
, Z̄ =

( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

)
.

(2)
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Common subalgebra: the sl(2|1) Borel subalge-
bra:

B = {D =
1

2
(S − S̄), H, W = Z + Z̄,

Q1 = Q+QV − Q̄, Q2 = Q̄− Q̄V −Q}.

Ordinary N = 2 SCA:(Y (t); ξ1(t), ξ2(t); g(t))
Twisted N = 2 SCA: (X(t); Ψ(t), Ψ̄(t); b(t)).

With a convenient normalization we can present
the free Lagrangians as

L =
1

2

(
Ẏ 2 + g2 − ξ1ξ̇1 − ξ2ξ̇2

)
,

L] = b2 − bẊ + Ψ̄Ψ̇.

In order to identify them (L] = L), we have to
provide the invertible “twist transformation” T

linking the two sets of fields. We have

X =
√

2iY,

b =
1√
2

(g + iẎ ),

Ψ =
1√
2

(ξ1 − ξ2),

Ψ̄ =
i√
2

(ξ1 + ξ2).
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BRST cohomologies:

The N = 2 free Lagrangian is invariant under

the 6 nilpotent fermionic generators, provided

that λ = 1
2.

∫
dtL =

∫
dt
(
bµηµνb

ν − bµηµνẊν + Ψ̄µΨ̇ν
)

=

∫
dtQ

(
Ψ̄µηµν(b

ν − Ẋν)
)

= −
∫
dtQ̄

(
Ψµηµν(b

ν − Ẋν)
)

=

∫
dtQQV

(
Ψ̄µηµνΨ

ν
)

= −
∫
dtQ̄Q̄V

(
ΨµηµνΨ̄

ν
)

=

∫
dtQCQ̄

(
Ψ̄µηµνΨ̇

ν
)

= −
∫
dtQ̄CQ

(
Ψµηµν ˙̄Ψ

ν
)

=

∫
dtQCQV

(
1

2
bµηµνb

ν

)
= −

∫
dtQ̄CQ̄V

(
1

2
bµηµνb

ν

)
.
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Interactions:

the supersymmetric interaction is introduced in

term of the “prepotential” W [Xµ].

A manifest Q-invariant term can be added to

the action by setting

Lint = Q

(
Ψ̄µ δW

δXµ

)
= bµ

δW

δXµ
− Ψ̄µ δ2W

δXµδXν
Ψν.

The Q, QV , Q̄ and Q̄V invariances, modulo a

time derivative, of Lint are warranted because

Lint = QQ̄ (W ) = QQV (W ) = −Q̄Q̄V (W ) .
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The QC, Q̄C invariances, modulo a time deriva-

tive, of Lint imply the following condition on the

prepotential:

Ψµ ∂W

∂Xν
−Xν ∂2W

∂Xµ∂Xν
Ψν = 0 ⇒

∂

∂Xρ
(Xµ ∂W

∂Xµ
) = 0.

Therefore, the condition for having a QC-invariance

is

Xµ ∂W

∂Xµ
= C,

whose general solution is

W = C ln R+ f

(
Xµ

R

)
.

C is an arbitrary constant and f is an arbitrary

function of the non-dimensional quantities Xµ

R ,

where R2 ≡ XµηµνXν.
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The target-space reparametrization covariant ac-
tion with worldline N = 2 supersymmetry is ex-
pressed by the Lagrangian

L = −
1

4
gµνẊ

νẊν + Ψ̄µ(gµνΨ̇ν +

Γµ,ρσẊ
ρΨν) +

1

4
RµνρσΨ̄ρΨσΨ̄νΨν.

The t-dependent coordinates Xµ(t) are bosons,
while Ψµ(t) and Ψ̄µ(t) are fermions.

Using an auxiliary field bµ(t), one can express L
as

L = gµνb
νbµ + bµ(−gµνẊν + Γ[µ,ρ]σΨ̄ρΨσ) +

∂ρgµνΨ̄µΨρXν + Ψ̄µ(gµνΨ̇ν + Γµ,ρσẊ
ρΨν).

The general covariance in the curved target-
space with coordinates Xµ is explicit for the ac-
tion . However, such an important invariance is
only enforced after the elimination from the ac-
tion of the auxiliary fields bµ via their algebraic
equations of motion bµ = gµνẊν − Γ[µ,ρ]σΨ̄ρΨσ.∫

dtL = QQV

∫
dt(Ψ̄µgµνΨν)

= −Q̄Q̄V
∫
dt(Ψ̄µgµνΨν).
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Very economical way to implement the N = 2

SCA: invariance under

G]min = {Q,QC, c, Ngh}.

Ngh := S + S̄,

while

D :=
1

2
(S − S̄) = t

d

dt
+ ds

contains the diagonal matrix ds with the engi-

neering or scaling dimension of the component

fields. The ghost number and the scale dimen-

sions are given by

Ngh ds

X 0 −1
2

b 0 1
2

Ψ 1 0
Ψ̄ −1 0
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In particular the sl(2) conformal invariance of

the one-dimensional conformal quantum mechan-

ics is obtained as a bonus:

on an arbitrary s-dimensional field Φs(t) (in our

case s = −1
2 for X, s = 0 for Ψ and Ψ̄, s = 1

2
for b):

L−1 =
d

dt
,

L0 = t
d

dt
+ s,

L1 = −t2
d

dt
− 2st.

The non-vanishing commutators are

[L0, L±1] = ±L±1,

[L1, L−1] = 2L0.
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