International Workshop

Supersymmetries and Quantum Symmetries 2011
Dubna, Russia, July 18 - 23, 2011.

K.V.Stepanyantz
Moscow State University Department of Theoretical Physics

Derivation of the exact NSVZ beta-function in $N=1$ SQED, regularized by higher derivatives, by direct summation of

Feynman diagrams

NSVZ β-function

The β-function in supersymmetric theories is related with the anomalous dimensions of the matter superfields via the relation

$$
\beta(\alpha)=-\frac{\left.\alpha^{2}\left[3 C_{2}-T(R)+C(R)_{i}{ }^{j} \gamma_{j}^{i}(\alpha) / r\right)\right]}{2 \pi\left(1-C_{2} \alpha / 2 \pi\right)}
$$

```
V.Novikov, M.A.Shifman, A.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229, (1983), 381;
Phys.Lett. 166B, (1985), 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277, (1986),
456; M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett. 42, (1985), 224; Phys.Lett.
166B, (1986), }334
```

This NSVZ β-function was obtained from different arguments: instantons, anomalies etc. With the dimensional reduction in the $\overline{M S}$-scheme it agrees with the explicit calculations

```
S.Ferrara, B.Zumino, Nucl.Phys. B79 (1974) 413; D.R.T.Jones, Nucl.Phys. B87 (1975)
127; L.V.Avdeev, O.V.Tarasov, Phys.Lett. 112 B (1982) 356; I.Jack, D.R.T.Jones, C.G.North,
Phys.Lett B386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander, D.R.T.Jones, P.Kant,
L.Mihaila, M.Steinhauser, JHEP 0612 (2006) }024
```

in only the two-loop approximation. In the higher loops it is necessary to perform a special redefinition of the coupling constant.

Higher covariant derivative regularization and factorization of integrands into total derivatives

NSVZ β-function relates the β-function in n-th loop with the β-function and the anomalous dimensions in the previous loops. It is convenient to investigate this relation using the higher covariant derivative regularization.

```
A.A.Slavnov, Nucl.Phys., B31, (1971), 301; Theor.Math.Phys. 13, (1972), 1064.
V.K.Krivoshchekov, Theor.Math.Phys. 36, (1978), 745; P.West, Nucl.Phys. B268, (1986), }113
```

Then the loop integrals are integrals of total derivatives
A.Soloshenko, K.S., hep-th/0304083.
and even integrals of double total derivatives

```
A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704, (2005), }445
```

This allows to calculate one of the loop integrals analytically and reduce a n-loop integral to $(n-1)$-loop integrals.

Let us prove this for $N=1$ SQED exactly in all loops and derive the exact NSVZ β-fucntion by the direct summation of Fenman diagrams.

The $N=1$ SQED in the massless case is described by the action

$$
S=\frac{1}{4 e^{2}} \operatorname{Re} \int d^{4} x d^{2} \theta W_{a} C^{a b} W_{b}+\frac{1}{4} \int d^{4} x d^{4} \theta\left(\phi^{*} e^{2 V} \phi+\widetilde{\phi}^{*} e^{-2 V} \widetilde{\phi}\right)
$$

where ϕ_{i} and $\widetilde{\phi}$ are chiral matter superfields, V is a real gauge superfield, and

$$
W_{a}=\frac{1}{4} \bar{D}^{2} D_{a} V
$$

We add the term with higher derivatives

$$
\begin{aligned}
& S_{r e g}=\frac{1}{4 e^{2}} \operatorname{Re} \int d^{4} x d^{2} \theta W_{a} C^{a b} R\left(\partial^{2} / \Lambda^{2}\right) W_{b} \\
& \\
& \quad+\frac{1}{4} \int d^{4} x d^{4} \theta\left(\phi^{*} e^{2 V} \phi+\widetilde{\phi}^{*} e^{-2 V} \widetilde{\phi}\right)
\end{aligned}
$$

where $R\left(\partial^{2} / \Lambda^{2}\right)$ is a regulator, e.g. $R=1+\partial^{2 n} / \Lambda^{2 n}$.

The higher derivative regularization and quantization

The gauge is fixed by adding:

$$
S_{g f}=-\frac{1}{64 e^{2}} \int d^{4} x d^{4} \theta\left(V R D^{2} \bar{D}^{2} V+V R \bar{D}^{2} D^{2} V\right)
$$

After adding the term with the higher derivatives divergences remain only in the one-loop approximation. In order to remove them we insert in the generating functional the Pauli-Villars determinants.
L.D.Faddeev, A.A.Slavnov, Gauge fields, introduction to quantum theory, Benjamin, Reading, 1990.

$$
\begin{gathered}
Z[J, \Omega]=\int D \mu \prod_{I}\left(\operatorname{det} P V\left(V, M_{I}\right)\right)^{c_{I}} \exp \left\{i S_{r e g}+\text { Sources }\right\} \\
\sum_{I} c_{I}=1 ; \sum_{I} c_{I} M_{I}^{2}=0 ; M_{I}=a_{I} \Lambda .(\Lambda \text { is the only dimensionful parameter. }) \\
\operatorname{det} P V(V, M)=\left(\int D \Phi^{*} D \Phi e^{i S_{P V}}\right)^{-1} \\
S_{P V}=\frac{1}{4} \int d^{4} x d^{4} \theta\left(\Phi^{*} e^{2 V} \Phi+\widetilde{\Phi}^{*} e^{-2 V} \widetilde{\Phi}\right)+\left(\frac{1}{2} \int d^{4} x d^{4} \theta M \Phi \widetilde{\Phi}+. .\right)
\end{gathered}
$$

Calculation of the β-function

The notation is

$$
\begin{aligned}
& \Gamma^{(2)}=\int \frac{d^{4} p}{(2 \pi)^{4}} d^{4} \theta\left(-\frac{1}{16 \pi} \mathbf{V}(-p) \partial^{2} \Pi_{1 / 2} \mathbf{V}(p) d^{-1}(\alpha, \mu / p)+\right. \\
& \left.+\frac{1}{4}\left(\phi^{*}\right)^{i}(-p, \theta) \phi_{j}(p, \theta)(Z G)_{i}{ }^{j}(\alpha, \mu / p)\right) .
\end{aligned}
$$

We calculate

$$
\left.\frac{d}{d \ln \Lambda}\left(d^{-1}\left(\alpha_{0}, \Lambda / p\right)-\alpha_{0}^{-1}\right)\right|_{p=0}=-\frac{d}{d \ln \Lambda} \alpha_{0}^{-1}(\alpha, \mu / \Lambda)=\frac{\beta\left(\alpha_{0}\right)}{\alpha_{0}^{2}}
$$

The main result: (It was obtained as the equality of some well defined integrals due to the factorization of integrands into total derivatives)

$$
\begin{aligned}
& \frac{\beta\left(\alpha_{0}\right)}{\alpha_{0}^{2}}=\frac{1}{\pi}\left(1-\left.\frac{d}{d \ln \Lambda} \ln G\left(\alpha_{0}, \Lambda / q\right)\right|_{q=0}\right)=\frac{1}{\pi}+\frac{1}{\pi} \frac{d}{d \ln \Lambda}(\ln Z G(\alpha, \mu / q) \\
& -\ln Z(\alpha, \Lambda / \mu))\left.\right|_{q=0}=\frac{1}{\pi}\left(1-\gamma\left(\alpha_{0}(\alpha, \Lambda / \mu)\right)\right)
\end{aligned}
$$

(Without any redefinition of the coupling constant.)

Three-loop calculation for SQED

$$
\begin{aligned}
& \frac{\beta\left(\alpha_{0}\right)}{\alpha_{0}^{2}}=2 \pi \frac{d}{d \ln \Lambda}\left\{\sum_{I} c_{I} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\partial}{\partial q^{\mu}} \frac{\partial}{\partial q_{\mu}} \frac{\ln \left(q^{2}+M^{2}\right)}{q^{2}}+4 \pi \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{2}}{k^{2} R_{k}^{2}}\right. \\
& \times \frac{\partial}{\partial q^{\mu}} \frac{\partial}{\partial q_{\mu}}\left(\frac{1}{q^{2}(k+q)^{2}}-\sum_{I} c_{I} \frac{1}{\left(q^{2}+M_{I}^{2}\right)\left((k+q)^{2}+M_{I}^{2}\right)}\right)\left[R_{k}\left(1+\frac{e^{2}}{4 \pi^{2}} \ln \frac{\Lambda}{\mu}\right)\right. \\
& \left.-2 e^{2}\left(\int \frac{d^{4} t}{(2 \pi)^{4}} \frac{1}{t^{2}(k+t)^{2}}-\sum_{J} c_{J} \int \frac{d^{4} t}{(2 \pi)^{4}} \frac{1}{\left(t^{2}+M_{J}^{2}\right)\left((k+t)^{2}+M_{J}^{2}\right)}\right)\right] \\
& +4 \pi \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{d^{4} k}{(2 \pi)^{4}} \frac{d^{4} l}{(2 \pi)^{4}} \frac{e^{4}}{k^{2} R_{k} l^{2} R_{l}} \frac{\partial}{\partial q^{\mu}} \frac{\partial}{\partial q_{\mu}}\left\{\left(-\frac{2 k^{2}}{q^{2}(q+k)^{2}(q+l)^{2}(q+k+l)^{2}}\right.\right. \\
& \left.+\frac{2}{q^{2}(q+k)^{2}(q+l)^{2}}\right)-\sum_{I} c_{I}\left(-\frac{2\left(k^{2}+M_{I}^{2}\right)}{\left(q^{2}+M_{I}^{2}\right)\left((q+k)^{2}+M_{I}^{2}\right)\left((q+l)^{2}+M_{I}^{2}\right)}\right. \\
& \times \frac{1}{\left((q+k+l)^{2}+M_{I}^{2}\right)}+\frac{1}{\left(q^{2}+M_{I}^{2}\right)\left((q+k)^{2}+M_{I}^{2}\right)\left((q+l)^{2}+M_{I}^{2}\right)}-\frac{4}{\left(M_{I}^{2}\right.} \\
& \left.\left.\times \frac{1}{\left((q+k)^{2}+M_{I}^{2}\right)\left((q+l)^{2}+M_{I}^{2}\right)}\right)\right\}
\end{aligned}
$$

Some useful tricks

Two main purposes:

1. How the factorization of the integrands into total derivatives can be proven exactly in all loops?
2. How one can obtain NSVZ β-function exactly to all loops? In order to simplify the calculations (in the limit $p \rightarrow 0$) and find the β-function it is possible to substitute

$$
\mathbf{V} \rightarrow \bar{\theta}^{a} \bar{\theta}_{a} \theta^{b} \theta_{b}
$$

An integral of a total derivative in the coordinate representation is given by

$$
\operatorname{Tr}\left(\left[x^{\mu}, \text { Something }\right]\right)=0
$$

We will try to reduce the sum of diagrams to such commutators.

Summation of subdiagrams

In order to extract integrals of total derivatives we consider the following sum of subdiagrams:

$$
\begin{aligned}
& \bullet \sum_{\cdot} \cdot+{ }_{\cdot l}=-\theta^{a} \theta_{a} \bar{\theta}^{b} \frac{\bar{D}_{b} D^{2}}{4 \partial^{2}}+\theta^{a} \theta_{a} \frac{D^{2}}{4 \partial^{2}} \\
& +i \bar{\theta}^{b}\left(\gamma^{\mu}\right)_{b}{ }^{a} \theta_{a} \frac{\bar{D}^{2} D^{2} \partial_{\mu}}{\partial^{4}}-i \theta^{a}\left(\gamma^{\mu}\right)_{a}{ }^{b} \frac{\bar{D}_{b} D^{2} \partial_{\mu}}{4 \partial^{4}}+\frac{\bar{D}^{2} D^{2}}{16 \partial^{4}}
\end{aligned}
$$

Only the terms written by the blue color give nontrivial contributions to the two-point function of the gauge superfield.

Really, finally it is necessary to obtain

$$
\int d^{4} \theta \theta^{a} \theta_{a} \bar{\theta}^{b} \bar{\theta}_{b}
$$

and calculating the θ-part of the graph can not produce powers of θ or $\bar{\theta}$.

Effective Feynman rules

Let us formally perform Gaussian integration over the matter superfields:

$$
\begin{aligned}
& Z=\int D V \prod_{I}\left(\operatorname{det} P V\left(V, M_{I}\right)\right)^{c_{I}} \\
& \times \exp \left\{i \int d^{8} x\left(\frac{1}{4 e^{2}} V \partial^{2} R\left(\partial^{2} / \Lambda^{2}\right) V-j \frac{D^{2}}{4 \partial^{2}} * \frac{\bar{D}^{2}}{4 \partial^{2}} j^{*}-\widetilde{j} \frac{D^{2}}{4 \partial^{2}} \widetilde{*} \frac{\bar{D}^{2}}{4 \partial^{2}} \widetilde{j}^{*}\right)\right\}
\end{aligned}
$$

where

$$
* \equiv \frac{1}{1-\left(e^{2 V}-1\right) \bar{D}^{2} D^{2} / 16 \partial^{2}}, \quad \tilde{*}=\frac{1}{1-\left(e^{-2 V}-1\right) \bar{D}^{2} D^{2} / 16 \partial^{2}}
$$

encode chains of propagators and vertexes.

$$
\begin{aligned}
& \Delta \Gamma_{\mathbf{V}}^{(2)}=\left\langle-2 i\left(\operatorname{Tr}\left(\mathbf{V} J_{0} *\right)\right)^{2}-2 i \operatorname{Tr}\left(\mathbf{V} J_{0} * \mathbf{V} J_{0} *\right)-2 i \operatorname{Tr}\left(\mathbf{V}^{2} J_{0} *\right)\right\rangle \\
& + \text { terms with } \widetilde{*}+(P V)
\end{aligned}
$$

where $J_{0}=e^{2 V} \frac{\bar{D}^{2} D^{2}}{16 \partial^{2}}$ is the effective vertex.

External lines are attached to different matter loops

A sum of diagrams in that the external lines are attached to different matter loops is given by

$$
\begin{aligned}
& -2 i \frac{d}{d \ln \Lambda}\left\langle\left(\operatorname{Tr}\left(-2 \theta^{c} \theta_{c} \bar{\theta}^{d}\left[\bar{\theta}_{d}, \ln (*)-\ln (\widetilde{*})\right]+i \bar{\theta}^{c}\left(\gamma^{\nu}\right)_{c}^{d} \theta_{d}\left[y_{\nu}^{*}, \ln (*)-\ln (\widetilde{*})\right]\right)\right.\right. \\
& \left.+(P V))^{2}\right\rangle
\end{aligned}
$$

where $y_{\mu}^{*}=x_{\mu}-i \bar{\theta}^{a}\left(\gamma_{\mu}\right)_{a}{ }^{b} \theta_{b}$.
It is easy to see that this expression is a double total derivative and vanishes as a trace of a commutator.

External lines are attached to a single matter loop

If the external lines are attached to a single matter loop, it is also possible to extract double total derivatives using a special algebraic identity.

External lines are attached to a single matter loop

If A, B, and C are operators constructed from the supersymmetric covariant derivatives and usual derivatives which do not explicitly depend on θ and $\bar{\theta}$, then

$$
\begin{aligned}
& \operatorname{Tr}\left(\theta ^ { a } \theta _ { a } \overline { \theta } ^ { b } \overline { \theta } _ { b } \left(\left(\gamma_{\mu}\right)^{a b}\left[y_{\mu}^{*}, A\right]\left[\bar{\theta}_{b}, B\right\}\left[\theta_{a}, C\right\}+\left(\gamma_{\mu}\right)^{a b}(-1)^{P_{A}}\left[\theta_{a}, B\right\}\left[\bar{\theta}_{b}, C\right\}\right.\right. \\
& \left.\left.\times\left[y_{\mu}^{*}, A\right]-4 i\left[\theta^{a},\left[\theta_{a}, A\right\}\right\}\left[\bar{\theta}^{b}, B\right\}\left[\bar{\theta}_{b}, C\right\}\right)\right)+ \text { cyclic perm. of } A, B, C \\
& =\frac{1}{3} \operatorname{Tr}\left(\theta^{a} \theta_{a} \bar{\theta}^{b} \bar{\theta}_{b}\left(\gamma_{\mu}\right)^{a b}\left[y_{\mu}^{*}, A\left[\bar{\theta}_{b}, B\right\}\left[\theta_{a}, C\right\}+(-1)^{P_{A}}\left[\theta_{a}, B\right\}\left[\bar{\theta}_{b}, C\right\} A\right]\right) \\
& + \text { cyclic perm. of } A, B, C
\end{aligned}
$$

The sum of diagrams in that the external lines are attached to a single matter loop is given by
$i \frac{d}{d \ln \Lambda} \operatorname{Tr}\left\langle\theta^{4}\left[y_{\mu}^{*},\left[\left(y^{\mu}\right)^{*}, \ln (*)+\ln (\widetilde{*})\right]\right]\right\rangle+(P V)-$ terms with a δ-function,
This expression is evidently an integral of a double total derivative.

Obtaining the exact NSVZ β-function

Thus, the sum of diagrams in that the external lines are attached to a single matter loop is given by the integral of double total derivatives, but does not vanish due to δ-functions. These δ-functions come from the identity

$$
\left[x^{\mu}, \frac{\partial_{\mu}}{\partial^{4}}\right]=\left[-i \frac{\partial}{\partial p_{\mu}},-\frac{i p^{\mu}}{p^{4}}\right]=-2 \pi^{2} \delta^{4}\left(p_{E}\right)=-2 \pi^{2} i \delta^{4}(p)
$$

Qualitatively these δ-functions correspond to cutting the matter loop

```
A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704, (2005), }445
```

It is possible to calculate all contributions of δ-functions

```
K.S., ArXiv:1102.3772 [hep-th].
```

and compare them with the two-point Green function of the matter superfield. The result is the exact NSVZ β-function

$$
\beta(\alpha)=\frac{\alpha^{2}}{\pi}(1-\gamma(\alpha))
$$

$$
G^{-1}=(1+\Delta G)^{-1}=\sum_{p=0}^{\infty}(-1)^{p}(\Delta G)^{p} \frac{\bar{D}^{2} D^{2} \partial^{\mu}}{8 \partial^{4}}
$$

Non-Abelian $N=1$ supersymmetric theories

$\mathrm{N}=1$ supersymmetric Yang-Mills theory with matter in the massless case is described by the action

$$
\begin{aligned}
& S=\frac{1}{2 e^{2}} \operatorname{Re} \operatorname{tr} \int d^{4} x d^{2} \theta W_{a} C^{a b} W_{b}+\frac{1}{4} \int d^{4} x d^{4} \theta\left(\phi^{*}\right)^{i}\left(e^{2 V}\right)_{i}^{j} \phi_{j}+ \\
& +\left(\frac{1}{6} \int d^{4} x d^{2} \theta \lambda^{i j k} \phi_{i} \phi_{j} \phi_{k}+\text { h.c. }\right)
\end{aligned}
$$

where ϕ_{i} are chiral scalar matter superfields, V is a real scalar gauge superfield, and the supersymmetric gauge field stress tensor is given by

$$
W_{a}=\frac{1}{8} \bar{D}^{2}\left[e^{-2 V} D_{a} e^{2 V}\right]
$$

The action is invariant under the gauge transformations

$$
e^{2 V} \rightarrow e^{i \Lambda^{+}} e^{2 V} e^{-i \Lambda} ; \quad \phi \rightarrow e^{i \Lambda} \phi
$$

$$
\text { if }\left(T^{A}\right)_{m}{ }^{i} \lambda^{m j k}+\left(T^{A}\right)_{m}{ }^{j} \lambda^{i m k}+\left(T^{A}\right)_{m}{ }^{k} \lambda^{i j m}=0
$$

Higher derivative regularization

For the calculation we use the background field method.
The gauge is fixed by adding the following term:

$$
S_{g f}=-\frac{1}{32 e^{2}} \operatorname{tr} \int d^{4} x d^{4} \theta\left(V \boldsymbol{D}^{2} \overline{\boldsymbol{D}}^{2} V+V \overline{\boldsymbol{D}}^{2} \boldsymbol{D}^{2} V\right)
$$

To regularize the theory we add the following term with the higher covariant derivatives:

$$
S_{\Lambda}=\frac{1}{2 e^{2}} \operatorname{tr} \operatorname{Re} \int d^{4} x d^{4} \theta V \frac{\left(\boldsymbol{D}_{\mu}^{2}\right)^{n+1}}{\Lambda^{2 n}} V+\frac{1}{4} \int d^{4} x d^{4} \theta\left(\phi^{*}\right)^{i}\left[e^{\boldsymbol{\Omega}^{+}} \frac{\left(\boldsymbol{D}_{\mu}^{2}\right)^{m}}{\Lambda^{2 m}} e^{\boldsymbol{\Omega}}\right]_{i}^{j} \phi_{j} .
$$

where $\boldsymbol{D}, \overline{\boldsymbol{D}}$, and \boldsymbol{D}_{μ} are background covariant derivatives.
In order to regularize the remaining one-loop divergences, it is necessary to introduce Pauli-Villars determinants into the generating functional. As earlier, we assume that $M_{I}=a_{I} \Lambda$, where a_{I} are constants. (Therefore, there is the only dimensionful parameter Λ.)

Two-loop calculation gives the following result:

$$
\begin{aligned}
& \beta(\alpha)=-\frac{3 \alpha^{2}}{2 \pi} C_{2}+\alpha^{2} T(R) I_{0}+\alpha^{3} C_{2}^{2} I_{1}+\frac{\alpha^{3}}{r} C(R)_{i}{ }^{j} C(R)_{j}{ }^{i} I_{2}+ \\
& +\alpha^{3} T(R) C_{2} I_{3}+\alpha^{2} C(R)_{i}{ }^{j} \frac{\lambda_{j k l}^{*} \lambda^{i k l}}{4 \pi r} I_{4}+\ldots
\end{aligned}
$$

where we do not write the integral for the one-loop ghost contribution and the integrals $I_{0}-I_{4}$ are given below, and the following notation is used:

$$
\begin{array}{ll}
\operatorname{tr}\left(T^{A} T^{B}\right) \equiv T(R) \delta^{A B} ; & \left(T^{A}\right)_{i}^{k}\left(T^{A}\right)_{k}^{j} \equiv C(R)_{i}^{j} \\
f^{A C D} f^{B C D} \equiv C_{2} \delta^{A B} ; & r \equiv \delta_{A A} .
\end{array}
$$

Taking into account Pauli-Villars contributions,

$$
I_{i}=I_{i}(0)-\sum_{I} I_{i}\left(M_{I}\right), \quad i=0,2,3
$$

where I_{i} are given by

$$
\begin{aligned}
& I_{0}(M)=-\pi \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{d}{d \ln \Lambda} \frac{\partial}{\partial q^{\mu}} \frac{\partial}{\partial q_{\mu}}\left\{\frac{1}{q^{2}} \ln \left(q^{2}\left(1+q^{2 m} / \Lambda^{2 m}\right)^{2}+M^{2}\right)\right\} ; \\
& I_{1}=-12 \pi^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{d^{4} k}{(2 \pi)^{4}} \frac{d}{d \ln \Lambda} \frac{\partial}{\partial k^{\mu}} \frac{\partial}{\partial k_{\mu}}\left\{\frac{1}{k^{2}\left(1+k^{2 n} / \Lambda^{2 n}\right) q^{2}\left(1+q^{2 n} / \Lambda^{2 n}\right)}\right. \\
& \left.\times \frac{1}{(q+k)^{2}\left(1+(q+k)^{2 n} / \Lambda^{2 n}\right)}\right\} ; \\
& I_{2}(M)=8 \pi^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{d^{4} k}{(2 \pi)^{4}} \frac{d}{d \ln \Lambda} \frac{\partial}{\partial q^{\mu}} \frac{\partial}{\partial q_{\mu}}\left\{\frac{1}{k^{2}\left(1+k^{2 n} / \Lambda^{2 n}\right)}\right. \\
& \left.\times \frac{\left(1+q^{2 m} / \Lambda^{2 m}\right)\left(1+(q+k)^{2 m} / \Lambda^{2 m}\right)}{\left(q^{2}\left(1+q^{2 m} / \Lambda^{2 m}\right)^{2}+M^{2}\right)\left((q+k)^{2}\left(1+(q+k)^{2 m} / \Lambda^{2 m}\right)^{2}+M^{2}\right)}\right\} ; \\
& I_{3}(M)=8 \pi^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{d^{4} k}{(2 \pi)^{4}} \frac{d}{d \ln \Lambda} \frac{\partial}{\partial q^{\mu}} \frac{\partial}{\partial k_{\mu}}\left\{\frac{1}{(k+q)^{2}\left(1+(q+k)^{2 n} / \Lambda^{2 n}\right)}\right. \\
& \left.\times \frac{\left(1+k^{2 m} / \Lambda^{2 m}\right)\left(1+q^{2 m} / \Lambda^{2 m}\right)}{\left(k^{2}\left(1+k^{2 m} / \Lambda^{2 m}\right)^{2}+M^{2}\right)\left(q^{2}\left(1+q^{2 m} / \Lambda^{2 m}\right)^{2}+M^{2}\right)}\right\} ; \\
& I_{4}=-8 \pi^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{d^{4} k}{(2 \pi)^{4}} \frac{d}{d \ln \Lambda} \frac{\partial}{\partial q^{\mu}} \frac{\partial}{\partial q_{\mu}}\left\{\frac{1}{k^{2}\left(1+k^{2 m} / \Lambda^{2 m}\right) q^{2}\left(1+q^{2 m} / \Lambda^{2 m}\right)}\right. \\
& \left.\times \frac{1}{(q+k)^{2}\left(1+(q+k)^{2 m} / \Lambda^{2 m}\right)}\right\} .
\end{aligned}
$$

The integrals can be calculated using the identity

$$
\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\partial}{\partial q^{\mu}} \frac{\partial}{\partial q_{\mu}}\left(\frac{f\left(q^{2}\right)}{q^{2}}\right)=\lim _{\varepsilon \rightarrow 0} \int_{S_{\varepsilon}} \frac{d S_{\mu}}{(2 \pi)^{4}} \frac{(-2) q^{\mu} f\left(q^{2}\right)}{q^{4}}=\frac{1}{4 \pi^{2}} f(0)
$$

where f is a nonsingular function, which rapidly decreases at the infinity. It is equivalent to the identity

$$
\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q^{2}} \frac{d}{d q^{2}} f\left(q^{2}\right)=\frac{1}{16 \pi^{2}}(f(\infty)-f(0))=-\frac{1}{16 \pi^{2}} f(0)
$$

(This is a total derivative in the four-dimensional spherical coordinates.)
The result for the two-loop β-function is given by

$$
\begin{aligned}
& \beta(\alpha)=-\frac{\alpha^{2}}{2 \pi}\left(3 C_{2}-T(R)\right)+\frac{\alpha^{3}}{(2 \pi)^{2}}\left(-3 C_{2}^{2}+T(R) C_{2}+\right. \\
& \left.+\frac{2}{r} C(R)_{i}{ }^{j} C(R)_{j}{ }^{i}\right)-\frac{\alpha^{2} C(R)_{i}{ }^{j} \lambda_{j k l}^{*} \lambda^{i k l}}{8 \pi^{3} r}+\ldots
\end{aligned}
$$

Two-loop β-function for $N=1$ supersymmetric Yang-Mills theory

Comparing the result with the one-loop anomalous dimension

$$
\gamma_{i}^{j}(\alpha)=-\frac{\alpha C(R)_{i}^{j}}{\pi}+\frac{\lambda_{i k l}^{*} \lambda^{j k l}}{4 \pi^{2}}+\ldots,
$$

gives the exact NSVZ β-function in the considered approximation.

$$
\beta(\alpha)=-\frac{\left.\alpha^{2}\left[3 C_{2}-T(R)+C(R)_{i}{ }^{j} \gamma_{j}{ }^{i}(\alpha) / r\right)\right]}{2 \pi\left(1-C_{2} \alpha / 2 \pi\right)}
$$

```
V.A.Novikov, M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229, (1983), 381;
Phys.Lett. 166B, (1985), 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277, (1986),
456; M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett. 42, (1985), 224; Phys.Lett.
166B, (1986), 334.
```

(The result also agrees with the DRED calculations.)

$$
\text { D.R.T.Jones, Nucl.Phys. B87 (1975) } 127 .
$$

Thus, factorization of integrands into double total derivatives seems to be a general feature of supersymmetric theories.

Conclusion and open questions
\checkmark It is possible to prove that all integrals defining the β-function in $N=1$ SQED, regularized by higher derivatives, are integrals of double total derivatives. This allows to calculate one of the loop integrals analytically.
\checkmark The factorization of integrands into total derivatives allows to obtain the exact NSVZ β-function without redefinition of the coupling constant.
\checkmark Possibly, the factorization of integrands into double total derivatives is a general feature of supersymmetric theories. At least, this takes place for a general renormalizable $N=1$ supersymmetric theory at the two-loop level.

Thank you for the attention!

