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NSVZ β-function

The β-function in supersymmetric theories is related with the anomalous

dimensions of the matter superfields via the relation

β(α) = −
α2

[
3C2 − T (R) + C(R)i

jγj
i(α)/r

)]
2π(1− C2α/2π)

.

V.Novikov, M.A.Shifman, A.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229, (1983), 381;

Phys.Lett. 166B, (1985), 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277, (1986),

456; M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett. 42, (1985), 224; Phys.Lett.

166B, (1986), 334.

This NSVZ β-function was obtained from different arguments: instantons,

anomalies etc. With the dimensional reduction in the MS-scheme it agrees

with the explicit calculations

S.Ferrara, B.Zumino, Nucl.Phys. B79 (1974) 413; D.R.T.Jones, Nucl.Phys. B87 (1975)

127; L.V.Avdeev, O.V.Tarasov, Phys.Lett. 112 B (1982) 356; I.Jack, D.R.T.Jones, C.G.North,

Phys.Lett B386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander, D.R.T.Jones, P.Kant,

L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.

in only the two-loop approximation. In the higher loops it is necessary to

perform a special redefinition of the coupling constant.
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Higher covariant derivative regularization
and factorization of integrands into total derivatives

NSVZ β-function relates the β-function in n-th loop with the β-function and

the anomalous dimensions in the previous loops. It is convenient to investigate

this relation using the higher covariant derivative regularization.

A.A.Slavnov, Nucl.Phys., B31, (1971), 301; Theor.Math.Phys. 13, (1972), 1064.

V.K.Krivoshchekov, Theor.Math.Phys. 36, (1978), 745; P.West, Nucl.Phys. B268, (1986), 113.

Then the loop integrals are integrals of total derivatives

A.Soloshenko, K.S., hep-th/0304083.

and even integrals of double total derivatives

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704, (2005), 445.

This allows to calculate one of the loop integrals analytically and reduce a

n-loop integral to (n− 1)-loop integrals.

Let us prove this for N = 1 SQED exactly in all loops and derive the exact

NSVZ β-fucntion by the direct summation of Fenman diagrams.
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N = 1 supersymmetric electrodynamics (SQED),
regularized by higher derivatives

The N=1 SQED in the massless case is described by the action

S =
1

4e2
Re

∫
d4x d2θ WaCabWb +

1
4

∫
d4x d4θ

(
φ∗e2V φ + φ̃∗e−2V φ̃

)
,

where φi and φ̃ are chiral matter superfields, V is a real gauge superfield, and

Wa =
1
4
D̄2DaV.

We add the term with higher derivatives

Sreg =
1

4e2
Re

∫
d4x d2θ WaCabR(∂2/Λ2)Wb

+
1
4

∫
d4x d4θ

(
φ∗e2V φ + φ̃∗e−2V φ̃

)
where R(∂2/Λ2) is a regulator, e.g. R = 1 + ∂2n/Λ2n.
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The higher derivative regularization and quantization

The gauge is fixed by adding:

Sgf = − 1
64e2

∫
d4x d4θ

(
V RD2D̄2V + V RD̄2D2V

)
.

After adding the term with the higher derivatives divergences remain only in

the one-loop approximation. In order to remove them we insert in the

generating functional the Pauli–Villars determinants.

L.D.Faddeev, A.A.Slavnov, Gauge fields, introduction to quantum theory, Benjamin, Reading, 1990.

Z[J,Ω] =
∫

Dµ
∏
I

(
detPV (V,MI)

)cI

exp
{

iSreg + Sources
}

,∑
I

cI = 1;
∑
I

cIM
2
I = 0; MI = aIΛ. (Λ is the only dimensionful parameter.)

det PV (V,M) =
( ∫

DΦ∗DΦeiSP V

)−1

,

SPV =
1
4

∫
d4x d4θ

(
Φ∗e2V Φ + Φ̃∗e−2V Φ̃

)
+

(1
2

∫
d4x d4θ MΦΦ̃ + ..

)
.
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Calculation of the β-function

The notation is

Γ(2) =
∫

d4p

(2π)4
d4θ

(
− 1

16π
V(−p) ∂2Π1/2V(p) d−1(α, µ/p) +

+
1
4
(φ∗)i(−p, θ) φj(p, θ) (ZG)i

j(α, µ/p)
)
.

We calculate

d

d lnΛ

(
d−1(α0,Λ/p)− α−1

0

)∣∣∣
p=0

= − d

d lnΛ
α−1

0 (α, µ/Λ) =
β(α0)

α2
0

The main result: (It was obtained as the equality of some well defined

integrals due to the factorization of integrands into total derivatives)

β(α0)
α2

0

=
1
π

(
1− d

d lnΛ
lnG(α0,Λ/q)

∣∣∣
q=0

)
=

1
π

+
1
π

d

d lnΛ

(
lnZG(α, µ/q)

− lnZ(α, Λ/µ)
)∣∣∣

q=0
=

1
π

(
1− γ

(
α0(α, Λ/µ)

))
.

(Without any redefinition of the coupling constant.)
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Three-loop calculation for SQED

β(α0)

α2
0

= 2π
d

d ln Λ

{ ∑
I

cI

∫
d4q

(2π)4
∂

∂qµ

∂

∂qµ

ln(q2 + M2)

q2
+ 4π

∫
d4q

(2π)4
d4k

(2π)4
e2

k2R2
k

× ∂

∂qµ

∂

∂qµ

(
1

q2(k + q)2
−

∑
I

cI
1

(q2 + M2
I )((k + q)2 + M2

I )

)[
Rk

(
1 +

e2

4π2
ln

Λ

µ

)

−2e2

 ∫
d4t

(2π)4
1

t2(k + t)2
−

∑
J

cJ

∫
d4t

(2π)4
1

(t2 + M2
J)((k + t)2 + M2

J)

)]

+4π

∫
d4q

(2π)4
d4k

(2π)4
d4l

(2π)4
e4

k2Rkl2Rl

∂

∂qµ

∂

∂qµ

{(
− 2k2

q2(q + k)2(q + l)2(q + k + l)2

+
2

q2(q + k)2(q + l)2

)
−

∑
I

cI

(
− 2(k2 + M2

I )

(q2 + M2
I )((q + k)2 + M2

I )((q + l)2 + M2
I )

× 1

((q + k + l)2 + M2
I )

+
2

(q2 + M2
I )((q + k)2 + M2

I )((q + l)2 + M2
I )
− 1

(q2 + M2
I )2

× 4M2
I

((q + k)2 + M2
I )((q + l)2 + M2

I )

)}
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Some useful tricks

Two main purposes:

1. How the factorization of the integrands into total derivatives can be proven

exactly in all loops?

2. How one can obtain NSVZ β-function exactly to all loops?

In order to simplify the calculations (in the limit p → 0) and find the

β-function it is possible to substitute

V → θ̄aθ̄aθbθb

An integral of a total derivative in the coordinate representation is given by

Tr
(
[xµ,Something]

)
= 0.

We will try to reduce the sum of diagrams to such commutators.
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Summation of subdiagrams

In order to extract integrals of total derivatives we consider the following sum

of subdiagrams:

+ = −θaθaθ̄b D̄bD
2

4∂2
+ θaθa

D2

4∂2

+iθ̄b(γµ)b
aθa

D̄2D2∂µ

∂4
− iθa(γµ)a

b D̄bD
2∂µ

4∂4
+

D̄2D2

16∂4

Only the terms written by the blue color give nontrivial contributions to the

two-point function of the gauge superfield.

Really, finally it is necessary to obtain∫
d4θ θaθaθ̄bθ̄b,

and calculating the θ-part of the graph can not produce powers of θ or θ̄.
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Effective Feynman rules

Let us formally perform Gaussian integration over the matter superfields:

Z =
∫

DV
∏
I

(
det PV (V,MI)

)cI

× exp

{
i

∫
d8x

( 1
4e2

V ∂2R(∂2/Λ2)V − j
D2

4∂2
∗ D̄2

4∂2
j∗ − j̃

D2

4∂2
∗̃ D̄2

4∂2
j̃∗

)}
,

where

∗ ≡ 1
1− (e2V − 1)D̄2D2/16∂2

, ∗̃ =
1

1− (e−2V − 1)D̄2D2/16∂2

encode chains of propagators and vertexes.

∆Γ(2)
V =

〈
− 2i

(
Tr(VJ0∗)

)2

− 2iTr(VJ0 ∗VJ0∗)− 2iTr(V2J0∗)
〉

+terms with ∗̃+ (PV ).

where J0 = e2V D̄2D2

16∂2
is the effective vertex.
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External lines are attached to different matter loops

A sum of diagrams in that the external lines are attached to different matter

loops is given by

−2i
d

d lnΛ

〈(
Tr

(
− 2θcθcθ̄

d[θ̄d, ln(∗)− ln(∗̃)] + iθ̄c(γν)c
dθd[y∗ν , ln(∗)− ln(∗̃)]

)
+(PV )

)2〉
,

where y∗µ = xµ − iθ̄a(γµ)a
bθb.

It is easy to see that this expression is a double total derivative and vanishes as

a trace of a commutator.

External lines are attached to a single matter loop

If the external lines are attached to a single matter loop, it is also possible to

extract double total derivatives using a special algebraic identity.
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External lines are attached to a single matter loop

If A, B, and C are operators constructed from the supersymmetric covariant

derivatives and usual derivatives which do not explicitly depend on θ and θ̄,

then

Tr
(
θaθaθ̄bθ̄b

(
(γµ)ab[y∗µ, A][θ̄b, B}[θa, C}+ (γµ)ab(−1)PA [θa, B}[θ̄b, C}

×[y∗µ, A]− 4i[θa, [θa, A}}[θ̄b, B}[θ̄b, C}
))

+ cyclic perm. of A, B, C

=
1
3
Tr

(
θaθaθ̄bθ̄b(γµ)ab

[
y∗µ,A[θ̄b, B}[θa, C}+ (−1)PA [θa, B}[θ̄b, C}A

])
+cyclic perm. of A, B, C

The sum of diagrams in that the external lines are attached to a single matter

loop is given by

i
d

d lnΛ
Tr

〈
θ4

[
y∗µ,

[
(yµ)∗, ln(∗) + ln(∗̃)

]]〉
+ (PV )− terms with a δ-function,

This expression is evidently an integral of a double total derivative.
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Obtaining the exact NSVZ β-function

Thus, the sum of diagrams in that the external lines are attached to a single

matter loop is given by the integral of double total derivatives, but does not

vanish due to δ-functions. These δ-functions come from the identity

[xµ,
∂µ

∂4
] = [−i

∂

∂pµ
,− ipµ

p4
] = −2π2δ4(pE) = −2π2iδ4(p).

Qualitatively these δ-functions correspond to cutting the matter loop

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704, (2005), 445.

It is possible to calculate all contributions of δ-functions

K.S., ArXiv:1102.3772 [hep-th].

and compare them with the two-point Green function of the matter superfield.

The result is the exact NSVZ β-function

β(α) =
α2

π

(
1− γ(α)

)
.
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Obtaining the exact NSVZ β-function

+

D̄2D2∂µ

8∂4

D̄2Da

8∂2

D̄bD
2

8∂2

(γµ)ab

y∗µ y∗µ

G−1 = (1 + ∆G)−1 =
∞∑

p=0

(−1)p(∆G)p −
∞∑

p=1

(−1)p(p− 1)
p

(∆G)p

1 +
∞∑

p=1

(−1)p

p
(∆G)p = 1− lnG

?

A
A
AU

@
@

@R

�
�

�	

(for p = 6)
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Non-Abelian N = 1 supersymmetric theories

N=1 supersymmetric Yang-Mills theory with matter in the massless case is

described by the action

S =
1

2e2
Re tr

∫
d4x d2θ WaCabWb +

1
4

∫
d4x d4θ (φ∗)i(e2V )i

jφj +

+
(1

6

∫
d4x d2θ λijkφiφjφk + h.c.

)
,

where φi are chiral scalar matter superfields, V is a real scalar gauge

superfield, and the supersymmetric gauge field stress tensor is given by

Wa =
1
8
D̄2

[
e−2V Dae2V

]
.

The action is invariant under the gauge transformations

e2V → eiΛ+
e2V e−iΛ; φ → eiΛφ

if (TA)m
iλmjk + (TA)m

jλimk + (TA)m
kλijm = 0.
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Higher derivative regularization

For the calculation we use the background field method.

The gauge is fixed by adding the following term:

Sgf = − 1
32e2

tr

∫
d4x d4θ

(
V D2D̄

2
V + V D̄

2
D2V

)
.

To regularize the theory we add the following term with the higher covariant

derivatives:

SΛ =
1

2e2
tr Re

∫
d4x d4θ V

(D2
µ)n+1

Λ2n
V +

1
4

∫
d4x d4θ (φ∗)i

[
eΩ+ (D2

µ)m

Λ2m
eΩ

]
i
jφj .

where D, D̄, and Dµ are background covariant derivatives.

In order to regularize the remaining one-loop divergences, it is necessary to

introduce Pauli-Villars determinants into the generating functional. As earlier,

we assume that MI = aIΛ, where aI are constants. (Therefore, there is the

only dimensionful parameter Λ.)
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Two-loop β-function for N = 1 supersymmetric Yang-Mills
theory

Two-loop calculation gives the following result:

β(α) = −3α2

2π
C2 + α2T (R)I0 + α3C2

2I1 +
α3

r
C(R)i

jC(R)j
iI2 +

+α3T (R)C2I3 + α2C(R)i
j
λ∗jklλ

ikl

4πr
I4 + . . . ,

where we do not write the integral for the one-loop ghost contribution and the

integrals I0–I4 are given below, and the following notation is used:

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA.

Taking into account Pauli–Villars contributions,

Ii = Ii(0)−
∑

I

Ii(MI), i = 0, 2, 3

where Ii are given by
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I0(M) = −π

∫
d4q

(2π)4
d

d lnΛ

∂

∂qµ

∂

∂qµ

{
1

q2
ln

(
q2(1 + q2m/Λ2m)2 + M2

)}
;

I1 = −12π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

∂

∂kµ

∂

∂kµ

{
1

k2(1 + k2n/Λ2n)q2(1 + q2n/Λ2n)

× 1

(q + k)2(1 + (q + k)2n/Λ2n)

}
;

I2(M) = 8π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

∂

∂qµ

∂

∂qµ

{
1

k2(1 + k2n/Λ2n)

× (1 + q2m/Λ2m)(1 + (q + k)2m/Λ2m)

(q2(1 + q2m/Λ2m)2 + M2)((q + k)2(1 + (q + k)2m/Λ2m)2 + M2)

}
;

I3(M) = 8π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

∂

∂qµ

∂

∂kµ

{
1

(k + q)2(1 + (q + k)2n/Λ2n)

× (1 + k2m/Λ2m)(1 + q2m/Λ2m)

(k2(1 + k2m/Λ2m)2 + M2)(q2(1 + q2m/Λ2m)2 + M2)

}
;

I4 = −8π2

∫
d4q

(2π)4
d4k

(2π)4
d

d lnΛ

∂

∂qµ

∂

∂qµ

{
1

k2(1 + k2m/Λ2m)q2(1 + q2m/Λ2m)

× 1

(q + k)2(1 + (q + k)2m/Λ2m)

}
.
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Two-loop β-function for N = 1 supersymmetric Yang-Mills
theory

The integrals can be calculated using the identity∫
d4q

(2π)4
∂

∂qµ

∂

∂qµ

(f(q2)
q2

)
= lim

ε→0

∫
Sε

dSµ

(2π)4
(−2)qµf(q2)

q4
=

1
4π2

f(0)

where f is a nonsingular function, which rapidly decreases at the infinity. It is

equivalent to the identity∫
d4q

(2π)4
1
q2

d

dq2
f(q2) =

1
16π2

(
f(∞)− f(0)

)
= − 1

16π2
f(0).

(This is a total derivative in the four-dimensional spherical coordinates.)

The result for the two-loop β-function is given by

β(α) = −α2

2π

(
3C2 − T (R)

)
+

α3

(2π)2
(
− 3C2

2 + T (R)C2 +

+
2
r
C(R)i

jC(R)j
i
)
−

α2C(R)i
jλ∗jklλ

ikl

8π3r
+ . . . .
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Two-loop β-function for N = 1 supersymmetric Yang-Mills
theory

Comparing the result with the one-loop anomalous dimension

γi
j(α) = −αC(R)i

j

π
+

λ∗iklλ
jkl

4π2
+ . . . ,

gives the exact NSVZ β-function in the considered approximation.

β(α) = −
α2

[
3C2 − T (R) + C(R)i

jγj
i(α)/r

)]
2π(1− C2α/2π)

.

V.A.Novikov, M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229, (1983), 381;

Phys.Lett. 166B, (1985), 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277, (1986),

456; M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett. 42, (1985), 224; Phys.Lett.

166B, (1986), 334.

(The result also agrees with the DRED calculations.)

D.R.T.Jones, Nucl.Phys. B87 (1975) 127.

Thus, factorization of integrands into double total derivatives seems to be a

general feature of supersymmetric theories.



~21

'

&

$

%

Conclusion and open questions

X It is possible to prove that all integrals defining the β-function in N = 1
SQED, regularized by higher derivatives, are integrals of double total

derivatives. This allows to calculate one of the loop integrals analytically.

X The factorization of integrands into total derivatives allows to obtain the

exact NSVZ β-function without redefinition of the coupling constant.

X Possibly, the factorization of integrands into double total derivatives is a

general feature of supersymmetric theories. At least, this takes place for a

general renormalizable N = 1 supersymmetric theory at the two-loop level.
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Thank you for the attention!


