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Prelude:
Supergravity with a positive potential – The Salam-Sezgin
model

The Salam-Sezgin model (1984) is based upon D = 6, (1, 0) supergravity
coupled to a multiplet containing one antisymmetric tensor gauge field
with an anti-self-dual field strength, G−µνρ. This combines with the
self-dual field strength G+

µνρ of the (1,0) supergravity multiplet to form
an unconstrained 3-form field strength G[3] = dB[2]. The bosonic part of
the combined multiplet includes a vector and a dilatonic scalar. The
bosonic sector of the model has the Lagrangian

LSS =
1

2
R − 1

4
eσFµνF

µν − 1

6
e−2σGµνρG

µνρ − 1

2
∂µσ∂

µσ − g2e−σ

The vector field is used to gauge an Abelian R-symmetry in the fermionic
sector. This is accompanied in the bosonic sector by the positive
potential for the dilaton σ, depending on the coupling constant g .
Generalisations of this model including additional D = 6 vector multiplets
have scalar target spaces SO(p, q)/(SO(p)× SO(q)).
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I Owing to the scalar potential, the model does not admit D = 6 flat
space as a solution, but it does have an S2 × R4 electrovac solution
with monopole charge ±1:

ds2 = ηµνdx
µdxν + a2(dθ2 + sin2 θdφ2)

Amdy
m = (n/2g)(cos θ ∓ 1)dφ

I This electrovac solution provides a natural compactification from
D = 6 to D = 4 preserving N = 1, D = 4 supersymmetry.

I “Rugby ball” solutions deform the round S2 by cutting out a wedge
along lines of longitude, thus producing conical singularities at
opposite poles of the S2. These conical singularities correspond to
positive-tension 3-branes. Supersymmetry is then broken by the
brane tensions. These may be imagined to arise from D = 4 vacuum
energies of fields propagating only on the 3-branes.
Aghababaie, Burgess, Parameswaran & Quevedo

I The deformed solution nonetheless remains flat in the R4 directions.
This exemplifies a general theorem about such solutions. Assuming
just axial symmetry in the compactified directions, both
supersymmetric and non-supersymmetric solutions to the classical
field equations remain flat in the R4 directions. Cvetič, Gibbons & Pope 4 / 26



General noncompact gaugings in supergravity theories
Hull & Warner 1988: Compact and noncompact supergravity
R-symmetries can be promoted to gauged symmetries using vector fields
of the theory.

I D = 4 toroidal reduction of D = 11 SG reduced on T 7 has an
SL(8,R) symmetry of the action (extended to E7,7 for the equations
of motion). Cremmer & Julia 1979

I The SO(8) subgroup of SL(8,R) preserves an internal metric δAB
and can be gauged (with a coupling constant g) using the 28 vector
fields of the N = 8 theory: this yields the standard SO(8) gauged
maximal supergravity de Wit & Nicolai which can also be obtained by
dimensional reduction from D = 11 on S7.

? SO(8) gauging breaks the SL(8,R) symmetry by g -dependent terms.

I One may then deform the model by analytic continuation using the
non-symmetric SL(8,R).

? The g -independent terms in the action remain, however, SL(8,R) invariant, so
the ∂2 kinetic terms are left unchanged: no ghosts appear.

I One may thus obtain gaugings that preserve an SO(p, q) internal
metric ηAB = diag(+ + . . .+,−− . . .−).

p times q times
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I These gaugings can be classified by the embedding-tensor
formalism. de Wit, Samtleben & Trigiante

I Models with noncompact gaugings can be obtained directly via
dimensional reduction, but these require noncompact reduction
spaces.

I An example of such a reduction & corresponding noncompact
gauging is the reduction of M-theory on the noncompact space
S1 ×H(2,2). Cvetič,Gibbons & Pope

I The space H(2,2) is a hyperbolic space of Euclidean (+++)
signature embedded into R4 by the condition
µ2

1 + µ2
2 − µ2

3 − µ2
4 = 1. This embedding condition is SO(2, 2)

invariant, but the embedding R4 space has SO(4) symmetry, so the
isometries of this space are given by
SO(2, 2) ∩ SO(4) = SO(2)× SO(2). The cohomogeneity-one H(2,2)

metric is ds2
3 = cosh 2ρdρ2 + cosh2 ρdα2 + sinh2 ρdβ2.

I The SO(2, 2) nonetheless gives a local symmetry of the reduced
theory. But this happens only via the agency of scalar-field vielbeins.
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The D = 7 bosonic Lagrangian of the reduced theory is given by

L7 = R ∗1l− 5
16 Φ−2 ∗dΦ ∧ dΦ− ∗pαβ ∧ pαβ − 1

2 Φ−1 ∗H(3) ∧ H(3)

−1
2 Φ−1/2 πĀ

α πB̄
β πC̄

α πD̄
β ∗F ĀB̄

(2) ∧ F C̄ D̄
(2) −

1

g
Ω− V ∗1l

where πĀ
α (Ā & α = 1 . . . 4) are scalar vielbeins describing

9 = 16 - 1 (det) - 6 (gauge) degrees of freedom.
I The rigid “composite” group structure is revealed in the covariant

derivative

pαβ = π−1
(α

Ā [δĀ
B̄ d + g A

(1)Ā
B̄ ]πB̄

γ δβ)γ

whose α, β indices are always raised and lowered with δαβ, showing
that there are no scalar ghosts.

I The local gauge symmetry (gauge field A
(1)Ā

B̄) acts on the Ā, B̄
indices, preserving a metric ηĀB̄ . If ηĀB̄ = δĀB̄ , one has a local
SO(4) symmetry. Nastase, Vaman & Van Nieuwenhuizen

I If ηĀB̄ = diag(+ +−−), then one has a local SO(2, 2)
symmetry. Cvetič,Gibbons & Pope
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I The scalar field potential is given by

V = 1
2g

2 Φ1/2 (2MαβMαβ − (Mαα)2)

built from the unimodular matrix

Mαβ = π−1
α
Ā π−1

β
B̄ ηĀB̄

Note again that the α, β indices are contracted with an ordinary
Kronecker δαβ. The positivity properties of such potentials depend
on the gauged subgroup chosen, with a corresponding invariant ηĀB̄ .

I This D = 7 theory can form the starting point for construction of a
chiral D = 6 extension of the Salam-Sezgin model, built to be
anomaly-free via a Hǒrava-Witten construction
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D = 7/D = 6 Hǒrava-Witten constructions
Pugh, Sezgin & K.S.S. 1008.0726

In order to provide an origin for the construction of chiral D = 6 models
and a mechanism for achieving anomaly freedom, one may repeat the
Hǒrava-Witten D = 11/D = 10 construction, but starting now in D = 7
with minimal (16 supercharge) supergravity coupled to n D = 7 vector
multiplets.

In this starting theory, there are 3n scalar fields taking their values in an
SO(n,3)

SO(n)×SO(3) target space.
I The n à priori Abelian vector fields can be used to gauge subgroups

of SO(n, 3). Demanding that the subsequent reduction to D = 6
preserve some form of R-symmetry gauging in D = 6 requires the
gauging in D = 7 of a noncompact subgroup of SO(n, 3).
Bergshoeff, Jong & Sezgin

I The gauged SO(2, 2) model obtained by reduction from D = 11 on
S1 ×H2,2 falls into this class, giving rise to a U(1) gauged
R-symmetry model upon reduction to D = 6 and chiral truncation.
This yields the original Salam-Sezgin model. Cvetič, Gibbons & Pope 9 / 26



The basic framework for a Hǒrava-Witten construction in dimension D is
a spacetime including a line interval, giving two boundary spacetimes of
dimension (D − 1). In our case, the spacetime can be realised as
M6 ⊗ S1/Z2:



M6 S1/Z2

I Instead of performing a reduction down to M6, however, in a
Hǒrava-Witten construction one retains full D = 7 dependence, but
imposes Z2-symmetry boundary conditions at the line-interval ends.
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I This construction breaks translation invariance in the x7 direction,
and this in turn gives rise to a corresponding halving of the unbroken
supersymmetry, yielding a chiral (1,0) supersymmetry in D = 6:

[δε1 , δε2 ] = translations ⇒ γ7ε = ε

I Correspondingly, one imposes boundary conditions on parity-odd
fields (and on ∂7 derivatives of even fields) at the Z2 fixed points ↔
line-interval endpoints. In the first instance, these quantities are set
to zero at the endpoints.

I One needs to take care, however, to include appropriate
Gibbons-Hawking-York terms in the action to ensure that the Z2

boundary conditions are consistent with the Euler-Lagrange
variational principle.

I e.g. the Einstein-Hilbert action needs to be modified to

SEH + S0
GHY =

1

2κ2

∫

M7

d7xeR +
1

κ2

∫

∂M7

d6x
√
−hhmnKmn

where hmn is the metric induced on the boundary ∂M7 and Kmn is
the extrinsic curvature tensor on the boundary.
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The D = 7 bulk Lagrangian, up to terms quadratic in fermions, is

SSG(7) bulk =

1

2κ2

∫
d7xê

{
1

2
R̂− 1

4g2
eσ̂F̂ i

MN F̂
MNi − 1

4g2
eσ̂F̂ r̂

MN F̂
MNr̂ − 1

48
e−2σ̂F̂MNRSF̂

MNRS − 1

24
√

2g2
ε̂MNRSTUV ÂMNRF̂

r̂
ST F̂

r̂
UV

− 5

8
∂M σ̂∂

M σ̂ − 1

2
P̂ ir̂
M P̂

Mir̂ − 1

4
g2e−σ̂

(
Cir̂Cir̂ − 1

9
C2

)

− i

2
ˆ̄ψM γ̂

MNRD̂N ψ̂R −
5i

2
ˆ̄χγ̂MD̂M χ̂−

i

2g2
ˆ̄λr̂γ̂MD̂M λ̂r̂ −

5i

4
ˆ̄χγ̂M γ̂N ψ̂M∂N σ̂ −

1

2g
ˆ̄λr̂σiγ̂M γ̂N ψ̂M P̂

ir̂
N

+
i

96
√

2
e−σ̂F̂MNRS

(
ˆ̄ψ[Lγ̂

Lγ̂MNRS γ̂T ψ̂T ] + 4 ˆ̄ψLγ̂
MNRS γ̂Lχ̂− 3 ˆ̄χγ̂MNRSχ̂+

1

g2
ˆ̄λr̂γ̂MNRSλ̂r̂

)

+
1

8g
e

σ̂
2 F̂ i

MN

(
ˆ̄ψ[Lσ

iγ̂Lγ̂MN γ̂T ψ̂T ] − 2 ˆ̄ψLσ
iγ̂MN γ̂Lχ̂+ 3ˆ̄χσiγ̂MN χ̂− 1

g2
ˆ̄λr̂σiγ̂MN λ̂r̂

)
− i

4g2
e

σ̂
2 F̂ r̂

MN

(
ˆ̄ψLγ̂

MN γ̂Lλ̂r̂ + 2ˆ̄χγ̂MN λ̂r̂
)

− i
√

2

24
ge−

σ̂
2C

(
ˆ̄ψM γ̂

MN ψ̂N + 2 ˆ̄ψM γ̂
M χ̂+ 3ˆ̄χχ̂− 1

g2
ˆ̄λr̂λ̂r̂

)
+

1

2
√

2
e−

σ̂
2Cir̂

(
ˆ̄ψMσ

iγ̂M λ̂r̂ − 2 ˆ̄χσiλ̂r̂
)

+
1

2g
e−

σ̂
2C r̂ŝi ˆ̄λr̂σiλ̂ŝ

}

1
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Inclusion of D = 6 boundary supermatter
A raison d’être for the inclusion of boundary matter is to provide sources
of anomaly compensation. The D = 7 bulk theory has gravitational and
gauge-symmetry anomalies when projected onto the D = 6 boundaries.
Inclusion of boundary supermatter affects the anomaly calculation in two
ways: 1) directly via their quantum loops 2) “classically” by anomaly
inflow.

Anomaly inflow contributions arise by generalising the initial
(parity odd) = 0 boundary conditions to allow for a non-zero RHS
dependent on boundary fields:
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To prepare the setup for anomaly cancellation, one needs to include
couplings to D = 6 boundary vector multiplets, hypermultiplets and
antisymmetric tensor multiplets. Some specific features of this
D = 7/D = 6 construction are:

I The D = 7 on-shell supersymmetry algebra produces compensating
gauge transformations from the commutator of two supersymmetry
transformations. Consequently, the willful breaking of gauge
invariance on the boundaries in preparation for gauge anomaly inflow
also provokes supersymmetry breaking. Accordingly, one cannot fully
demand supersymmetry of the classical-level construction. The best
one can do is to impose the Wess-Zumino consistency conditions.
(Seen also directly in D = 6. Ferrara, Riccioni & Sagnotti )

I Hypermultiplet coupling to D = 6 supergravity requires a
quaternionic target space. Bagger & Witten But one cannot simply add
quaternionic spaces. Reduction of the D = 7 bulk Lagrangian to
D = 6 correctly produces a quaternionic scalar target
manifold. Bergshoeff, Jong & Sezgin But the inclusion of boundary
hypermultiplets is then tricky.
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I The coupling of boundary hypermultiplets can be addressed by
introducing a partial set of auxiliary fields. D = 6 (1,0)
supersymmetry, like D = 4, N = 2 supersymmetry, naturally involves
an Sp(1) auxiliary vector field V i

M . de Wit, van Holten & Van Proeyen

In the bulk D = 7 supergravity, this would have the field equation
V i
M = 1

2ε
ijkQ jk

M , where Q jk
M is an Sp(1) connection built from the

bulk scalars.

I Upon coupling to D = 6 boundary hypermultiplets, the auxiliary
field equation relates V i

M to the boundary Sp(1) connection,
− i

2V
i
µσ

i AB
∣∣
∂M = QAB

µ . Thus, one obtains a requirement relating
bulk and boundary composite Sp(1) connections:

− i
4ε

ijkQ jk
µ σi AB

∣∣
∂M = QAB

µ .

I Anomalies are encoded in an 8-form anomaly polynomial. An
example of a chiral anomaly-free system has SO(2, 1) D = 7 bulk
gauge symmetry and nV = 78 + 133 boundary vector multiplets for
a gauge group E6 × E7, together with 2 boundary tensor multiplets
and nH = 5× (27, 1) + 5× (1, 56) boundary hypermultiplets.
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Aside: ectoplasm with an edge
Howe, Pugh, Strickland-Constable & K.S.S. 1104.4387

The “ectoplasm” formulation gives a supersymmetric invariant in d
spacetime dimensions as the integral of a pull-back via the projection
map s to the superspace “body” of a closed superspace d-form, dJd = 0.
Gates, Grisaru, Knut-Whelau, & Siegel; Berkovits & Howe; Bossard, Howe & K.S.S.

S =

∫

s(M0)
Jd =

∫

M0

s∗Jd

In the absence of boundaries, such invariants depend only on the de
Rham cohomology class of Jd : Jd ∼ Jd + dλd−1.

In the presence of boundaries, this cohomological formulation naturally
changes to one involving relative cohomology. Given a pair of forms Ad

and Bd−1 on a d dimensional manifold M and on a (d − 1) dimensional
submanifold N , one has the relative exterior derivative
d (ι)(Ap,Bp−1) = (dAp, ι

∗Ap − dBp−1) and the relative integral∫
(M,N )(Ad ,Bd−1) =

∫
M Ad −

∫
N Bd−1, with a corresponding Stokes’

theorem.
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One can define the “superboundary” ∂M of a (d , n) dimensional
supermanifold M to be a manifold with (d − 1) bosonic dimensions and
n
2 fermionic dimensions given by the locus of the boundary ∂M0 under
the surviving n

2 supersymmetry transformations.

Let the embedding map for ∂M0 into M0 be c and the embedding map
of ∂M into M be c̃ . Then one has a commutative diagram of maps

∂M0 M0

∂M M

c //

s̃

��

s

��
c̃ //

1

The action including boundary contributions is then simply

S =

∫

(M0,∂M0)
(s∗Jd , s̃

∗Id−1)
Reproduces “supersymmetry without boundary

conditions” Belyaev & Van Nieuwenhuizen

where Id−1 is the boundary superform on ∂M of the relatively closed
form (Jd , Id−1).
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Chiral dimensional reduction C.N. Pope, T. Pugh & K.S.S., in preparation

The original Salam-Sezgin model was presented as yielding a chiral
D = 4 theory after dimensional reduction on the sphere & monopole
background. This is in a sense true, but this is not chirality in a very
physically interesting sense. The original model had just a gauged U(1)R
symmetry, according to which the spinor fields of the reduced N = 1,
D = 4 theory carry opposite U(1)R charges. Moreover, the U(1)R gauge
vector becomes massive via a Stueckelberg mechanism. When one refers
to a chiral theory, one generally means that the spinors carry complex
representations with respect to some standard (not R-symmetry)
unbroken gauge symmetry.

An example of such a D = 6 extended chiral system was given with
E6 × E7 × U(1) gauge symmetry and the hyperfermions in the 912 of E7

by Randjbar-Daemi, Salam, Sezgin & Strathdee .

An important question is whether this system may be reduced to a chiral
theory in D = 4 , as was claimed in that original work.
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I A serious problem was raised concerning the chiral reduction of the
E6 × E7 × U(1) system by Gibbons & Pope. The question concerns
which sets of D = 4 fluctuations may be retained in a consistent
Kaluza-Klein truncation corresponding to the sphere & monopole
background. Reductions on spheres with fluxes turned on are
familiar from a number of supergravity dimensional reductions, e.g.
the S7 reduction of D = 11 supergravity with F4 flux turned on.
Freund & Rubin

I Sphere reductions may yield massless fields corresponding to the
isometry group of the reduction sphere, which in this S2 reduction
would yield an SU(2) Yang-Mills gauge symmetry in the D = 4
reduced theory. At the same time, consistency of that reduction
required that the dilatonic scalar of the D = 6 theory be given a
fixed relation to the Kaluza-Klein scalar normally obtained from
such a dimensional reduction.
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I The SU(2) gauged reduction for the basic Salam-Sezgin theory
involves the ansatz

dŝ2 = e
1
2φ ds2

4 + e−
1
2φ gmn (dym + 2g Ai Km

i )(dyn + 2g Aj Kn
j )

êα = e
1
4φ eα , êa = e−

1
4φ (ea + 2g Ai K a

i )

F̂(2) = 2g e
1
2φ εab ê

a ∧ êb − µi F i

Ĥ(3) = H(3) − 2g F i ∧ K a
i (ea + 2g Aj K a

j )

φ̂ = −φ

where Km
i , i = 1, 2, 3 are the SU(2) Killing vectors of the round S2;

K a
i = Km

i eam. The µi are the SU(2) triplet of lowest non-trivial
harmonics on S2.

I The D = 4 massless reduced theory consists of N = 1 supergravity
coupled to an N = 1, SU(2) Yang-Mills vector multiplet and a scalar
multiplet. Note, however, that this is not a chiral theory: the chiral
structure has been lost in the S2 reduction.
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Chiral reduction with gauged U(1)R
Despite the failure of the SU(2) gauged reduction from 6 to 4
dimensions to be chiral, it is nonetheless possible for a consistent
dimensional reduction to D = 4 inherit the chiral structure of the D = 6
theory. It turns out that there is a bifurcation of consistent reduction
ansätze. Preserving chirality, however, requires turning off the SU(2)
gauge fields. Here is the second branch of the bifurcated ansatz:

êα = e
1
4

(φ+ϕ)eα , êa = e−
1
4

(φ+ϕ)ea

F̂(2) =
1

2g
Ω(2) − F(2)

Ĥ(3) = H(3) −
1

2g
A(3) ∧ Ω(2)

φ̂ = ϕ− φ

where Ω(2) is the volume form of the S2. Note that this ansatz retains
two fluctuation scalars φ and ϕ, but there are no massless SU(2) vector
modes.
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The effective action for this second ansatz is of a type that can’t be
obtained directly by insertion into the higher dimensional action.
Nonetheless, the truncation of the D = 6 theory implemented by the
ansatz is consistent: solutions of the reduced D = 4 field equations yield
exact solutions of the D = 6 theory. And one can integrate these D = 4
field equations back to obtain a D = 4 effective action. The D = 4
theory contains a 2-form gauge field, descended from the 2-form in
D = 6. Dualising this to a scalar, the bosonic part of this effective action
becomes

LB = R ∗ 1− 1

2
∗ dφ ∧ dφ− 1

2
∗ dϕ ∧ dϕ− 1

2
e2φ ∗ dσ ∧ dσ

−1

2
e−φ ∗ F(2) ∧ F(2) − 8g2e2ϕ ∗ A(1) ∧ A(1) +

1

2
σF(2) ∧ F(2)

−8g2eφ(1− eϕ)2 ∗ 1

Note that we now have two scalars, φ and ϕ, retaining both the
descendant of the D = 6 dilaton and also the 6→ 4 Kaluza-Klein scalar
ϕ. The SU(2) Yang-Mills vectors have not been retained, but there is
now a massive vector A(1).
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Preservation of chirality

The fermionic sector of the theory reduced according to the second
ansatz is chiral, but only in a minimal sense. The gauged U(1)R of the
D = 6 theory gives rise to gauge couplings for the reduced D = 4 spinor
fields. Moreover, the D = 4 supersymmetry parameter ε inherits chirality
from D = 6. So the D = 4 theory cannot naturally be written in terms of
Majorana spinor fields. However, the couplings insuring chirality are
gauge couplings to the U(1)R gauge field A(1), which has become
massive. The broken U(1)R may be restored by Stueckelberg couplings
to an additional auxiliary scalar ρ. But this is not what one generally
considers a chiral theory in the sense of the Standard Model.

In order to have a more physically relevant chirality in D = 4, one needs
to include more in the starting model, for example the D = 6 gauge fields
for E6 × E7 × U(1) plus 456 hypermultiplets of Randjbar-Daemi, Salam,
Sezgin & Strathdee.
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I Figuring out what survives at massless level of the E6 × E7 × U(1)
model involves some complicated group theory. The 456
hypermultiplet scalars take their values in a target coset space
Sp(456, 1)/(Sp(456)⊗ Sp(1)). The E7 is the gauged part of the
rigid Sp(456) within the rigid Sp(456, 1) such that the irreducible
912 of Sp(456) remains an irreducible 912 of E7.

I In the consistent reduction of this model on the sphere & monopole
background, the rigid Sp(456) reduces to SU(456). So the surviving
part of E7 is that part that also lies in SU(456).

I This is tricky to work out. However, one can consider a simpler
model starting with just the Salam-Sezgin model coupled to 28
hypermultiplets, together with 133 vector multiplets gauging the E7

subgroup of Sp(28) (chosen such that the 56 of Sp(28) remains
irreducible under E7). In this case, a brute-force evaluation of all the
generators using a computer program of Cacciatori, Piazza & Scotti
shows that the surviving symmetry in that case is just SU(8). This
is also anticipated for the E6 × E7 × U(1) model, with surviving
fermions in the complex 420⊕ 36 of SU(8), preserving chirality.
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Supersymmetry in Large Extra Dimensions

One motivation for reconsidering such supergravity models with gauged
noncompact R-symmetries comes from the SLED program:
Supersymmetry in Large Extra Dimensions (Aghababaie, Burgess,
Parameswaran & Quevedo). This starts from the observation
(Arkani-Hamed, Dimopoulos & Dvali) that if one has just 2 extra
dimensions, the scale r of these could be as large as 0.1 mm = 100µm
without running into conflict with measurements of the gravitational
inverse-square law.

I Letting vacuum energies on the D = 4 subspace be of order
M ∼ 10 TeV and taking r to be of order 10µm, one can obtain a
bulk (cosmological constant)−1/4 corresponding to an energy scale
M2/MP , i.e. ∼ 10−2 eV, the correct scale for the observed
cosmological constant.
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I The SLED scenario fits naturally with the class of supergravity
models with gauged R-symmetries. Depending on the details of the
scalar potential and gauging, these models may not admit flat
spacetime solutions in their original spacetime dimensions D, but
they can naturally admit solutions with flat spacetimes of lower
dimensionality.

I An example of such a robust compactification scenario to flat
spacetimes is provided by the “rugby ball” electrovac
compactifications from D = 6 to flat D = 4 with U(1) flux turned
on. Carroll & Guica, Aghababaie, Burgess, Parameswaran & Quevedo

I A basic example of a model admitting such “self-tuning” reductions
to flat space is provided by the Salam-Sezgin model.

I At the quantum level, the above ‘self-tuning’ mechanism is
modified, and an effective D = 4 cosmological constant does arise
as a result of vacuum energies, but this is greatly reduced by the
classical self-tuning mechanism. For a 10µm scale of the S2

directions and vacuum energies M in the 10 TeV range, one can end
up with an effective (cosmological constant)1/4 of the order of
M2/MP ∼ 10−2 eV.
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