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General Motivation

Known examples of solvable gauge models bring to geometric
description
Examples:

I Matrix models
I Seiberg�Witten model
I Chiral model for strongly coupled QCD
I etc...

gauge theory −→ microscopic

geometric model −→ macroscopic
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General Motivation

Macroscopic description: introduce collective variables taking the
values in the phase/moduli space of the model.

Non-trivial symmetries of the microscopic model (apart from gauge
invariance) translate to the symmetries of the macroscopic one

The description can not depend on the parametrization of the space of
collective modes ⇒ The e�ective theory should be geometric, i.e.
phase/moduli space reparametrization invariant

The scale appears as a (thermo)dynamical parameter
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(non)AdS/(non)CFT

Most striking example of such a description is provided by AdS/CFT
correspondence.

Originally it was formulated as a property of the string theory, but in
the present it extended outside the string theory framework.

It is a two-way weak/strong coupling correspondence

Most studied case: correspondence between 4D N = 4 super
Yang�Mills theory and string/gravity on AdS5 × S5

Intensively studied: correspondence between 3D Chern�Simons�matter
conformal theory and AdS4 × S7/Zk and relative theories...
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AdS/CFT correspondence ingredients
(N = 4 SYM)

In the limit of large gauge group rank N, we have the correspondence
[Maldacena]

(N = 4 SYM)M1,3 ⇔ (string theory)AdS5×S5

Identi�cation of symmetry groups PSU(2,2|4)⊃SO(2,4)×SO(6); The
correspondence between operators of SYM and states of ST. Dilatations
correspond to time shifts
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Non-planar extension

For N <∞ the string interactions should be included with the rate ∼ N−1.

gs ∼ J2/N, J − classical dimension/length

SYM: N →∞ � invariance of single trace operators. Single trace
operators do not mix with multi-trace ones under renormalization.
Integrability [Minahan-Zarembo,Beisert-Staudacher, etc]
→ �AdS/CFT dictionary�

Corneliu Sochichiu (SKKU, Suwon ) Dilatation operator: general structures SQS'11: July 18, 2011 7 / 39



�AdS/CFT dictionary�

AdS5 × S5 strings N = 4 SYM

quantum states Local gauge invariant composite operators (LGICO)
AdS isometry Conformal symmetry
Sphere isometry R-symmetry
Time shift Dilatation, RG-�ow
Hamiltonian, H Dilatation operator, Mixing matrix, ∆
. . . . . .

This dictionary was checked in various regimes, but there is (will be?) no

mathematical proof.
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Explicit construction of the dynamical system

N = 4 SYM �eld content: Aµ, ψ, φ
i , i = 1, . . . , 6

�Alphabet�: {WA} = {Fµν , φ, ψ,∇F ,∇φ,∇ψ . . . }
�Language�: gauge invariant combinations of letters
�Words�: simplest gauge invariants, one-trace composite operators,

OA1A2...AL = trWA1WA2 . . .WAL

�Phrases� (LGICO):

OA1A2...AL1
OB1B2...BL2

. . .OC1C2...CLr

Operator mixing: as N →∞ the trace structure becomes invariant: linear
combinations of words form invariant spaces
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Scale dependence: Renormalization & Operator mixing

Scale dependence is induced by the renormalization
Consider a set of composite operators {OJ} closed under renormalization
(mixing)

ORen
J = Z (Λ)J

IOI

Dilatation Operator (Generator of RG-�ows, now our Hamiltonian)

∆ = Z−1 · ∂Z

∂ logΛ

Anomalous dimensions
∆Oλ = λOλ
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General case

So far we considered the case of N = 4 in 4D. Generalizations to
other cases are possible.

Various deformations of N = 4 SYM in 4d; Chern-Simons-matter
theories (ABJM & friends) in 3d were considered since that. . .

How about the general case?
I Can we construct a corresponding model in the general case of a

renormalizable theory?
I What are the necessary ingredients?
I And which are the universal structures?
I What are the model dependent features?
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Generalization to renormalizable theories
(à la Connes)

One can construct a quantum theory model from the original �eld theory.
The new quantum theory is de�ned by,

Hilbert space of States:
space of LGICO (Local gauge invariant composite operators)

Hamiltonian: Dilatation Operator, (RG-�ow generator)

Observables: . . . Automorphisms of the algebra of LGICOs.

What else?

The states should form a Hilbert space!

Hermitian Hamiltonian. . .

etc. . .
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General case

Is there any natural way to de�ne the dual geometric theory?

Well. . . maybe. . .
. . . At least in Perturbation Theory. . .
. . . but we know it well in conformal theory
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Hermitian product and Hamiltonian for a CFT

Consider �rst a Conformal Field Theory. The primary operators O1(x) and
O2(x) of dimensions ∆1 and ∆2 have the following correlator,

〈O1(x)O2(0)〉 =
Cδ∆1∆2

x∆1+∆2

The identi�cation O 7→ |O〉 with 〈O1 | O2〉 = Cδ∆1∆2 and

H |Oi 〉 = ∆i |Oi 〉

solves the problem. . .
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Hermitian product and Hamiltonian for a generic QFT

� We can extend this for a generic renormalizable theory:
Hermitian product and Hamiltonian can be introduced through the
correlators

〈O†(x)O′(0)〉 = 〈O| (µ2x2)−D
∣∣O′〉 ≡ 〈O| e−τD ∣∣O′〉

τ = log(µ2x2) 〈
O |O′

〉
= 〈O†(x)O′(0)〉|µ2x2=1

〈O|D
∣∣O′〉 = −1

2
µ
∂

∂µ
〈O†(x)O′(0)〉|µ2x2=1

. . . as soon as we identify local operators with quantum states
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General Construction for Hermitian product and Hamiltonian

We have to analyze the RG-transformation of a composite operator O in
perturbation theory. Mixing matrix Z (Λ) can be found considering
divergent terms in correlators of two probe operators O and O′,

〈: O′y (φ) :: O0 :〉 = 〈: O′y : e−
∫

:V (φ):: O0 :〉0

The source of relevant divergences is the Wick expansion of products

e−
∫

:V (φ):: O0 : =

(
1−

∫
: V (φ) : +

1

2!

∫∫
: V (φ) :: V (φ) : + . . .

)
: O0 :

So, we should modify O0 in such a way to cancel divergences and �nd the
scale dependence after the cancelation.
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Wick expansion

Wick expansion in functional form can be cast into [see one of the Kleinert's books]

: O′y :: Ox := e
φ̌AyDAB(y−x)φ̌BxO′yOx ≡ O′∗O(x , y)

∗ � star product resembles one in noncommutative theories, but is
di�erent

φ̌Ax =
∂

∂φA(x)
Not a functional derivative!

e.g. Euclidean massless propagator
Functional Wick expansion can be generalized to the product of 3,
4,. . . factors
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A note on Notations

We have to deal with complicate expressions � notations are important.

Condensed (multi-index)

µ1µ2 . . . µn → n, φn = ∂nφ(0)

A traceless set of indices,

(µ1µ2 . . . µn)→ (n) : φ(n)

In general, treat space-time indices as sets,

n + m→ µ1µ2 . . . µnν1ν2 . . . νm

n\r→ µ1 . . . µ̌i1 . . . µ̌ir . . . µn, r→ µi1 . . . µir , r ⊂ n

summation over intersecting sets. . .
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The 4D theory

The scale dependence of the two-point function is dimension (and model)
dependent

S =

∫
dx
(
−1

2
φ · D−1 · φ+ V (φ)

)
The basic propagators in four-dimensions are

D(x) =

{
∼ 1

4π2
1
x2

scalars, gauge bosons, etc,

∼ γµ∂µ 1
4π2

1
x2
, fermions,

LGICOs are polynomials in fundamental letter and their derivatives.

LGICOs are de�ned modulo EoM � can eliminate the traces of
derivatives
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Tools: di�erential renormalization

Di�erential regularization/renormalization scheme in real space allows to
regularize singular expressions like [Freedman-Johnson-Latorre],

1

x2k
= − 1

4k−1(k − 1)!(k − 2)!
�k−1 lnµ

2x2

x2
, k ≥ 2

introduces a scale dependence:

µ
∂

∂µ

[
1

x2k

]
reg

≡
[

1

x2k

]
=

8π2

4k−1(k − 1)!(k − 2)!
�k−2δ(x)

where we used the property

�
1

x2
= −4π2δ(x)
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One vertex level

In the leading one-loop approximation the contribution comes only from
one- and two-vertex Feynman diagrams. Consider �rst the one-vertex level
Regularizing the terms in the Wick Expansion we get for the �rst order in
interaction potential

−
∫

dy [Vint(y)∗] = −
∫

dy
[
e
φ̌y ·Dy ·φ̌

]
Vy

= −
∫

dy

(
φ̌y · [Dy ] · φ̌+

1

2
(φ̌y ⊗ φ̌y ) · [Dy ⊗ Dy ] · (φ̌⊗ φ̌)

+
1

3!
(φ̌⊗3) · [D⊗3y ] · (φ̌⊗3) +

1

4!
(φ̌⊗4) · [D⊗4y ] · (φ̌⊗4) + . . .

)
Vy ,
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Two vertex level

Second level yields

1

2!

∫
dy1

∫
dy2[Vint(y1) ∗ Vint(y2)∗]

=
1

2

∫
dy1

∫
dy2×{

(φ̌y1 ⊗ φ̌y1 ⊗ φ̌y2) · [Dy1 ⊗ Dy1−y2 ⊗ Dy2 ] · (φ̌⊗ φ̌y2 ⊗ φ̌)+

(φ̌⊗3y1
⊗ φ̌y2) · [D⊗2y1

⊗ Dy1−y2 ⊗ Dy2 ] · (φ̌⊗2 ⊗ φ̌y2 ⊗ φ̌) + . . .

}
Vy1Vy2 .
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The The 3D theory

The leading contribution in 3D comes from the two loop level
Basic propagators

D(x) =


1

4πx , for scalars, gauge bosons, etc,

γµ∂µ
1

4πx , for fermions,

εµνλ∂λ
1

4πx , for Chern-Simons �elds.

Basic objects are still LGICO O(Φ), depending on fundamental �elds φ(x)
and their derivatives

φµ1µ2...µn ≡ ∂µ1∂µ2 . . . ∂µnφ(0)

EoMs can be used to eliminate the dependence on CS gauge �elds traces
of derivatives
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�Functional Wick Expansion�
Functional form of Wick expansion can be introduced through the following
equations

: O1 :: O2 : = e
Ď12 : O1O2 :

: O1 :: O2 :: O3 : = e
Ď12+Ď13+Ď23 : O1O2O3 :

: O1 :: O2 :: O3 :: O4 : = e
Ď12+Ď13+Ď23+Ď14+Ď24+Ď34 : O1O2O3O4 :

: O1 :: O2 : · · · : Ok : = e
(
∑

l<m Ďlm) : O1O2 . . .Ok :

where Ďxy is a two-point di�erential operator

Ďxy = Φ̌x ·Dxy · Φ̌y =
∑
(n)

D
(n)
xy š

(n)
xy ,

š
(n)
xy =

∑
r,s

r+s=n

(−1)s φ̌
(r)
x ·φ̌(s)

y +
∑
r,s,

r+s+1=n

(−1)s ψ̌
(r)
x γ1 ˇ̄ψ

(s)
y +

∑
r,s

r+s+1̃1′=n

(−1)s Ǎ
(r)
1x Ǎ

(s)
1′y

Φ̌x =
∂

∂Φx
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One vertex lever (two point function)
The �rst non-trivial contribution comes from the �rst term of the
expansion of interaction exponent,∫

y

[
e
Ďy0

]
Vy =

∑
k

1

k!

[
D

(n1)
y0 . . .D

(nk)
y0

]
š

(n1)
y0 . . . š

(nk)
y0 Vy

0

x

(n1) (nk )(n2)

Two loops ⇒ k = 3.
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Evaluation of divergencies: 1-vertex level; two loops

∆(n)(m)(k) ≡
[
D

(n)
x D

(m)
x D

(k)
x

]
=

1

(4π)3

[
∂(n)

1

x
∂(m)

1

x
∂(k)

1

x

]
From general considerations we have,

∆(n),(m),(k)(x) =
1

(4π)3

∑
r,s

F
(r),s
(n),(m),(k)∂(r)∂

2sδ(x),

where F
(r),s
(n),(m),(k) are numerical coe�cients, de�ned by

F
(r),s
(n),(m),(k) = f

(r),s
nmk

[∫
x

x(n)+(m)+(k)+(r)

x3+2(n+m+k−s)

]
where

f
(r),s
nmk = (−1)n+m+k(2n − 1)!!(2m − 1)!!(2k − 1)!!α(r),s

and the factors α(n),r are the trace-reduced coe�cients of Taylor expansion,

Vx =
∑
(n),r

α(n),rx(n)x2r∂(n)∂
2rV0.
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One-vertex level coe�cients

The evaluation of F s in dimensional regularization scheme and with IR
cut-o� µ, produces the following relevant contribution

2−(n+m+k+1)(n + m + k)!πD/2

Γ
(
D+n+m+k

2

) g (n)+(m)+(k)µ−εΓ(ε)

This yields,

F
(r),s
(n),(m),(k) = −δn+m+k−r−2s,0f

(r),s
nmk g

(n)+(m)+(k) 2−
n+m+k

2 π

(n + m + k + 1)!!

The Dilatation operator at one vertex level is given by,

H1−vertex =
1

(4π)3

∑
{nmk}

F
(r),s
(n),(m),(k)∂(r)∂

2s š(n)š(m)š(k)[V ]
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Two-vertex level
Two vertex level is given by the second term of the expansion of interaction
exponent

H2−vertex =
1

2!

∫
x

∫
y

[
e

Φ̌x ·Dxy ·Φ̌y+Φ̌x ·Dx ·Φ̌+Φ̌y ·Dy ·Φ̌
]
VxVy

Restrict to the two loop part

H2−vertex =

∫
x

∫
y

(
1
2

∆(n1)(n2);(m);(k)(x , y)š
(n1)
x š

(n2)
x š

(m)
y š

(k)
xy

+ 1
4

∆(n);(m);(k1)(k2)(x , y)š
(n)
x š

(m)
y š

(k1)
xy š

(k2)
xy

)
VxVy ,

with

∆(n1)(n2);(m);(k)(x , y) =
1

(4π)4

[
∂(n1)

1

x
∂(n2)

1

x
∂(m)

1

y
∂x(k)

1

|x − y |

]
,

∆(n);(m);(k1)(k2)(x , y) =
1

(4π)4

[
∂(n)

1

x
∂(m)

1

y
∂x(k1)

1

|x − y |
∂x(k2)

1

|x − y |

]
,
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Two-vertex level

The corresponding Master Feynman diagrams are

(n1) (m)(n2)

(k)

0

x y

∆(n1)(n2);(m);(k)(x , y)

(n) (m)

(k1)

(k2)

0

x y

∆(n);(m);(k1)(k2)(x , y)
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Two-vertex level

Duality relates these factors

∆(n);(m);(k1)(k2)(x , y) = (−1)m∆(k1)(k2);(m);(n)(x − y ,−y)

Evaluation of the general structure reveals

∆(n1),(n2);(m);(k)(x , y) =
1

(4π)4

∑
p,r
s,t

F
(p),r ;(s),t
(n1),(n2);(m);(k)∂(p)∂

2rδ(x)∂(s)∂
2tδ(y)

F
(p),r ;(s),t
(n1),(n2);(m);(k) = fn1n2mk

∫
x

∫
y

[
x(n1)+(n2)+(p)

x2+2(n1+n2−r)

y(m)+(s)

y1+2(m−t)

(x− y)(k)

|x − y |1+2k

]
.

where,

fn1n2mk = (−1)n1+n2+m+k(2n1−1)!!(2n2−1)!!(2m−1)!!(2k−1)!!α(p),rα(s),t
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Two-vertex level coe�cients

We can apply a �trick� to simplify
the three-point coe�cient function. Method of `Uniqueness' [Kazakov et al.].

n , m , vnm ,×
nm ,−D

or ∫
y

(x− y)m

|x − y |β
yn

yα
= vnm(α, β)

xn+m

xα+β−D

vnm(α, β) = πD/22−2(n+m) Γ(D−α
2

+ n)Γ(D−β
2

+ m)Γ(α+β−D
2

)

Γ(α
2

)Γ(β
2

)Γ(D − α+β
2

+ m + n)

Then we can remove one integration and reduce the regularized three point
function to two point functions × some factor.
No additional singularities compared to derivative-free exchange!
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Two-vertex level result

The two-point function coe�cients are given by

F
(p),r ;(s),t
(n1),(n2);(m);(k) = −δ(n1+n2+m+k),(p+s+2r+2t)fn1n2mk

× vk,m+s(1 + 2(m − t), 1 + 2k)β(n1)+(n2)+(m)+(k)+(p)+(s)
∣∣∣
D=3

.

where,

βn =

∫
x̂2=1

dx̂ x̂n =
2−(n+1)n!πD/2

Γ
(
D+n
2

) gn,

with gn = 0 for odd n while for even n it is the symmetrized product of
metric tensors,

gn 7→ 1

|Sn|
∑
p∈Sn

gµp(1)µp(2) . . . gµp(n−1)µp(n) .
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Three-vertex level

The three-vertex contribution is given by,

H3V =

∫
1

∫
2

∫
3

(
3
[
Ď1Ď2Ď12Ď13Ď23

]
+ 3

[
Ď1Ď2Ď3Ď12Ď23

])
V1V2V3

Ďxy ≡
∑
n

D
(n)
xy š(n)

Therefore, we face to the evaluation of two scale factors,

∆(n),(m);(k),(l),(p)(x , y , z) =[
∂(n)

1

x
∂(m)

1

y
∂(k)

1

|x − y |
∂(l)

1

|x − z |
∂y(p)

1

|y − z |

]
,

∆(n),(m),(k);(l),(p)(x , y , z) =

[
∂(n)

1

x
∂(m)

1

y
∂(k)

1

z
∂(l)

1

|x − y |
∂y(p)

1

|y − z |

]
.

. . . again duality relates these factors. . .
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Three-vertex level

Graphically the Master diagrams are

n ,m ;k  , l  , p x , y , z  n ,m , k  ; l  , p x , y , z 
00

x x yy

zz
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Three-vertex level
Duality relates

∆(n),(m),(k);(l),(p)(x , y , z) = ∆(n),(l);(k),(m),(p)(−z ,−y ,−x)

The general structure is given by

∆(n),(m);(k),(l),(p)(x , y , z) =

1

(4π)5

∑
p,r
s,t
u,v

F
(p),r ;(s),t;(u),v
(n),(m);(k),(l),(p)∂(p)∂

2rδ(x)∂(s)∂
2tδ(y)∂(u)∂

2vδ(z),

F
(p),r ;(s),t;(u),v
(n),(m);(k),(l),(q) = f

(p),r ;(s),t;(u),v
nmklq

×
∫
x

∫
y

∫
z

[
x(n)+(p)

x1+2(n−r)

y(m)+(s)

y1+2(m−t)

z(k)+(u)

z1+2(k−v)

(x− z)(l)

|x − z |1+2l

(y − z)(q)

|y − z |1+2q

]

Corneliu Sochichiu (SKKU, Suwon ) Dilatation operator: general structures SQS'11: July 18, 2011 35 / 39



Three-vertex level results
Applying the chain rule twice, we can remove two integrations and reduce
the four point integral to a two point one[

x(n)+(p)

x1+2(n−r)

y(m)+(s)

y1+2(m−t)

z(k)+(u)

z1+2(k−v)

(x− z)(l)

|x − z |1+2l

(y − z)(q)

|y − z |1+2q

]
=

(−1)q+lvq,m+s(1 + 2q, 1 + 2(m − t))vl ,n+p(1 + 2l , 1 + 2(n − r))

×

[∫
z

z(n)+(m)+(k)+(l)+(q)+(s)+(p)+(u)

z5+2(n+m+k+l+q−r−t−v)−2D

]
which we know how to evaluate!
All in one

F
(p),r ;(s),t;(u),v
(n),(m);(k),(l),(q) = δn+m+k+l+q,2(r+t+v)+5f

(p),r ;(s),t;(u),v
nmklq (−1)q+l

× vq,m+s(1 + 2q, 1 + 2(m − t))vl ,n+p(1 + 2l , 1 + 2(n − r))

× β(n)+(m)+(k)+(l)+(q)+(s)+(p)+(u)
∣∣∣
D=3
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Summary of the computation

∆2−loop = H1−vertex + H2−vertx + H3−vertex

H1−vertex = −
1

3!(4π)3

∑
n,m,k
r,s

(−1)rF
(r),s
(n),(m),(k)

∂(r)∂
2s
š

(n)
y0 š

(m)
y0 š

(k)
y0 (Vy )

∣∣∣
y=0

,

H2−vertex =
1

2(4π)4

{∑
(−1)p+s

F
(p)r ;(s)t
(n1)(n2);(m);(k)

(∂(p)∂
2r )x (∂(s)∂

2t )y š
(n1)
x š

(n2)
x š

(m)
y š

(k)
xy

+ 1

2

∑
(−1)m+p+s

F
(p)r ;(s)t
(k1)(k2);(m);(n)

(∂(p)∂
2r )x (∂(s)∂

2t )y š
(n)
x š

(n2)
x š

(m)
y š

(k1)
xy š

(k2)
xy

}
VxVy

∣∣
x=y=0

H3−vertex = −
1

2(4π)5

{
(−1)p+r+s

F
(p),r ;(s),t;(u),v
(1),(2);(12),(13),(23)

(∂(p)∂
2r )1(∂(s)∂

2t )2(∂(u)∂
2v )3 š1 š2 š12 š13 š23

+ (−1)pF
(p),r ;(s),t;(u),v
(1),(12);(2),(3),(23)

(∂(p)∂
2r )1(∂(s)∂

2t )2(∂(u)∂
2v )3 š1 š2 š12 š3 š23)

}
V1V2V3|1=2=3=0
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A faster way to obtain the dilatation operator?

Alternatively, consider the dilatation operator as Nöther charge
corresponding to classical dilatations:

classical dimension 7−→ mass

The large mass limit ←→ perturbative expansion of the dilatation
operator

Indeed, the massive Yang�Mills mechanics reproduces the one-loop
dilatation operator in the scalar sector of N = 4 SYM

Corneliu Sochichiu (SKKU, Suwon ) Dilatation operator: general structures SQS'11: July 18, 2011 38 / 39



Conclusion & Outlook

Starting from a renormalizable theory one can obtain a model for
which the (imaginary) time evolution coincides with RG-�ows of given
theory

At least at the one-loop level the same result can be obtained by a
slow roll limit of a massive extension of the model

The approach is purely constructive, we didn't prove any existence
theorem, positivity of the norms, unitarity etc.

In the case of conformal theories the scheme coincides with the
standard AdS/CFT correspondence

For a general renormalizable gauge theory the large N limit is expected
to lead to a local geometrical model

Better parametrization for the LGICO would do a better job
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