Dilatation operator: general structures

Corneliu Sochichiu

SKKU, Suwon

SQS'11: July 18, 2011

Corneliu Sochichiu (SKKU, Suwon) Dilatation operator: general structures SQS'11: July 18, 2011 1/39

Outline

- 2 $\mathcal{N} = 4$ SYM
- 3 General case
 - 4D theory
 - 3D theory
- 4 Conclusion & Outlook

based on (ArXiv): 1003.5272, 0811.2669, 0804.1835, 0707.3517, hep-th/0701089, hep-th/0611274, hep-th/0608028, hep-th/0411261, hep-th/0410010, hep-th/0409086, hep-th/0408102, hep-th/0404066

General Motivation

- Known examples of solvable gauge models bring to geometric description Examples:
 - Matrix models
 - Seiberg–Witten model
 - Chiral model for strongly coupled QCD
 - ▶ etc...

General Motivation

- Macroscopic description: introduce collective variables taking the values in the phase/moduli space of the model.
- Non-trivial symmetries of the microscopic model (apart from gauge invariance) translate to the symmetries of the macroscopic one
- The description can not depend on the parametrization of the space of collective modes ⇒ The effective theory should be geometric, i.e. phase/moduli space reparametrization invariant
- The scale appears as a (thermo)dynamical parameter

$({\tt non}){\sf AdS}/({\tt non}){\sf CFT}$

- Most striking example of such a description is provided by AdS/CFT correspondence.
- Originally it was formulated as a property of the string theory, but in the present it extended outside the string theory framework.
- It is a two-way weak/strong coupling correspondence
- Most studied case: correspondence between 4D ${\cal N}=4$ super Yang–Mills theory and string/gravity on AdS₅ \times S^5
- Intensively studied: correspondence between 3D Chern–Simons–matter conformal theory and $AdS_4 \times S^7/\mathbb{Z}_k$ and relative theories...

AdS/CFT correspondence ingredients $(\mathcal{N} = 4 \text{ SYM})$

In the limit of large gauge group rank *N*, we have the correspondence [Maldacena]

$$(\mathcal{N} = 4 \text{ SYM})_{\mathcal{M}_{1,3}} \Leftrightarrow (\text{string theory})_{\mathrm{AdS}_5 \times S^5}$$

Identification of symmetry groups $PSU(2,2|4) \supset SO(2,4) \times SO(6)$; The correspondence between operators of SYM and states of ST. Dilatations correspond to time shifts

For $N<\infty$ the string interactions should be included with the rate $\sim N^{-1}$.

 $g_s \sim J^2/N, \qquad J-{
m classical}~{
m dimension}/{
m length}$

SYM: $N \rightarrow \infty$ — invariance of single trace operators. Single trace operators do not mix with multi-trace ones under renormalization. Integrability [Minahan-Zarembo,Beisert-Staudacher, etc] \rightarrow "AdS/CFT dictionary"

"AdS/CFT dictionary"

$AdS_5 imes S^5$ strings	$\mathcal{N}=4$ SYM
quantum states	Local gauge invariant composite operators (LGICO)
AdS isometry	Conformal symmetry
Sphere isometry	<i>R</i> -symmetry
Time shift	Dilatation, RG-flow
Hamiltonian, <i>H</i>	Dilatation operator, Mixing matrix, Δ

This *dictionary* was checked in various regimes, but there is (will be?) *no* mathematical proof.

"AdS/CFT dictionary"

$AdS_5 imes S^5$ strings	$\mathcal{N}=4$ SYM
quantum states	Local gauge invariant composite operators (LGICO)
AdS isometry	Conformal symmetry
Sphere isometry	<i>R</i> -symmetry
Time shift	Dilatation, RG-flow
Hamiltonian, <i>H</i>	Dilatation operator, Mixing matrix, Δ

This *dictionary* was checked in various regimes, but there is (will be?) *no* mathematical proof.

Explicit construction of the dynamical system

 $\mathcal{N} = 4$ SYM field content: A_{μ} , ψ , ϕ^{i} , i = 1, ..., 6"Alphabet": $\{W_{A}\} = \{F_{\mu\nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi ...\}$ "Language": gauge invariant combinations of letters "Words": simplest gauge invariants, one-trace composite operators,

$$\mathcal{O}_{A_1A_2...A_L} = \operatorname{tr} W_{A_1}W_{A_2}\ldots W_{A_L}$$

"Phrases" (LGICO):

$$\mathcal{O}_{A_1A_2\dots A_{L_1}}\mathcal{O}_{B_1B_2\dots B_{L_2}}\dots \mathcal{O}_{C_1C_2\dots C_{L_r}}$$

Operator mixing: as $N \rightarrow \infty$ the trace structure becomes invariant: linear combinations of *words* form invariant spaces

Scale dependence: Renormalization & Operator mixing

Scale dependence is induced by the renormalization Consider a set of composite operators $\{O_J\}$ closed under renormalization (mixing)

$$\mathcal{O}_J^{Ren} = Z(\Lambda)_J{}^J \mathcal{O}_J$$

Dilatation Operator (Generator of RG-flows, now our Hamiltonian)

$$\Delta = Z^{-1} \cdot \frac{\partial Z}{\partial \log \Lambda}$$

Anomalous dimensions

$$\Delta \mathcal{O}_{\lambda} = \lambda \mathcal{O}_{\lambda}$$

Corneliu Sochichiu (SKKU, Suwon) Dilatation operator: general structures SQS'11: July 18, 2011 10 / 39

General case

- So far we considered the case of $\mathcal{N}=4$ in 4D. Generalizations to other cases are possible.
- Various deformations of $\mathcal{N} = 4$ SYM in 4d; Chern-Simons-matter theories (ABJM & friends) in 3d were considered since that...
- How about the general case?
 - Can we construct a corresponding model in the general case of a renormalizable theory?
 - What are the necessary ingredients?
 - And which are the universal structures?
 - What are the model dependent features?

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

• Hilbert space of States:

space of LGICO (Local gauge invariant composite operators)

- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables: Automorphisms of the algebra of LGICOs.

- The states should form a Hilbert space!
- Hermitian Hamiltonian...
- etc...

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables: ... Automorphisms of the algebra of LGICOs.

- The states should form a Hilbert space!
- Hermitian Hamiltonian...
- etc...

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables: ... Automorphisms of the algebra of LGICOs.

- The states should form a Hilbert space!
- Hermitian Hamiltonian...
- etc...

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables: ... Automorphisms of the algebra of LGICOs.

- The states should form a Hilbert space!
- Hermitian Hamiltonian...
- etc...

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables: ... Automorphisms of the algebra of LGICOs.

- The states should form a Hilbert space!
- Hermitian Hamiltonian...
- etc...

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables: ... Automorphisms of the algebra of LGICOs.

- The states should form a Hilbert space!
- Hermitian Hamiltonian...
- etc...

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables: ... Automorphisms of the algebra of LGICOs.

- The states should form a Hilbert space!
- Hermitian Hamiltonian...
- etc...

Well. . . maybe. . .

... At least in Perturbation Theory....

... but we know it well in conformal theory

Well...maybe...

... At least in Perturbation Theory... ...but we know it well in conformal theory

Well...maybe...

... At least in Perturbation Theory...

... but we know it well in conformal theory

Well...maybe...

- ... At least in Perturbation Theory...
- ... but we know it well in conformal theory

Hermitian product and Hamiltonian for a CFT

Consider first a Conformal Field Theory. The primary operators $\mathcal{O}_1(x)$ and $\mathcal{O}_2(x)$ of dimensions Δ_1 and Δ_2 have the following correlator,

$$\langle \mathcal{O}_1(x)\mathcal{O}_2(0)
angle = rac{C\delta_{\Delta_1\Delta_2}}{x^{\Delta_1+\Delta_2}}$$

The identification $\mathcal{O}\mapsto |\mathcal{O}\rangle$ with $\langle \mathcal{O}_1 \mid \mathcal{O}_2 \rangle = C \delta_{\Delta_1 \Delta_2}$ and

$$H | \mathcal{O}_i \rangle = \Delta_i | \mathcal{O}_i \rangle$$

solves the problem...

Hermitian product and Hamiltonian for a generic QFT

We can extend this for a generic renormalizable theory: Hermitian product and Hamiltonian can be introduced through the correlators

$$\begin{split} \langle \mathcal{O}^{\dagger}(x)\mathcal{O}'(0)\rangle &= \langle \mathcal{O}|\,(\mu^{2}x^{2})^{-\mathbf{D}}\,\big|\mathcal{O}'\rangle \equiv \langle \mathcal{O}|\,\mathrm{e}^{-\tau\mathbf{D}}\,\big|\mathcal{O}'\rangle\\ \bar{\tau} &= \log(\mu^{2}x^{2})\\ \langle \mathcal{O}\,|\,\mathcal{O}'\rangle &= \langle \mathcal{O}^{\dagger}(x)\mathcal{O}'(0)\rangle|_{\mu^{2}x^{2}=1}\\ \langle \mathcal{O}|\,\mathbf{D}\,\big|\mathcal{O}'\rangle &= -\frac{1}{2}\mu\frac{\partial}{\partial\mu}\langle \mathcal{O}^{\dagger}(x)\mathcal{O}'(0)\rangle|_{\mu^{2}x^{2}=1} \end{split}$$

 τ

... as soon as we identify local operators with quantum states

Corneliu Sochichiu (SKKU, Suwon) Dilatation operator: general structures SQS'11: July 18, 2011 15 / 39

General Construction for Hermitian product and Hamiltonian

We have to analyze the RG-transformation of a composite operator \mathcal{O} in perturbation theory. Mixing matrix $Z(\Lambda)$ can be found considering divergent terms in correlators of two probe operators \mathcal{O} and \mathcal{O}' ,

$$\langle : \mathcal{O}'_{\mathcal{Y}}(\phi) :: \mathcal{O}_{0} : \rangle = \langle : \mathcal{O}'_{\mathcal{Y}} : e^{-\int : V(\phi) :} : \mathcal{O}_{0} : \rangle_{0}$$

The source of relevant divergences is the Wick expansion of products

$$e^{-\int :V(\phi):}:\mathcal{O}_0:=\left(1-\int :V(\phi):+rac{1}{2!}\iint :V(\phi)::V(\phi):+\ldots
ight):\mathcal{O}_0:$$

So, we should modify \mathcal{O}_0 in such a way to cancel divergences and find the scale dependence after the cancelation.

Wick expansion

Wick expansion in functional form can be cast into [see one of the Kleinert's books]

$$:\mathcal{O}_y'::\mathcal{O}_x:=\mathrm{e}^{\check{\phi}_{A_y}D_{AB}(y-x)\check{\phi}_{Bx}}\mathcal{O}_y'\mathcal{O}_x\equiv\mathcal{O}'*\mathcal{O}(x,y)$$

* — star product resembles one in noncommutative theories, but is different

$$\check{\phi}_{Ax}=rac{\partial}{\partial \phi_A(x)}$$
 Not a functional derivative!

e.g. Euclidean massless propagator Functional Wick expansion can be generalized to the product of 3, 4,...factors

A note on Notations

We have to deal with complicate expressions $\sqrt[4]{2}$ notations are important.

Condensed (multi-index)

$$\mu_1\mu_2\ldots\mu_n\to\mathbf{n},\qquad \phi_{\mathbf{n}}=\partial_{\mathbf{n}}\phi(\mathbf{0})$$

• A traceless set of indices,

$$(\mu_1\mu_2\ldots\mu_n) \to (\mathbf{n}): \qquad \phi_{(\mathbf{n})}$$

In general, treat space-time indices as sets,

$$\mathbf{n} + \mathbf{m} \rightarrow \mu_1 \mu_2 \dots \mu_n \nu_1 \nu_2 \dots \nu_m$$

$$\mathbf{n} \setminus \mathbf{r} \to \mu_1 \dots \check{\mu}_{i_1} \dots \check{\mu}_{i_r} \dots \mu_n, \quad \mathbf{r} \to \mu_{i_1} \dots \mu_{i_r}, \quad \mathbf{r} \subset \mathbf{n}$$

summation over intersecting sets. . .

The 4D theory

The scale dependence of the two-point function is dimension (and model) dependent

$$S = \int \mathrm{d}x \, \left(-\frac{1}{2}\phi \cdot D^{-1} \cdot \phi + V(\phi) \right)$$

The basic propagators in four-dimensions are

$$D(x) = egin{cases} \sim rac{1}{4\pi^2}rac{1}{x^2} & ext{scalars, gauge bosons, etc,} \ \sim \gamma^\mu \partial_\mu rac{1}{4\pi^2}rac{1}{x^2}, & ext{fermions,} \end{cases}$$

- LGICOs are polynomials in fundamental letter and their derivatives.
- LGICOs are defined modulo EoM [™] can eliminate the traces of derivatives

Tools: differential renormalization

Differential regularization/renormalization scheme in real space allows to regularize singular expressions like [Freedman-Johnson-Latorre],

$$\frac{1}{x^{2k}} = -\frac{1}{4^{k-1}(k-1)!(k-2)!} \Box^{k-1} \frac{\ln \mu^2 x^2}{x^2}, \qquad k \ge 2$$

introduces a scale dependence:

$$\mu \frac{\partial}{\partial \mu} \left[\frac{1}{x^{2k}} \right]_{\text{reg}} \equiv \left[\frac{1}{x^{2k}} \right] = \frac{8\pi^2}{4^{k-1}(k-1)!(k-2)!} \Box^{k-2} \delta(x)$$

where we used the property

$$\Box \frac{1}{x^2} = -4\pi^2 \delta(x)$$

Corneliu Sochichiu (SKKU, Suwon) Dilatation operator: general structures SQS'11: July 18, 2011 20 / 39

One vertex level

In the leading one-loop approximation the contribution comes only from one- and two-vertex Feynman diagrams. Consider first the one-vertex level Regularizing the terms in the Wick Expansion we get for the first order in interaction potential

$$\begin{split} &-\int \mathrm{d}y \left[V_{\mathrm{int}}(y) * \right] = -\int \mathrm{d}y \, \left[\mathrm{e}^{\check{\phi}_y \cdot D_y \cdot \check{\phi}} \right] V_y \\ &= -\int \mathrm{d}y \left(\check{\phi}_y \cdot [D_y] \cdot \check{\phi} + \frac{1}{2} (\check{\phi}_y \otimes \check{\phi}_y) \cdot [D_y \otimes D_y] \cdot (\check{\phi} \otimes \check{\phi}) \right. \\ &+ \frac{1}{3!} (\check{\phi}^{\otimes 3}) \cdot [D_y^{\otimes 3}] \cdot (\check{\phi}^{\otimes 3}) + \frac{1}{4!} (\check{\phi}^{\otimes 4}) \cdot [D_y^{\otimes 4}] \cdot (\check{\phi}^{\otimes 4}) + \dots \right) V_y, \end{split}$$

One vertex level

In the leading one-loop approximation the contribution comes only from one- and two-vertex Feynman diagrams. Consider first the one-vertex level Regularizing the terms in the Wick Expansion we get for the first order in interaction potential

$$\begin{split} -\int \mathrm{d}y \left[V_{\mathrm{int}}(y) * \right] &= -\int \mathrm{d}y \left[\mathrm{e}^{\check{\phi}_y \cdot D_y \cdot \check{\phi}} \right] V_y \\ &= -\int \mathrm{d}y \left(\frac{1}{2} (\check{\phi}_y \otimes \check{\phi}_y) \cdot \left[D_y \otimes D_y \right] \cdot (\check{\phi} \otimes \check{\phi}) \\ &+ \frac{1}{3!} (\check{\phi}^{\otimes 3}) \cdot \left[D_y^{\otimes 3} \right] \cdot (\check{\phi}^{\otimes 3}) + \frac{1}{4!} (\check{\phi}^{\otimes 4}) \cdot \left[D_y^{\otimes 4} \right] \cdot (\check{\phi}^{\otimes 4}) \end{split} \right) V_y, \end{split}$$

Two vertex level

Second level yields

$$\begin{split} \frac{1}{2!} \int \mathrm{d}y_1 \int \mathrm{d}y_2 [V_{\mathrm{int}}(y_1) * V_{\mathrm{int}}(y_2) *] \\ &= \frac{1}{2} \int \mathrm{d}y_1 \int \mathrm{d}y_2 \times \\ &\left\{ (\check{\phi}_{y_1} \otimes \check{\phi}_{y_1} \otimes \check{\phi}_{y_2}) \cdot [D_{y_1} \otimes D_{y_1 - y_2} \otimes D_{y_2}] \cdot (\check{\phi} \otimes \check{\phi}_{y_2} \otimes \check{\phi}) + \right. \\ &\left. (\check{\phi}_{y_1}^{\otimes 3} \otimes \check{\phi}_{y_2}) \cdot [D_{y_1}^{\otimes 2} \otimes D_{y_1 - y_2} \otimes D_{y_2}] \cdot (\check{\phi}^{\otimes 2} \otimes \check{\phi}_{y_2} \otimes \check{\phi}) + \ldots \right\} V_{y_1} V_{y_2}. \end{split}$$

3

The The 3D theory

The leading contribution in 3*D* comes from the two loop level Basic propagators

$$D(x) = \begin{cases} \frac{1}{4\pi x}, & \text{for scalars, gauge bosons, etc,} \\ \gamma^{\mu} \partial_{\mu} \frac{1}{4\pi x}, & \text{for fermions,} \\ \epsilon_{\mu\nu\lambda} \partial_{\lambda} \frac{1}{4\pi x}, & \text{for Chern-Simons fields.} \end{cases}$$

Basic objects are still LGICO $O(\Phi)$, depending on fundamental fields $\phi(x)$ and their derivatives

$$\phi_{\mu_1\mu_2\ldots\mu_n}\equiv\partial_{\mu_1}\partial_{\mu_2}\ldots\partial_{\mu_n}\phi(0)$$

EoMs can be used to eliminate the dependence on CS gauge fields traces of derivatives

"Functional Wick Expansion"

Functional form of Wick expansion can be introduced through the following equations

$$: \mathcal{O}_1 :: \mathcal{O}_2 := e^{\check{D}_{12}} : \mathcal{O}_1 \mathcal{O}_2 :$$

$$: \mathcal{O}_1 :: \mathcal{O}_2 :: \mathcal{O}_3 := e^{\check{D}_{12} + \check{D}_{13} + \check{D}_{23}} : \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 :$$

$$: \mathcal{O}_1 :: \mathcal{O}_2 :: \mathcal{O}_3 :: \mathcal{O}_4 := e^{\check{D}_{12} + \check{D}_{13} + \check{D}_{23} + \check{D}_{14} + \check{D}_{24} + \check{D}_{34}} : \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 :$$

$$: \mathcal{O}_1 :: \mathcal{O}_2 : \cdots : \mathcal{O}_k := e^{\left(\sum_{l < m} \check{D}_{lm}\right)} : \mathcal{O}_1 \mathcal{O}_2 \dots \mathcal{O}_k :$$

where \check{D}_{xy} is a two-point differential operator

$$\check{D}_{xy} = \check{\Phi}_{x} \cdot \mathbf{D}_{xy} \cdot \check{\Phi}_{y} = \sum_{(\mathbf{n})} D_{xy}^{(\mathbf{n})} \check{s}_{xy}^{(\mathbf{n})},$$

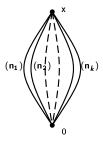
$$\check{s}_{xy}^{(\mathbf{n})} = \sum_{\substack{\mathbf{r},\mathbf{s}\\\mathbf{r}+\mathbf{s}=\mathbf{n}}} (-1)^{s} \check{\phi}_{x}^{(\mathbf{r})} \cdot \check{\phi}_{y}^{(\mathbf{s})} + \sum_{\substack{\mathbf{r},\mathbf{s}\\\mathbf{r}+\mathbf{s}+1=\mathbf{n}}} (-1)^{s} \check{\psi}_{x}^{(\mathbf{r})} \gamma^{1} \check{\psi}_{y}^{(\mathbf{s})} + \sum_{\substack{\mathbf{r},\mathbf{s}\\\mathbf{r}+\mathbf{s}+1\widetilde{1}'=\mathbf{n}}} (-1)^{s} \check{A}_{1x}^{(\mathbf{r})} \check{A}_{1y}^{(\mathbf{s})}$$

$$\check{\Phi}_{x} = \frac{\partial}{\partial \Phi_{x}}$$

One vertex lever (two point function)

The first non-trivial contribution comes from the first term of the expansion of interaction exponent,

$$\int_{y} \left[e^{\check{D}_{y0}} \right] V_{y} = \sum_{k} \frac{1}{k!} \left[D_{y0}^{(n_{1})} \dots D_{y0}^{(n_{k})} \right] \check{s}_{y0}^{(n_{1})} \dots \check{s}_{y0}^{(n_{k})} V_{y}$$



Two loops
$$\Rightarrow k = 3$$
.

Corneliu Sochichiu (SKKU, Suwon) Dilatation operator: general structures SQS'11: July 18, 2011 25 / 39

Evaluation of divergencies: 1-vertex level; two loops

$$\Delta_{(\mathbf{n})(\mathbf{m})(\mathbf{k})} \equiv \left[D_x^{(\mathbf{n})} D_x^{(\mathbf{m})} D_x^{(\mathbf{k})} \right] = \frac{1}{(4\pi)^3} \left[\partial_{(\mathbf{n})} \frac{1}{x} \partial_{(\mathbf{m})} \frac{1}{x} \partial_{(\mathbf{k})} \frac{1}{x} \right]$$

From general considerations we have,

$$\Delta_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k})}(x) = \frac{1}{(4\pi)^3} \sum_{\mathbf{r},s} F_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k})}^{(\mathbf{r}),s} \partial_{(\mathbf{r})} \partial^{2s} \delta(x),$$

where $F_{(n),(m),(k)}^{(r),s}$ are numerical coefficients, defined by

$$F_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k})}^{(\mathbf{r}),s} = f_{nmk}^{(\mathbf{r}),s} \left[\int_{X} \frac{\mathbf{x}^{(\mathbf{n})+(\mathbf{m})+(\mathbf{k})+(\mathbf{r})}}{x^{3+2(n+m+k-s)}} \right]$$

where

$$f_{nmk}^{(\mathbf{r}),s} = (-1)^{n+m+k} (2n-1)!! (2m-1)!! (2k-1)!! \alpha^{(\mathbf{r}),s}$$

and the factors $\alpha^{(\mathbf{n}),r}$ are the trace-reduced coefficients of Taylor expansion,

$$V_{x} = \sum_{(\mathbf{n}), r} \alpha^{(\mathbf{n}), r} \mathbf{x}^{(\mathbf{n})} x^{2r} \partial_{(\mathbf{n})} \partial^{2r} V_{0}.$$
Corneliu Sochichiu (SKKU, Suwon) Dilatation operator: general structures SQS'11: July 18, 2011 26 / 39

One-vertex level coefficients

The evaluation of Fs in dimensional regularization scheme and with IR cut-off μ , produces the following relevant contribution

$$\frac{2^{-(n+m+k+1)}(n+m+k)!\pi^{D/2}}{\Gamma\left(\frac{D+n+m+k}{2}\right)}g^{(\mathbf{n})+(\mathbf{m})+(\mathbf{k})}\mu^{-\epsilon}\Gamma(\epsilon)$$

This yields,

$$F_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k})}^{(\mathbf{r}),s} = -\delta_{n+m+k-r-2s,0} f_{nmk}^{(\mathbf{r}),s} g^{(\mathbf{n})+(\mathbf{m})+(\mathbf{k})} \frac{2^{-\frac{n+m+k}{2}}\pi}{(n+m+k+1)!!}$$

The Dilatation operator at one vertex level is given by,

$$H_{1-\text{vertex}} = \frac{1}{(4\pi)^3} \sum_{\{\mathbf{nmk}\}} F_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k})}^{(\mathbf{r}),s} \partial_{(\mathbf{r})} \partial^{2s} \check{s}_{(\mathbf{n})} \check{s}_{(\mathbf{m})} \check{s}_{(\mathbf{k})}[V]$$

Corneliu Sochichiu (SKKU, Suwon) Dilatation operator: general structures SQS'11: July 18, 2011 27 / 39

Two-vertex level

Two vertex level is given by the second term of the expansion of interaction exponent

$$H_{2-\text{vertex}} = \frac{1}{2!} \int_{X} \int_{Y} \left[e^{\check{\Phi}_{x} \cdot \mathbf{D}_{xy} \cdot \check{\Phi}_{y} + \check{\Phi}_{x} \cdot \mathbf{D}_{x} \cdot \check{\Phi} + \check{\Phi}_{y} \cdot \mathbf{D}_{y} \cdot \check{\Phi}} \right] V_{x} V_{y}$$

Restrict to the two loop part

$$\begin{aligned} H_{2-\text{vertex}} &= \int_{X} \int_{Y} \left(\frac{1}{2} \Delta_{(\mathbf{n}_{1})(\mathbf{n}_{2});(\mathbf{m});(\mathbf{k})}(x,y) \check{s}_{x}^{(\mathbf{n}_{1})} \check{s}_{x}^{(\mathbf{n}_{2})} \check{s}_{y}^{(\mathbf{m})} \check{s}_{xy}^{(\mathbf{k})} \right. \\ &+ \frac{1}{4} \Delta_{(\mathbf{n});(\mathbf{m});(\mathbf{k}_{1})(\mathbf{k}_{2})}(x,y) \check{s}_{x}^{(\mathbf{n})} \check{s}_{y}^{(\mathbf{m})} \check{s}_{xy}^{(\mathbf{k}_{1})} \check{s}_{xy}^{(\mathbf{k}_{2})} \right) V_{x} V_{y}, \end{aligned}$$

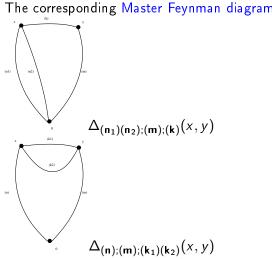
with

$$\Delta_{(\mathbf{n}_{1})(\mathbf{n}_{2});(\mathbf{m});(\mathbf{k})}(x,y) = \frac{1}{(4\pi)^{4}} \left[\partial_{(\mathbf{n}_{1})} \frac{1}{x} \partial_{(\mathbf{n}_{2})} \frac{1}{x} \partial_{(\mathbf{m})} \frac{1}{y} \partial_{(\mathbf{k}_{1})}^{x} \frac{1}{|x-y|} \right],$$

$$\Delta_{(\mathbf{n});(\mathbf{m});(\mathbf{k}_{1})(\mathbf{k}_{2})}(x,y) = \frac{1}{(4\pi)^{4}} \left[\partial_{(\mathbf{n})} \frac{1}{x} \partial_{(\mathbf{m})} \frac{1}{y} \partial_{(\mathbf{k}_{1})}^{x} \frac{1}{|x-y|} \partial_{(\mathbf{k}_{2})}^{x} \frac{1}{|x-y|} \right],$$

$$\Box \mapsto \langle \Box \rangle \langle \Box \rangle$$

Two-vertex level



The corresponding Master Feynman diagrams are

Corneliu Sochichiu (SKKU, Suwon) SQS'11: July 18, 2011 29 / 39

Two-vertex level

Duality relates these factors

$$\Delta_{(\mathbf{n});(\mathbf{m});(\mathbf{k}_1)(\mathbf{k}_2)}(x,y) = (-1)^m \Delta_{(\mathbf{k}_1)(\mathbf{k}_2);(\mathbf{m});(\mathbf{n})}(x-y,-y)$$

Evaluation of the general structure reveals

$$\Delta_{(\mathbf{n}_1),(\mathbf{n}_2);(\mathbf{m});(\mathbf{k})}(x,y) = \frac{1}{(4\pi)^4} \sum_{\substack{\mathbf{p},r\\\mathbf{s},t}} F_{(\mathbf{n}_1),(\mathbf{n}_2);(\mathbf{m});(\mathbf{k})}^{(\mathbf{p})} \partial_{(\mathbf{p})}^{2r} \delta(x) \partial_{(\mathbf{s})} \partial^{2t} \delta(y)$$

$$F_{(\mathbf{n}_1),(\mathbf{n}_2);(\mathbf{m});(\mathbf{k})}^{(\mathbf{p}),r;(\mathbf{s}),t} = f_{n_1n_2mk} \int_X \int_Y \left[\frac{\mathbf{x}^{(\mathbf{n}_1)+(\mathbf{n}_2)+(\mathbf{p})}}{x^{2+2(n_1+n_2-r)}} \frac{\mathbf{y}^{(\mathbf{m})+(\mathbf{s})}}{y^{1+2(m-t)}} \frac{(\mathbf{x}-\mathbf{y})^{(\mathbf{k})}}{|x-y|^{1+2k}} \right]$$

.

B> B

where,

$$f_{n_1n_2mk} = (-1)^{n_1+n_2+m+k} (2n_1-1)!!(2n_2-1)!!(2m-1)!!(2k-1)!!\alpha^{(\mathbf{p}),r}\alpha^{(\mathbf{s}),t}$$

Two-vertex level coefficients

We can apply a "trick" to simplify the three-point coefficient function. Method of 'Uniqueness' [Kazakov et al.].

$$\xrightarrow{n,\alpha} \underbrace{m,\beta} \longrightarrow v_{nm}(\alpha,\beta) \times \underbrace{n+m,\alpha+\beta-D}$$

or

$$\int_{y} \frac{(\mathbf{x} - \mathbf{y})^{\mathbf{m}}}{|\mathbf{x} - \mathbf{y}|^{\beta}} \frac{\mathbf{y}^{\mathbf{n}}}{y^{\alpha}} = v_{nm}(\alpha, \beta) \frac{\mathbf{x}^{\mathbf{n} + \mathbf{m}}}{x^{\alpha + \beta - D}}$$
$$v_{nm}(\alpha, \beta) = \pi^{D/2} 2^{-2(n+m)} \frac{\Gamma(\frac{D-\alpha}{2} + n)\Gamma(\frac{D-\beta}{2} + m)\Gamma(\frac{\alpha + \beta - D}{2})}{\Gamma(\frac{\alpha}{2})\Gamma(\frac{\beta}{2})\Gamma(D - \frac{\alpha + \beta}{2} + m + n)}$$

Then we can remove one integration and reduce the regularized three point function to two point functions \times some factor.

No additional singularities compared to derivative-free exchange!

Two-vertex level coefficients

We can apply a "trick" to simplify the three-point coefficient function. Method of 'Uniqueness' [Kazakov et al.].

$$\xrightarrow{n, \alpha} \underbrace{m, \beta} \longrightarrow v_{nm}(\alpha, \beta) \times \underbrace{^{n+m, \alpha+\beta-D}}$$

or

$$\int_{y} \frac{(\mathbf{x} - \mathbf{y})^{\mathbf{m}}}{|\mathbf{x} - \mathbf{y}|^{\beta}} \frac{\mathbf{y}^{\mathbf{n}}}{y^{\alpha}} = v_{nm}(\alpha, \beta) \frac{\mathbf{x}^{\mathbf{n} + \mathbf{m}}}{\mathbf{x}^{\alpha + \beta - D}}$$
$$v_{nm}(\alpha, \beta) = \pi^{D/2} 2^{-2(n+m)} \frac{\Gamma(\frac{D-\alpha}{2} + n)\Gamma(\frac{D-\beta}{2} + m)\Gamma(\frac{\alpha + \beta - D}{2})}{\Gamma(\frac{\alpha}{2})\Gamma(\frac{\beta}{2})\Gamma(D - \frac{\alpha + \beta}{2} + m + n)}$$

Then we can remove one integration and reduce the regularized three point function to two point functions \times some factor. No additional singularities compared to derivative-free exchange!

Two-vertex level result

The two-point function coefficients are given by

$$F_{(\mathbf{n}_{1}),(\mathbf{n}_{2});(\mathbf{m});(\mathbf{k})}^{(\mathbf{p}),r;(\mathbf{s}),t} = -\delta_{(n_{1}+n_{2}+m+k),(p+s+2r+2t)} f_{n_{1}n_{2}mk} \times v_{k,m+s} (1+2(m-t),1+2k)\beta^{(\mathbf{n}_{1})+(\mathbf{n}_{2})+(\mathbf{m})+(\mathbf{k})+(\mathbf{p})+(\mathbf{s})}\Big|_{D=3}$$

where,

$$\beta^{\mathbf{n}} = \int_{\hat{\mathbf{x}}^2 = 1} \mathrm{d}\hat{\mathbf{x}} \, \hat{\mathbf{x}}^{\mathbf{n}} = \frac{2^{-(n+1)} n! \pi^{D/2}}{\Gamma\left(\frac{D+n}{2}\right)} g^{\mathbf{n}},$$

with $g^{n} = 0$ for odd *n* while for even *n* it is the symmetrized product of metric tensors,

$$g^{\mathbf{n}}\mapsto \frac{1}{|S_n|}\sum_{p\in S_n}g^{\mu_{p(1)}\mu_{p(2)}}\cdots g^{\mu_{p(n-1)}\mu_{p(n)}}.$$

Corneliu Sochichiu (SKKU, Suwon) Dilatation operator: general structures SQS'11: July 18, 2011 32 / 39

Three-vertex level

The three-vertex contribution is given by,

$$H_{3V} = \int_{1} \int_{2} \int_{3} \left(3 \left[\check{D}_{1} \check{D}_{2} \check{D}_{12} \check{D}_{13} \check{D}_{23} \right] + 3 \left[\check{D}_{1} \check{D}_{2} \check{D}_{3} \check{D}_{12} \check{D}_{23} \right] \right) V_{1} V_{2} V_{3}$$
$$\check{D}_{xy} \equiv \sum_{\mathbf{n}} D_{xy}^{(\mathbf{n})} \check{s}^{(\mathbf{n})}$$

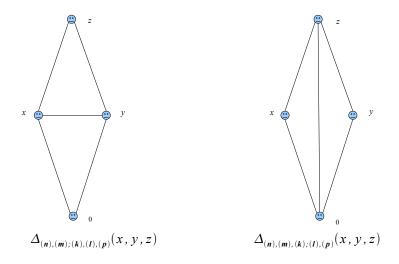
Therefore, we face to the evaluation of two scale factors,

$$\begin{split} \Delta_{(\mathbf{n}),(\mathbf{m});(\mathbf{k}),(\mathbf{l}),(\mathbf{p})}(x,y,z) &= \\ & \left[\partial_{(\mathbf{n})}\frac{1}{x}\partial_{(\mathbf{m})}\frac{1}{y}\partial_{(\mathbf{k})}\frac{1}{|x-y|}\partial_{(\mathbf{l})}\frac{1}{|x-z|}\partial_{(\mathbf{p})}^{y}\frac{1}{|y-z|}\right], \\ \Delta_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k});(\mathbf{l}),(\mathbf{p})}(x,y,z) &= \left[\partial_{(\mathbf{n})}\frac{1}{x}\partial_{(\mathbf{m})}\frac{1}{y}\partial_{(\mathbf{k})}\frac{1}{z}\partial_{(\mathbf{l})}\frac{1}{|x-y|}\partial_{(\mathbf{p})}^{y}\frac{1}{|y-z|}\right]. \end{split}$$

...again duality relates these factors...

Three-vertex level

Graphically the Master diagrams are



Three-vertex level

Duality relates

$$\Delta_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k});(\mathbf{l}),(\mathbf{p})}(x,y,z) = \Delta_{(\mathbf{n}),(\mathbf{l});(\mathbf{k}),(\mathbf{m}),(\mathbf{p})}(-z,-y,-x)$$

The general structure is given by

$$\begin{split} \Delta_{(\mathbf{n}),(\mathbf{m});(\mathbf{k}),(\mathbf{l}),(\mathbf{p})}(x,y,z) &= \\ \frac{1}{(4\pi)^5} \sum_{\substack{\mathbf{p},r\\\mathbf{s},t\\\mathbf{u},v}} F_{(\mathbf{n}),(\mathbf{m});(\mathbf{k}),(\mathbf{l}),(\mathbf{p})}^{(\mathbf{p})} \partial_{(\mathbf{p})} \partial^{2r} \delta(x) \partial_{(\mathbf{s})} \partial^{2t} \delta(y) \partial_{(\mathbf{u})} \partial^{2v} \delta(z), \end{split}$$

$$F_{(\mathbf{n}),(\mathbf{m});(\mathbf{k}),(\mathbf{l}),(\mathbf{q})}^{(\mathbf{p}),r;(\mathbf{s}),t;(\mathbf{u}),v} = f_{nmklq}^{(\mathbf{p}),r;(\mathbf{s}),t;(\mathbf{u}),v} \\ \times \int_{X} \int_{Y} \int_{Z} \left[\frac{\mathbf{x}^{(\mathbf{n})+(\mathbf{p})}}{x^{1+2(n-r)}} \frac{\mathbf{y}^{(\mathbf{m})+(\mathbf{s})}}{y^{1+2(m-t)}} \frac{\mathbf{z}^{(\mathbf{k})+(\mathbf{u})}}{z^{1+2(k-v)}} \frac{(\mathbf{x}-\mathbf{z})^{(\mathbf{l})}}{|x-z|^{1+2l}} \frac{(\mathbf{y}-\mathbf{z})^{(\mathbf{q})}}{|y-z|^{1+2q}} \right]$$

B> B

Three-vertex level results

Applying the chain rule twice, we can remove two integrations and reduce the four point integral to a two point one

$$\begin{bmatrix} \frac{\mathbf{x}^{(n)+(\mathbf{p})}}{x^{1+2(n-r)}} \frac{\mathbf{y}^{(m)+(\mathbf{s})}}{y^{1+2(m-t)}} \frac{\mathbf{z}^{(\mathbf{k})+(\mathbf{u})}}{z^{1+2(k-v)}} \frac{(\mathbf{x}-\mathbf{z})^{(\mathbf{l})}}{|\mathbf{x}-\mathbf{z}|^{1+2l}} \frac{(\mathbf{y}-\mathbf{z})^{(\mathbf{q})}}{|\mathbf{y}-\mathbf{z}|^{1+2q}} \end{bmatrix} = (-1)^{q+l} \mathbf{v}_{q,m+s} (1+2q, 1+2(m-t)) \mathbf{v}_{l,n+p} (1+2l, 1+2(n-r)) \\ \times \left[\int_{z} \frac{\mathbf{z}^{(n)+(m)+(\mathbf{k})+(\mathbf{l})+(\mathbf{q})+(\mathbf{s})+(\mathbf{p})+(\mathbf{u})}}{z^{5+2(n+m+k+l+q-r-t-v)-2D}} \right]$$

which we know how to evaluate! All in one

$$F_{(\mathbf{n}),(\mathbf{m});(\mathbf{k}),(\mathbf{l}),(\mathbf{q})}^{(\mathbf{p}),r;(\mathbf{s}),t;(\mathbf{u}),v} = \delta_{n+m+k+l+q,2(r+t+v)+5} f_{nmklq}^{(\mathbf{p}),r;(\mathbf{s}),t;(\mathbf{u}),v} (-1)^{q+l} \\ \times v_{q,m+s} (1+2q,1+2(m-t)) v_{l,n+p} (1+2l,1+2(n-r)) \\ \times \beta^{(\mathbf{n})+(\mathbf{m})+(\mathbf{k})+(\mathbf{l})+(\mathbf{q})+(\mathbf{s})+(\mathbf{p})+(\mathbf{u})} \Big|_{\substack{D=3\\ n+q-k+1+q,2(r+t+v)+5}}$$

Corneliu Sochichiu (SKKU, Suwon) Dilatation operator: general structures SQS'11: July 18, 2011 36 / 39

Summary of the computation

^

$$\begin{split} \Delta_{2-\text{loop}} &= H_{1-\text{vertex}} + H_{2-\text{vertx}} + H_{3-\text{vertex}} \\ H_{1-\text{vertex}} &= -\frac{1}{3!(4\pi)^3} \sum_{\substack{n,m,k \\ r,s}} (-1)^r F_{(n),(m),(k)}^{(r),s} \partial_{(r)} \partial^{2s} \check{s}_{y0}^{(m)} \check{s}_{y0}^{(m)} \check{s}_{y0}^{(k)} (V_y) \Big|_{y=0} \,, \end{split}$$

. .

. .

э

4 E > 4 E >

$$\begin{split} H_{2-\text{vertex}} &= \frac{1}{2(4\pi)^4} \left\{ \sum (-1)^{p+s} F^{(p)r;(s)t}_{(n_1)(n_2);(m);(k)}(\partial_{(p)}\partial^{2r})_x (\partial_{(s)}\partial^{2t})_y \check{s}^{(n_1)}_x \check{s}^{(n_2)}_x \check{s}^{(n_2)}_y \check{s}^{(m)}_{xy} \check{s}^{(k)}_{xy} \right. \\ &\left. + \frac{1}{2} \sum (-1)^{m+p+s} F^{(p)r;(s)t}_{(k_1)(k_2);(m);(n)}(\partial_{(p)}\partial^{2r})_x (\partial_{(s)}\partial^{2t})_y \check{s}^{(n)}_x \check{s}^{(n_2)}_x \check{s}^{(m)}_y \check{s}^{(k_1)}_{xy} \check{s}^{(k_2)}_{xy} \right\} \left. V_x V_y \right|_{x=y=0} \end{split}$$

$$\begin{split} H_{3-\text{vertex}} &= -\frac{1}{2(4\pi)^5} \left\{ (-1)^{p+r+s} F_{(1),(2);(12),(13),(23)}^{(p),r;(s),t;(u),\nu} (\partial_{(p)}\partial^{2r})_1 (\partial_{(s)}\partial^{2t})_2 (\partial_{(u)}\partial^{2\nu})_3 \check{s}_1 \check{s}_2 \check{s}_{12} \check{s}_{13} \check{s}_{23} \right. \\ & \left. + (-1)^p F_{(1),(12);(2),(3),(23)}^{(p),r;(s),t;(u),\nu} (\partial_{(p)}\partial^{2r})_1 (\partial_{(s)}\partial^{2t})_2 (\partial_{(u)}\partial^{2\nu})_3 \check{s}_1 \check{s}_2 \check{s}_{12} \check{s}_{3} \check{s}_{23} \right\} V_1 V_2 V_3 |_{1=2=3=0} \end{split}$$

Corneliu Sochichiu (SKKU, Suwon) SQS'11: July 18, 2011 37 / 39 A faster way to obtain the dilatation operator?

Alternatively, consider the dilatation operator as Nöther charge corresponding to classical dilatations:

- classical dimension \longmapsto mass
- The large mass limit \longleftrightarrow perturbative expansion of the dilatation operator
- Indeed, the massive Yang–Mills mechanics reproduces the one-loop dilatation operator in the scalar sector of $\mathcal{N}=4$ SYM

Conclusion & Outlook

- Starting from a renormalizable theory one can obtain a model for which the (imaginary) time evolution coincides with RG-flows of given theory
- At least at the one-loop level the same result can be obtained by a slow roll limit of a massive extension of the model
- The approach is purely constructive, we didn't prove any existence theorem, positivity of the norms, unitarity etc.
- In the case of conformal theories the scheme coincides with the standard AdS/CFT correspondence
- For a general renormalizable gauge theory the large N limit is expected to lead to a *local* geometrical model
- Better parametrization for the LGICO would do a better job