Dilatation operator: general structures

Corneliu Sochichiu

SKKU, Suwon

SQS'11: July 18, 2011

Outline

(1) Introduction
(2) $\mathcal{N}=4 S Y M$
(3) General case

- $4 D$ theory
- 3D theory
(4) Conclusion \& Outlook

뭉 based on (ArXiv):
1003.5272, 0811.2669, 0804.1835, 0707.3517, hep-th/0701089, hep-th $/ 0611274$, hep-th $/ 0608028$, hep-th $/ 0411261$, hep-th/0410010, hep-th/0409086, hep-th/0408102, hep-th/0404066

General Motivation

- Known examples of solvable gauge models bring to geometric description Examples:
- Matrix models
- Seiberg-Witten model
- Chiral model for strongly coupled QCD
- etc...

gauge theory	
geometric model	\longrightarrow microscopic

General Motivation

- Macroscopic description: introduce collective variables taking the values in the phase/moduli space of the model.
- Non-trivial symmetries of the microscopic model (apart from gauge invariance) translate to the symmetries of the macroscopic one
- The description can not depend on the parametrization of the space of collective modes \Rightarrow The effective theory should be geometric, i.e. phase/moduli space reparametrization invariant
- The scale appears as a (thermo)dynamical parameter

(non)AdS/(non)CFT

- Most striking example of such a description is provided by AdS/CFT correspondence.
- Originally it was formulated as a property of the string theory, but in the present it extended outside the string theory framework.
- It is a two-way weak/strong coupling correspondence
- Most studied case: correspondence between $4 D \mathcal{N}=4$ super Yang-Mills theory and string/gravity on $\mathrm{AdS}_{5} \times S^{5}$
- Intensively studied: correspondence between 3D Chern-Simons-matter conformal theory and $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$ and relative theories...

AdS/CFT correspondence ingredients

$(\mathcal{N}=4$ SYM $)$

In the limit of large gauge group rank N, we have the correspondence [Maldacena]

$$
(\mathcal{N}=4 \mathrm{SYM})_{\mathcal{M}_{1,3}} \Leftrightarrow(\text { string theory })_{\mathrm{AdS}_{5} \times S^{5}}
$$

Identification of symmetry groups $\operatorname{PSU}(2,2 \mid 4) \supset \mathrm{SO}(2,4) \times \mathrm{SO}(6)$; The correspondence between operators of SYM and states of ST. Dilatations correspond to time shifts

Non-planar extension

For $N<\infty$ the string interactions should be included with the rate $\sim N^{-1}$.

$$
g_{s} \sim J^{2} / N, \quad J \text { - classical dimension/length }
$$

SYM: $N \rightarrow \infty$ - invariance of single trace operators. Single trace operators do not mix with multi-trace ones under renormalization. Integrability [Minahan-Zarembo,Beisert-Staudacher, etc]
\rightarrow "AdS/CFT dictionary"

"AdS/CFT dictionary"

AdS $_{5} \times S^{5}$ strings	$\mathcal{N}=4$ SYM
quantum states	Local gauge invariant composite operators (LGICO)
AdS isometry	Conformal symmetry
Sphere isometry	R-symmetry
Time shift	Dilatation, RG-flow
Hamiltonian, H	Dilatation operator, Mixing matrix, Δ
\ldots	\ldots
This dictionary was checked in various regimes, but there is (will be?) no	
mathematical proof.	

"AdS/CFT dictionary"

AdS $_{5} \times S^{5}$ strings	$\mathcal{N}=4$ SYM
quantum states	Local gauge invariant composite operators (LGICO)
AdS isometry	Conformal symmetry
Sphere isometry	R-symmetry
Time shift	Dilatation, RG-flow
Hamiltonian, H	Dilatation operator, Mixing matrix, Δ
\ldots	\ldots
This dictionary was checked in various regimes, but there is (will be?) no	
mathematical proof.	

Explicit construction of the dynamical system

$\mathcal{N}=4$ SYM field content: $A_{\mu}, \psi, \phi^{i}, i=1, \ldots, 6$
"Alphabet": $\left\{W_{A}\right\}=\left\{F_{\mu \nu}, \phi, \psi, \nabla F, \nabla \phi, \nabla \psi \ldots\right\}$
"Language": gauge invariant combinations of letters
"Words": simplest gauge invariants, one-trace composite operators,

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L}}=\operatorname{tr} W_{A_{1}} W_{A_{2}} \ldots W_{A_{L}}
$$

"Phrases" (LGICO):

$$
\mathcal{O}_{A_{1} A_{2} \ldots A_{L_{1}}} \mathcal{O}_{B_{1} B_{2} \ldots B_{L_{2}}} \ldots \mathcal{O}_{C_{1} C_{2} \ldots C_{L_{r}}}
$$

Operator mixing: as $N \rightarrow \infty$ the trace structure becomes invariant: linear combinations of words form invariant spaces

Scale dependence: Renormalization \& Operator mixing

Scale dependence is induced by the renormalization Consider a set of composite operators $\left\{\mathcal{O}_{J}\right\}$ closed under renormalization (mixing)

$$
\mathcal{O}_{J}^{\text {Ren }}=Z(\Lambda)_{J}^{\prime} \mathcal{O}_{l}
$$

Dilatation Operator (Generator of RG-flows, now our Hamiltonian)

$$
\Delta=Z^{-1} \cdot \frac{\partial Z}{\partial \log \Lambda}
$$

Anomalous dimensions

$$
\Delta \mathcal{O}_{\lambda}=\lambda \mathcal{O}_{\lambda}
$$

General case

- So far we considered the case of $\mathcal{N}=4$ in $4 D$. Generalizations to other cases are possible.
- Various deformations of $\mathcal{N}=4$ SYM in 4d; Chern-Simons-matter theories (ABJM \& friends) in 3d were considered since that. . .
- How about the general case?
- Can we construct a corresponding model in the general case of a renormalizable theory?
- What are the necessary ingredients?
- And which are the universal structures?
- What are the model dependent features?

Generalization to renormalizable theories
(à la Connes)

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States
space of LGICO (Local gauge invariant composite operators)
- Hamiltonian Dilatation Operator, (RG-flow generator)
- Observables

What else?

- The states should form a Hilbert space!
- Hermitian Hamiltonian.
- etc.

Generalization to renormalizable theories

(à la Connes)

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables

Automorphisms of the algebra of LGICOs.

What else?

- The states should form a Hilbert space!
- Hermitian Hamiltonian
- etc

Generalization to renormalizable theories

(à la Connes)

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables

Automorphisms of the algebra of LGICOs.

What else?

- The states should form a Hilbert space!
- Hermitian Hamiltonian
- etc

Generalization to renormalizable theories

(à la Connes)

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables: . . Automorphisms of the algebra of LGICOs.

What else?

- The states should form a Hilbert space!
- Hermitian Hamiltonian
- etc

Generalization to renormalizable theories

(à la Connes)

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables: ... Automorphisms of the algebra of LGICOs.

What else?

- The states should form a Hilbert space!
- Hermitian Hamiltonian
- etc

Generalization to renormalizable theories

(à la Connes)

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables: ... Automorphisms of the algebra of LGICOs.

What else?

- The states should form a Hilbert space!
- Hermitian Hamiltonian...
- etc

Generalization to renormalizable theories

(à la Connes)

One can construct a quantum theory model from the original field theory. The new quantum theory is defined by,

- Hilbert space of States: space of LGICO (Local gauge invariant composite operators)
- Hamiltonian: Dilatation Operator, (RG-flow generator)
- Observables: . . Automorphisms of the algebra of LGICOs.

What else?

- The states should form a Hilbert space!
- Hermitian Hamiltonian...
- etc...

General case

Is there any natural way to define the dual geometric theory?
Well. . . maybe.
At least in Perturbation Theory.
but we know it well in conformal theory

General case

Is there any natural way to define the dual geometric theory?
Well. . . maybe. . .
but we know it well in conformal theory

General case

Is there any natural way to define the dual geometric theory?
Well. . . maybe. . .
... At least in Perturbation Theory...

General case

Is there any natural way to define the dual geometric theory?
Well. . . maybe. . .
... At least in Perturbation Theory...
... but we know it well in conformal theory

Hermitian product and Hamiltonian for a CFT

Consider first a Conformal Field Theory. The primary operators $\mathcal{O}_{1}(x)$ and $\mathcal{O}_{2}(x)$ of dimensions Δ_{1} and Δ_{2} have the following correlator,

$$
\left\langle\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)\right\rangle=\frac{C \delta_{\Delta_{1} \Delta_{2}}}{x^{\Delta_{1}+\Delta_{2}}}
$$

The identification $\mathcal{O} \mapsto|\mathcal{O}\rangle$ with $\left\langle\mathcal{O}_{1} \mid \mathcal{O}_{2}\right\rangle=C \delta_{\Delta_{1} \Delta_{2}}$ and

$$
H\left|\mathcal{O}_{i}\right\rangle=\Delta_{i}\left|\mathcal{O}_{i}\right\rangle
$$

solves the problem...

Hermitian product and Hamiltonian for a generic QFT
n웅 We can extend this for a generic renormalizable theory: Hermitian product and Hamiltonian can be introduced through the correlators

$$
\left\langle\mathcal{O}^{\dagger}(x) \mathcal{O}^{\prime}(0)\right\rangle=\langle\mathcal{O}|\left(\mu^{2} x^{2}\right)^{-\mathbf{D}}\left|\mathcal{O}^{\prime}\right\rangle \equiv\langle\mathcal{O}| \mathrm{e}^{-\tau \mathbf{D}}\left|\mathcal{O}^{\prime}\right\rangle
$$

$\tau=\log \left(\mu^{2} x^{2}\right)$

$$
\begin{gathered}
\left\langle\mathcal{O} \mid \mathcal{O}^{\prime}\right\rangle=\left.\left\langle\mathcal{O}^{\dagger}(x) \mathcal{O}^{\prime}(0)\right\rangle\right|_{\mu^{2} x^{2}=1} \\
\langle\mathcal{O}| \mathbf{D}\left|\mathcal{O}^{\prime}\right\rangle=-\left.\frac{1}{2} \mu \frac{\partial}{\partial \mu}\left\langle\mathcal{O}^{\dagger}(x) \mathcal{O}^{\prime}(0)\right\rangle\right|_{\mu^{2} x^{2}=1}
\end{gathered}
$$

\ldots...as soon as we identify local operators with quantum states

General Construction for Hermitian product and Hamiltonian

We have to analyze the RG-transformation of a composite operator \mathcal{O} in perturbation theory. Mixing matrix $Z(\Lambda)$ can be found considering divergent terms in correlators of two probe operators \mathcal{O} and \mathcal{O}^{\prime},

$$
\left\langle: \mathcal{O}_{y}^{\prime}(\phi):: \mathcal{O}_{0}:\right\rangle=\left\langle: \mathcal{O}_{y}^{\prime}: \mathrm{e}^{-\int: V(\phi):}: \mathcal{O}_{0}:\right\rangle_{0}
$$

The source of relevant divergences is the Wick expansion of products

$$
e^{-\int: V(\phi):}: \mathcal{O}_{0}:=\left(1-\int: V(\phi):+\frac{1}{2!} \iint: V(\phi):: V(\phi):+\ldots\right): \mathcal{O}_{0}:
$$

So, we should modify \mathcal{O}_{0} in such a way to cancel divergences and find the scale dependence after the cancelation.

Wick expansion

Wick expansion in functional form can be cast into [see one of the Kleinert's books]

$$
: \mathcal{O}_{y}^{\prime}:: \mathcal{O}_{x}:=\mathrm{e}^{\check{\phi}_{A y} D_{A B}(y-x) \check{\phi}_{B x}} \mathcal{O}_{y}^{\prime} \mathcal{O}_{x} \equiv \mathcal{O}^{\prime} * \mathcal{O}(x, y)
$$

* - star product resembles one in noncommutative theories, but is different

$$
\check{\phi}_{A x}=\frac{\partial}{\partial \phi_{A}(x)} \quad \text { Not a functional derivative! }
$$

e.g. Euclidean massless propagator

Functional Wick expansion can be generalized to the product of 3 , 4,... factors

A note on Notations

We have to deal with complicate expressions notations are important.

- Condensed (multi-index)

$$
\mu_{1} \mu_{2} \ldots \mu_{n} \rightarrow \mathbf{n}, \quad \phi_{\mathbf{n}}=\partial_{\mathbf{n}} \phi(0)
$$

- A traceless set of indices,

$$
\left(\mu_{1} \mu_{2} \ldots \mu_{n}\right) \rightarrow(\mathbf{n}): \quad \phi_{(\mathbf{n})}
$$

- In general, treat space-time indices as sets,

$$
\begin{gathered}
\mathbf{n}+\mathbf{m} \rightarrow \mu_{1} \mu_{2} \ldots \mu_{n} \nu_{1} \nu_{2} \ldots \nu_{m} \\
\mathbf{n} \backslash \mathbf{r} \rightarrow \mu_{1} \ldots \check{\mu}_{i_{1}} \ldots \check{\mu}_{i_{r}} \ldots \mu_{n}, \quad \mathbf{r} \rightarrow \mu_{i_{1}} \ldots \mu_{i_{r}}, \quad \mathbf{r} \subset \mathbf{n}
\end{gathered}
$$

- summation over intersecting sets...

The $4 D$ theory

The scale dependence of the two-point function is dimension (and model) dependent

$$
S=\int \mathrm{d} x\left(-\frac{1}{2} \phi \cdot D^{-1} \cdot \phi+V(\phi)\right)
$$

The basic propagators in four-dimensions are

$$
D(x)= \begin{cases}\sim \frac{1}{4 \pi^{2}} \frac{1}{x^{2}} & \text { scalars, gauge bosons, etc, } \\ \sim \gamma^{\mu} \partial_{\mu} \frac{1}{4 \pi^{2}} \frac{1}{x^{2}}, & \text { fermions }\end{cases}
$$

- LGICOs are polynomials in fundamental letter and their derivatives.
- LGICOs are defined modulo EoM 傕 can eliminate the traces of derivatives

Tools: differential renormalization

Differential regularization/renormalization scheme in real space allows to regularize singular expressions like [Freedman-Johnson-Latorre],

$$
\frac{1}{x^{2 k}}=-\frac{1}{4^{k-1}(k-1)!(k-2)!} \square^{k-1} \frac{\ln \mu^{2} x^{2}}{x^{2}}, \quad k \geq 2
$$

introduces a scale dependence:

$$
\mu \frac{\partial}{\partial \mu}\left[\frac{1}{x^{2 k}}\right]_{\mathrm{reg}} \equiv\left[\frac{1}{x^{2 k}}\right]=\frac{8 \pi^{2}}{4^{k-1}(k-1)!(k-2)!} \square^{k-2} \delta(x)
$$

where we used the property

$$
\square \frac{1}{x^{2}}=-4 \pi^{2} \delta(x)
$$

One vertex level

In the leading one-loop approximation the contribution comes only from one- and two-vertex Feynman diagrams. Consider first the one-vertex level Regularizing the terms in the Wick Expansion we get for the first order in interaction potential

$$
\begin{aligned}
& -\int \mathrm{d} y\left[V_{\mathrm{int}}(y) *\right]=-\int \mathrm{d} y\left[\mathrm{e}^{\check{\phi}_{y} \cdot D_{y} \cdot \check{\phi}}\right] V_{y} \\
& =-\int \mathrm{d} y\left(\check{\phi}_{y} \cdot\left[D_{y}\right] \cdot \check{\phi}+\frac{1}{2}\left(\check{\phi}_{y} \otimes \check{\phi}_{y}\right) \cdot\left[D_{y} \otimes D_{y}\right] \cdot(\check{\phi} \otimes \check{\phi})\right. \\
& \left.\quad+\frac{1}{3!}\left(\check{\phi}^{\otimes 3}\right) \cdot\left[D_{y}^{\otimes 3}\right] \cdot\left(\check{\phi}^{\otimes 3}\right)+\frac{1}{4!}\left(\check{\phi}^{\otimes 4}\right) \cdot\left[D_{y}^{\otimes 4}\right] \cdot\left(\check{\phi}^{\otimes 4}\right)+\ldots\right) V_{y},
\end{aligned}
$$

One vertex level

In the leading one-loop approximation the contribution comes only from one- and two-vertex Feynman diagrams. Consider first the one-vertex level Regularizing the terms in the Wick Expansion we get for the first order in interaction potential

$$
\begin{aligned}
& -\int \mathrm{d} y\left[V_{\mathrm{int}}(y) *\right]=-\int \mathrm{d} y\left[\mathrm{e}^{\check{\phi}_{y} \cdot D_{y} \cdot \check{\phi}}\right] V_{y} \\
& =-\int \mathrm{d} y\left(\begin{array}{c}
\frac{1}{2}\left(\check{\phi}_{y} \otimes \check{\phi}_{y}\right) \cdot\left[D_{y} \otimes D_{y}\right] \cdot(\check{\phi} \otimes \check{\phi}) \\
\\
\quad+\frac{1}{3!}\left(\check{\phi}^{\otimes 3}\right) \cdot\left[D_{y}^{\otimes 3}\right] \cdot\left(\check{\phi}^{\otimes 3}\right)+\frac{1}{4!}\left(\check{\phi}^{\otimes 4}\right) \cdot\left[D_{y}^{\otimes 4}\right] \cdot\left(\check{\phi}^{\otimes 4}\right)
\end{array}\right) V_{y},
\end{aligned}
$$

Two vertex level

Second level yields

$$
\begin{aligned}
& \frac{1}{2!} \int \mathrm{d} y_{1} \int \mathrm{~d} y_{2}\left[V_{\mathrm{int}}\left(y_{1}\right) * V_{\text {int }}\left(y_{2}\right) *\right] \\
& \quad=\frac{1}{2} \int \mathrm{~d} y_{1} \int \mathrm{~d} y_{2} \times \\
& \left\{\left(\check{\phi}_{y_{1}} \otimes \check{\phi}_{y_{1}} \otimes \check{\phi}_{y_{2}}\right) \cdot\left[D_{y_{1}} \otimes D_{y_{1}-y_{2}} \otimes D_{y_{2}}\right] \cdot\left(\check{\phi} \otimes \check{\phi}_{y_{2}} \otimes \check{\phi}\right)+\right. \\
& \left.\left(\check{\phi}_{y_{1}}^{\otimes 3} \otimes \check{\phi}_{y_{2}}\right) \cdot\left[D_{y_{1}}^{\otimes 2} \otimes D_{y_{1}-y_{2}} \otimes D_{y_{2}}\right] \cdot\left(\check{\phi}^{\otimes 2} \otimes \check{\phi}_{y_{2}} \otimes \check{\phi}\right)+\ldots\right\} V_{y_{1}} V_{y_{2}} .
\end{aligned}
$$

The The 3D theory

The leading contribution in $3 D$ comes from the two loop level Basic propagators

$$
D(x)= \begin{cases}\frac{1}{4 \pi x}, & \text { for scalars, gauge bosons, etc, } \\ \gamma^{\mu} \partial_{\mu} \frac{1}{4 \pi x}, & \text { for fermions } \\ \epsilon_{\mu \nu \lambda} \partial_{\lambda} \frac{1}{4 \pi x}, & \text { for Chern-Simons fields. }\end{cases}
$$

Basic objects are still LGICO $\mathcal{O}(\Phi)$, depending on fundamental fields $\phi(x)$ and their derivatives

$$
\phi_{\mu_{1} \mu_{2} \ldots \mu_{n}} \equiv \partial_{\mu_{1}} \partial_{\mu_{2}} \ldots \partial_{\mu_{n}} \phi(0)
$$

EoMs can be used to eliminate the dependence on CS gauge fields traces of derivatives

"Functional Wick Expansion"

Functional form of Wick expansion can be introduced through the following equations

$$
\begin{gathered}
: \mathcal{O}_{1}:: \mathcal{O}_{2}:=\mathrm{e}^{\check{D}_{12}}: \mathcal{O}_{1} \mathcal{O}_{2}: \\
: \mathcal{O}_{1}:: \mathcal{O}_{2}:: \mathcal{O}_{3}:=\mathrm{e}^{\check{D}_{12}+\check{D}_{13}+\check{D}_{23}}: \mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}: \\
: \mathcal{O}_{1}:: \mathcal{O}_{2}:: \mathcal{O}_{3}:: \mathcal{O}_{4}:=\mathrm{e}^{\check{D}_{12}+\check{D}_{13}+\check{D}_{23}+\check{D}_{14}+\check{D}_{24}+\check{D}_{34}: \mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}:} \\
: \mathcal{O}_{1}:: \mathcal{O}_{2}: \cdots: \mathcal{O}_{k}:=\mathrm{e}^{\left(\sum_{l<m} \check{D}_{l m}\right)}: \mathcal{O}_{1} \mathcal{O}_{2} \ldots \mathcal{O}_{k}:
\end{gathered}
$$

where $\check{D}_{x y}$ is a two-point differential operator

$$
\begin{gathered}
\check{D}_{x y}=\check{\Phi}_{x} \cdot \mathbf{D}_{x y} \cdot \check{\Phi}_{y}=\sum_{(\mathbf{n})} D_{x y}^{(\mathbf{n})} \breve{\zeta}_{x y}^{(\mathbf{n})}, \\
\check{s}_{x y}^{(\mathbf{n})}=\sum_{\substack{\mathbf{r}, \mathbf{s} \\
\mathbf{r}+\mathbf{s}=\mathbf{n}}}(-1)^{s} \check{\phi}_{x}^{(\mathbf{r})} \cdot \check{\phi}_{y}^{(\mathbf{s})}+\sum_{\substack{\mathbf{r}, \mathbf{s}, \mathbf{r}+\mathbf{s}+\mathbf{1}=\mathbf{n}}}(-1)^{s} \breve{\psi}_{x}^{(\mathbf{r})} \gamma^{\mathbf{1}} \check{\psi}_{y}^{(\mathbf{s})}+\sum_{\substack{\mathbf{r}, \mathbf{s} \\
\mathbf{r}+\mathbf{s}+1^{\prime}=\mathbf{n}}}(-1)^{s} \check{A}_{\mathbf{1}_{x}}^{(\mathbf{r})} \check{A}_{\mathbf{1}^{\prime} y}^{(\mathbf{s})} \\
\check{\Phi}_{x}=\frac{\partial}{\partial \Phi_{x}}
\end{gathered}
$$

One vertex lever (two point function)

The first non-trivial contribution comes from the first term of the expansion of interaction exponent,

$$
\int_{y}\left[\mathrm{e}^{\check{D}_{y 0}}\right] V_{y}=\sum_{k} \frac{1}{k!}\left[D_{y 0}^{\left(\mathbf{n}_{1}\right)} \ldots D_{y 0}^{\left(\mathbf{n}_{k}\right)}\right] \check{s}_{y 0}^{\left(\mathbf{n}_{1}\right)} \ldots \check{s}_{y 0}^{\left(\mathbf{n}_{k}\right)} V_{y}
$$

Two loops $\Rightarrow k=3$.

Evaluation of divergencies: 1-vertex level; two loops

$$
\Delta_{(\mathbf{n})(\mathbf{m})(\mathbf{k})} \equiv\left[D_{X}^{(\mathbf{n})} D_{x}^{(\mathbf{m})} D_{x}^{(\mathbf{k})}\right]=\frac{1}{(4 \pi)^{3}}\left[\partial_{(\mathbf{n})} \frac{1}{x} \partial_{(\mathbf{m})} \frac{1}{x} \partial_{(\mathbf{k})} \frac{1}{x}\right]
$$

From general considerations we have,

$$
\Delta_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k})}(x)=\frac{1}{(4 \pi)^{3}} \sum_{\mathbf{r}, s} F_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k})}^{(\mathbf{r}), \mathbf{s}} \partial_{(\mathbf{r})} \partial^{2 s} \delta(x)
$$

where $F_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k})}^{(\mathbf{r}),}$ are numerical coefficients, defined by

$$
F_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k})}^{(\mathbf{r}), s}=f_{n m k}^{(\mathbf{r}), s}\left[\int_{X} \frac{\mathbf{x}^{(\mathbf{n})+(\mathbf{m})+(\mathbf{k})+(\mathbf{r})}}{x^{3+2(n+m+k-s)}}\right]
$$

where

$$
f_{n m k}^{(\mathbf{r}), \boldsymbol{s}}=(-1)^{n+m+k}(2 n-1)!!(2 m-1)!!(2 k-1)!!\alpha^{(\mathbf{r}), s}
$$

and the factors $\alpha^{(\mathbf{n}), r}$ are the trace-reduced coefficients of Taylor expansion,

$$
V_{x}=\sum \alpha^{(\mathbf{n}), r} \mathbf{x}^{(\mathbf{n})} x^{2 r} \partial_{(\mathbf{n})} \partial^{2 r} V_{0}
$$

One-vertex level coefficients

The evaluation of $F s$ in dimensional regularization scheme and with IR cut-off μ, produces the following relevant contribution

$$
\frac{2^{-(n+m+k+1)}(n+m+k)!\pi^{D / 2}}{\Gamma\left(\frac{D+n+m+k}{2}\right)} g^{(\mathbf{n})+(\mathbf{m})+(\mathbf{k})} \mu^{-\epsilon} \Gamma(\epsilon)
$$

This yields,

$$
F_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k})}^{(\mathbf{r}), \mathbf{s}}=-\delta_{n+m+k-r-2 s, 0} f_{n m k}^{(\mathbf{r}), s} g^{(\mathbf{n})+(\mathbf{m})+(\mathbf{k})} \frac{2^{-\frac{n+m+k}{2}} \pi}{(n+m+k+1)!!}
$$

The Dilatation operator at one vertex level is given by,

$$
H_{1-\mathrm{vertex}}=\frac{1}{(4 \pi)^{3}} \sum_{\{\mathbf{n m k}\}} F_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k})}^{(\mathbf{r}), \mathbf{s}} \partial_{(\mathbf{r})} \partial^{2 s_{\check{s}_{(\mathbf{n})}} \check{s}_{(\mathbf{m})} \check{s}_{(\mathbf{k})}[V]}
$$

Two-vertex level

Two vertex level is given by the second term of the expansion of interaction exponent

$$
H_{2-\text { vertex }}=\frac{1}{2!} \int_{x} \int_{y}\left[e^{\check{\Phi}_{x} \cdot \mathbf{D}_{x y} \cdot \check{\Phi}_{y}+\check{\Phi}_{x} \cdot \mathbf{D}_{x} \cdot \check{\Phi}+\check{\Phi}_{y} \cdot \mathbf{D}_{y} \cdot \check{\Phi}}\right] V_{x} V_{y}
$$

Restrict to the two loop part

$$
\begin{aligned}
& H_{2-\text { vertex }}=\int_{x} \int_{y}\left(\frac{1}{2} \Delta_{\left(\mathbf{n}_{1}\right)\left(\mathbf{n}_{2}\right) ;(\mathbf{m}) ;(\mathbf{k})}(x, y) \check{s}_{x}^{\left(\mathbf{n}_{1}\right)}{\breve{s_{x}}}_{x}^{\left(\mathbf{n}_{2}\right)} \breve{\breve{s}}_{y}^{(\mathbf{m})} \breve{\breve{s}}_{x y}^{(\mathbf{k})}\right. \\
& \left.+\frac{1}{4} \Delta_{(\mathbf{n}) ;(\mathbf{m}) ;\left(\mathbf{k}_{1}\right)\left(\mathbf{k}_{2}\right)}(x, y) \breve{\breve{s}}_{x}^{(\mathbf{n})} \breve{\breve{s}}_{y}(\mathbf{m}) \breve{\breve{s}}_{x y}\left(\mathbf{k}_{1}\right) \breve{s}_{x y}\left(\mathbf{k}_{2}\right)\right) V_{x} V_{y},
\end{aligned}
$$

with

$$
\begin{aligned}
& \Delta_{\left(\mathbf{n}_{1}\right)\left(\mathbf{n}_{2}\right) ;(\mathbf{m}) ;(\mathbf{k})}(x, y)=\frac{1}{(4 \pi)^{4}}\left[\partial_{\left(\mathbf{n}_{1}\right)} \frac{1}{x} \partial_{\left(\mathbf{n}_{2}\right)} \frac{1}{x} \partial_{(\mathbf{m})} \frac{1}{y} \partial_{(\mathbf{k})}^{x} \frac{1}{|x-y|}\right], \\
& \Delta_{(\mathbf{n}) ;(\mathbf{m}) ;\left(\mathbf{k}_{1}\right)\left(\mathbf{k}_{2}\right)}(x, y)=\frac{1}{(4 \pi)^{4}}\left[\partial_{(\mathbf{n})} \frac{1}{x} \partial_{(\mathbf{m})} \frac{1}{y} \partial_{\left(\mathbf{k}_{1}\right)}^{x} \frac{1}{|x-y|} \partial_{\left(\mathbf{k}_{2}\right)}^{x} \frac{1}{|x-y|}\right],
\end{aligned}
$$

Two-vertex level

The corresponding Master Feynman diagrams are

$$
\Delta_{\left(\mathbf{n}_{1}\right)\left(\mathbf{n}_{2}\right) ;(\mathbf{m}) ;(\mathbf{k})}(x, y)
$$

$$
\Delta_{(\mathbf{n}) ;(\mathbf{m}) ;\left(\mathbf{k}_{1}\right)\left(\mathbf{k}_{2}\right)}(x, y)
$$

Two-vertex level

Duality relates these factors

$$
\Delta_{(\mathbf{n}) ;(\mathbf{m}) ;\left(\mathbf{k}_{1}\right)\left(\mathbf{k}_{2}\right)}(x, y)=(-1)^{m} \Delta_{\left(\mathbf{k}_{1}\right)\left(\mathbf{k}_{2}\right) ;(\mathbf{m}) ;(\mathbf{n})}(x-y,-y)
$$

Evaluation of the general structure reveals

$$
\begin{aligned}
& \Delta_{\left(\mathbf{n}_{1}\right),\left(\mathbf{n}_{2}\right) ;(\mathbf{m}) ;(\mathbf{k})}(x, y)=\frac{1}{(4 \pi)^{4}} \sum_{\substack{\mathbf{p}, r \\
\mathbf{s}, t}} F_{\left(\mathbf{n}_{1}\right),(\mathbf{(}),(\mathbf{s}) ;(\mathbf{m}) ;(\mathbf{k})}^{(\mathbf{p}) ;(\mathbf{p})} \partial^{2 r} \delta(x) \partial_{(\mathbf{s})} \partial^{2 t} \delta(y) \\
& F_{\left(\mathbf{n}_{1}\right),\left(\mathbf{n}_{2}\right) ;(\mathbf{m}) ;(\mathbf{k})}^{(\mathbf{p}), r ;(\mathbf{s})}=f_{n_{1} n_{2} m k} \int_{x} \int_{y}\left[\frac{\mathbf{x}^{\left(\mathbf{n}_{1}\right)+\left(\mathbf{n}_{2}\right)+(\mathbf{p})}}{x^{2+2\left(n_{1}+n_{2}-r\right)}} \frac{\mathbf{y}^{(\mathbf{m})+(\mathbf{s})}}{y^{1+2(m-t)}} \frac{(\mathbf{x}-\mathbf{y})^{(\mathbf{k})}}{|x-y|^{1+2 k}}\right] .
\end{aligned}
$$

where,
$f_{n_{1} n_{2} m k}=(-1)^{n_{1}+n_{2}+m+k}\left(2 n_{1}-1\right)!!\left(2 n_{2}-1\right)!!(2 m-1)!!(2 k-1)!!\alpha^{(\mathbf{p}), r} \alpha^{(\mathbf{s}), t}$

Two-vertex level coefficients

We can apply a "trick" to simplify the three-point coefficient function. Method of 'Uniqueness' [Kazakov et al.].

or

$$
\begin{gathered}
\int_{y} \frac{(\mathbf{x}-\mathbf{y})^{\mathbf{m}}}{|x-y|^{\beta}} \frac{\mathbf{y}^{\mathbf{n}}}{y^{\alpha}}=v_{n m}(\alpha, \beta) \frac{\mathbf{x}^{\mathbf{n}+\mathbf{m}}}{x^{\alpha+\beta-D}} \\
v_{n m}(\alpha, \beta)=\pi^{D / 2} 2^{-2(n+m)} \frac{\Gamma\left(\frac{D-\alpha}{2}+n\right) \Gamma\left(\frac{D-\beta}{2}+m\right) \Gamma\left(\frac{\alpha+\beta-D}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \Gamma\left(D-\frac{\alpha+\beta}{2}+m+n\right)}
\end{gathered}
$$

Then we can remove one integration and reduce the regularized three point function to two point functions \times some factor.

Two-vertex level coefficients

We can apply a "trick" to simplify the three-point coefficient function. Method of 'Uniqueness' [Kazakov et al.].
or

$$
\begin{gathered}
\int_{y} \frac{(\mathbf{x}-\mathbf{y})^{\mathbf{m}}}{|x-y|^{\beta}} \frac{\mathbf{y}^{\mathbf{n}}}{y^{\alpha}}=v_{n m}(\alpha, \beta) \frac{\mathbf{x}^{\mathbf{n}+\mathbf{m}}}{x^{\alpha+\beta-D}} \\
v_{n m}(\alpha, \beta)=\pi^{D / 2} 2^{-2(n+m)} \frac{\Gamma\left(\frac{D-\alpha}{2}+n\right) \Gamma\left(\frac{D-\beta}{2}+m\right) \Gamma\left(\frac{\alpha+\beta-D}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \Gamma\left(D-\frac{\alpha+\beta}{2}+m+n\right)}
\end{gathered}
$$

Then we can remove one integration and reduce the regularized three point function to two point functions \times some factor.
No additional singularities compared to derivative-free exchange!

Two-vertex level result

The two-point function coefficients are given by

$$
\begin{aligned}
& F_{(\mathbf{n} 1),\left(\mathbf{n}_{2}\right) ;(\mathbf{m}) ;(\mathbf{k})}^{(\mathbf{s}), t}=-\delta_{\left(n_{1}+n_{2}+m+k\right),(p+s+2 r+2 t)} f_{n_{1} n_{2} m k} \\
& \quad \times\left. v_{k, m+s}(1+2(m-t), 1+2 k) \beta^{\left(\mathbf{n}_{1}\right)+\left(\mathbf{n}_{2}\right)+(\mathbf{m})+(\mathbf{k})+(\mathbf{p})+(\mathbf{s})}\right|_{D=3}
\end{aligned}
$$

where,

$$
\beta^{\mathbf{n}}=\int_{\hat{\mathbf{x}}^{2}=1} \mathrm{~d} \hat{\mathbf{x}} \hat{\mathbf{x}}^{\mathbf{n}}=\frac{2^{-(n+1)} n!\pi^{D / 2}}{\Gamma\left(\frac{D+n}{2}\right)} g^{\mathbf{n}},
$$

with $g^{\mathbf{n}}=0$ for odd n while for even n it is the symmetrized product of metric tensors,

$$
g^{\mathbf{n}} \mapsto \frac{1}{\left|S_{n}\right|} \sum_{p \in S_{n}} g^{\mu_{p(1)} \mu_{p(2)}} \ldots g^{\mu_{p(n-1)} \mu_{p(n)}}
$$

Three-vertex level

The three-vertex contribution is given by,

$$
\begin{gathered}
H_{3 V}=\int_{1} \int_{2} \int_{3}\left(3\left[\check{D}_{1} \check{D}_{2} \check{D}_{12} \check{D}_{13} \check{D}_{23}\right]+3\left[\check{D}_{1} \check{D}_{2} \check{D}_{3} \check{D}_{12} \check{D}_{23}\right]\right) V_{1} V_{2} V_{3} \\
\check{D}_{x y} \equiv \sum_{\mathbf{n}} D_{x y}^{(\mathbf{n})} \check{\breve{s}}^{(\mathbf{n})}
\end{gathered}
$$

Therefore, we face to the evaluation of two scale factors,

$$
\begin{aligned}
& \Delta_{(\mathbf{n}),(\mathbf{m}) ;(\mathbf{k}),(\mathbf{l}),(\mathbf{p})}(x, y, z)= \\
& \quad\left[\partial_{(\mathbf{n})} \frac{1}{x} \partial_{(\mathbf{m})} \frac{1}{y} \partial_{(\mathbf{k})} \frac{1}{|x-y|} \partial_{(\mathbf{I})} \frac{1}{|x-z|} \partial_{(\mathbf{p})}^{y} \frac{1}{|y-z|}\right], \\
& \Delta_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k}) ;(\mathbf{l}),(\mathbf{p})}(x, y, z)=\left[\partial_{(\mathbf{n})} \frac{1}{x} \partial_{(\mathbf{m})} \frac{1}{y} \partial_{(\mathbf{k})} \frac{1}{z} \partial_{(\mathbf{l})} \frac{1}{|x-y|} \partial_{(\mathbf{p})}^{y} \frac{1}{|y-z|}\right] .
\end{aligned}
$$

....again duality relates these factors...

Three-vertex level

Graphically the Master diagrams are

$\Delta_{(\boldsymbol{n}),(\boldsymbol{m}) ;(\boldsymbol{k}),(\boldsymbol{l}),(\boldsymbol{p})}(x, y, z)$

$$
\Delta_{(\boldsymbol{n}),(\boldsymbol{m}),(\boldsymbol{k}) ;(\boldsymbol{l}),(\boldsymbol{p})}(x, y, z)
$$

Three-vertex level

Duality relates

$$
\Delta_{(\mathbf{n}),(\mathbf{m}),(\mathbf{k}) ;(\mathbf{l}),(\mathbf{p})}(x, y, z)=\Delta_{(\mathbf{n}),(\mathbf{l}) ;(\mathbf{k}),(\mathbf{m}),(\mathbf{p})}(-z,-y,-x)
$$

The general structure is given by

$$
\begin{aligned}
& \Delta_{(\mathbf{n}),(\mathbf{m}) ;(\mathbf{k}),(\mathbf{l}),(\mathbf{p})}(x, y, z)= \\
& \quad \frac{1}{(4 \pi)^{5}} \sum_{\substack{\mathbf{p}, r \\
\mathbf{s}, t}} F_{(\mathbf{n}),(\mathbf{m}) ;(\mathbf{k}),(\mathbf{l}),(\mathbf{p})}^{(\mathbf{p}, r ;(\mathbf{s}), t(\mathbf{(}), v} \partial_{(\mathbf{p})} \partial^{2 r} \delta(x) \partial_{(\mathbf{s})} \partial^{2 t} \delta(y) \partial_{(\mathbf{u})} \partial^{2 v} \delta(z), \\
& F_{(\mathbf{n}),(\mathbf{m}) ;(\mathbf{k}),(\mathbf{l}),(\mathbf{q})}^{(\mathbf{q}), r(\mathbf{s}), t(\mathbf{u}), v}=f_{n m k l q}^{(\mathbf{p}), r ;(\mathbf{s}), t ;(\mathbf{u}), v} \\
& \quad \times \int_{x} \int_{y} \int_{z}\left[\frac{\mathbf{x}^{(\mathbf{n})+(\mathbf{p})}}{x^{1+2(n-r)}} \frac{\mathbf{y}^{(\mathbf{m})+(\mathbf{s})}}{y^{1+2(m-t)}} \frac{\mathbf{z}^{(\mathbf{k})+(\mathbf{u})}}{z^{1+2(k-v)}} \frac{(\mathbf{x}-\mathbf{z})^{(\mathbf{l})}}{|x-z|^{1+2 l}} \frac{(\mathbf{y}-\mathbf{z})^{(\mathbf{q})}}{|y-z|^{1+2 q}}\right]
\end{aligned}
$$

Three-vertex level results

Applying the chain rule twice, we can remove two integrations and reduce the four point integral to a two point one

$$
\begin{aligned}
& {\left[\frac{\mathbf{x}^{(\mathbf{n})+(\mathbf{p})}}{x^{1+2(n-r)}} \frac{\mathbf{y}^{(\mathbf{m})+(\mathbf{s})}}{y^{1+2(m-t)}} \frac{\mathbf{z}^{(\mathbf{k})+(\mathbf{u})}}{z^{1+2(k-v)}}\right.}\left.\frac{(\mathbf{x}-\mathbf{z})^{(\mathbf{l})}}{|x-z|^{1+2 l}} \frac{(\mathbf{y}-\mathbf{z})^{(\mathbf{q})}}{|y-z|^{1+2 q}}\right]= \\
&(-1)^{q+l} v_{q, m+s}(1+2 q, 1+2(m-t)) v_{l, n+p}(1+2 l, 1+2(n-r)) \\
& \times\left[\int_{z} \frac{\mathbf{z}^{(\mathbf{n})+(\mathbf{m})+(\mathbf{k})+(\mathbf{I})+(\mathbf{q})+(\mathbf{s})+(\mathbf{p})+(\mathbf{u})}}{z^{5+2(n+m+k+l+q-r-t-v)-2 D}}\right]
\end{aligned}
$$

which we know how to evaluate!
All in one

$$
\begin{aligned}
& F_{(\mathbf{n}),(\mathbf{m}) ;(\mathbf{k}),(\mathbf{l}),(\mathbf{q})}^{(\mathbf{p}) r ;(\mathbf{s}), t ; \mathbf{u}), v}=\delta_{n+m+k+I+q, 2(r+t+v)+5} f_{n m k l q}^{(\mathbf{p}), r ;(\mathbf{s}), t ;(\mathbf{u}), v}(-1)^{q+l} \\
& \quad \times v_{q, m+s}(1+2 q, 1+2(m-t)) v_{l, n+p}(1+2 l, 1+2(n-r)) \\
& \quad \times\left.\beta^{(\mathbf{n})+(\mathbf{m})+(\mathbf{k})+(\mathbf{l})+(\mathbf{q})+(\mathbf{s})+(\mathbf{p})+(\mathbf{u})}\right|_{D=3}
\end{aligned}
$$

Summary of the computation

$$
\begin{aligned}
& \Delta_{2-\text { loop }}=H_{1-\text { vertex }}+H_{2-\text { vertx }}+H_{3-\text { vertex }}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+(-1)^{p} F_{(1),(12) ;(\mathbf{s}) ;(\boldsymbol{t}),(\mathbf{u}), \boldsymbol{v}),(23)}^{(23)}\left(\partial_{(\mathbf{p})} \partial^{2 r}\right)_{1}\left(\partial_{(\mathbf{s})} \partial^{2 t}\right)_{2}\left(\partial_{(\mathbf{u})} \partial^{2 v}\right)_{3} \check{s}_{1} \check{s}_{2} \check{s}_{12} \check{s}_{3} \check{s}_{23}\right)\right\}\left.V_{1} V_{2} V_{3}\right|_{\mathbf{1}=2=3=0}
\end{aligned}
$$

A faster way to obtain the dilatation operator?

Alternatively, consider the dilatation operator as Nöther charge corresponding to classical dilatations:

- classical dimension \longmapsto mass
- The large mass limit \longleftrightarrow perturbative expansion of the dilatation operator
- Indeed, the massive Yang-Mills mechanics reproduces the one-loop dilatation operator in the scalar sector of $\mathcal{N}=4$ SYM

Conclusion \& Outlook

- Starting from a renormalizable theory one can obtain a model for which the (imaginary) time evolution coincides with RG-flows of given theory
- At least at the one-loop level the same result can be obtained by a slow roll limit of a massive extension of the model
- The approach is purely constructive, we didn't prove any existence theorem, positivity of the norms, unitarity etc.
- In the case of conformal theories the scheme coincides with the standard AdS/CFT correspondence
- For a general renormalizable gauge theory the large N limit is expected to lead to a local geometrical model
- Better parametrization for the LGICO would do a better job

