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SO(2N)/U(N)

• N = 1 SO(2N)/U(N) in 4D as a gauge theory [Higashijima, Nitta 00]

• Bosonic Lagrangian for a massive SO(2N)/U(N) in 3D
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Moduli matrices H0
[Isozumi, Nitta, Ohashi, Sakai 04]

• BPS equation
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Assumption

– Fields : static, depends only on the x1 ≡ x

– Poincaré invariance on the two-dimensional world volume of walls to set v0 = v2 = 0

• Introduce S b
a (x) and f i

a (x) defined by
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then the BPS equation and the solutions are
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• BPS solution
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• Everything is invariant under
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Moduli matrices H0

Using ϕ i
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a H
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• Vacuum condition : ϕ j
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Parity has been removed.

• World volume symmetry
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The moduli matrix space is an equivalent class of the sets of (S,H0) defined by V .

• D-term constraint
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• F-term constraint
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Moduli matrices for walls in the Grassmannian manifold

[Isozumi, Nitta, Ohashi, Sakai 04]
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Walls are constructed algebraically from elementary walls.

• Elementary walls

: H0⟨A←B⟩ = H0⟨A⟩e
ai(r), ai(r) ≡ erai(r ∈ C)

⟨A⟩ and ⟨B⟩ are the vacua in the flavor i and i + 1 respectively in the same color.

[cM, ai] = c(mi −mi+1)ai = T⟨i←i+1⟩ai

The ai has a nonzero component only in the (i, i + 1)-th element.

This cannot be defined in the SO(2N)/U(N) manifold.

We introduce an additional element with an opposite sign into the ai.
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What it means that· · ·
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Walls in SO(6)/U(3)

• Vacua

H0⟨1⟩ =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 H0⟨2⟩ =

 1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 1 0 0



H0⟨3⟩ =

 0 0 −1 0 0 0
0 0 0 0 0 −1
0 1 0 0 0 0

 H0⟨4⟩ =

 0 0 0 0 1 0
0 0 0 −1 0 0
0 1 0 0 0 0


• Operators generating elementary walls

a1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

 , a2 =



0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

a3 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0

 .
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Walls in SO(6)/U(3)

• Single walls

– Elementary walls (ai(r) ≡ erai)

H0⟨1←2⟩ = H0⟨1⟩e
a1(r1), H0⟨2←3⟩ = H0⟨2⟩e

a2(r1), H0⟨3←4⟩ = H0⟨3⟩e
a3(r1)

– Compressed walls
∗ level one

E1 = [a1, a2] ̸= 0, E2 = [a2, a3] ̸= 0

H0⟨1←3⟩ = H0⟨1⟩e
E1(r1), H0⟨2←4⟩ = H0⟨2⟩e

E2(r1)

∗ level two

E3 = [a1, E2] = [E1, a3] ̸= 0

H0⟨1←7⟩ = H0⟨1⟩e
E3(r1)
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Walls in SO(6)/U(3)

• Multiwalls
– Double walls

H0⟨1←2←3⟩ = H0⟨1←2⟩e
a2(r2), H0⟨2←3←4⟩ = H0⟨2←3⟩e

a3(r2)

H0⟨1←2←4⟩ = H0⟨1←2⟩e
E2(r2), H0⟨1←3←4⟩ = H0⟨1←3⟩e

a3(r2)

– Triple walls

H0⟨1←2←3←4⟩ = H0⟨1←2←3⟩e
a3(r3)
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Summay

• Walls of a massive Kähler sigma model on SO(2N)/U(N) are studied in the moduli

matrix approach.

• 2N−1 discrete vacua are observed.

• Elementary walls in the SO(2N)/U(N) manifold can be defined by generating operators

with an extra unit component.

• Compressed walls, multiwalls are obtained.
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Thank you for your attention.

11


