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Photon-Graviton Amplitudes from the Effective Action
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Relations between gauge and gravity amplitudes

H. Kawai, D.C. Lewellen, S.H.H. Tye, “A Relation between Tree Amplitudes
of Closed and Open Strings” (Nucl. Phys. B 269, 1, 1986):

(gravity amplitude) ∼ (gauge amplitude)2

From the factorization of vertex operators,

V closed = V open
left V̄ open

right



These string relations induce also relations in field theory.
For example, at four and five point,

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3)

M5(1, 2, 3, 4, 5) = is12s34A5(1, 2, 3, 4, 5)A5(2, 1, 4, 3, 5)

+is13s24A5(1, 3, 2, 4, 5)A5(3, 1, 4, 2, 5)

Mn = tree-level graviton amplitudes
An= (colour-stripped) tree-level gauge theory amplitudes sij = (ki + kj)

2



Tree level relations → loop level relations by unitarity.

See the review by Z. Bern, “Perturbative Quantum Gravity and its Re-
lation to Gauge Theory”, Living Reviews in Relativity 5, 5 (2002).

Those relations are particularly useful for the SUSY case, and for the study
of infrared divergences. Lots of recent activity....

The possible finiteness of N = 8 Supergravity involves large-scale cancella-
tions between Feynman diagrams whose origin is not fully understood yet.
In this respect, gravity amplitudes are more similar to QED amplitudes than
to nonabelian amplitudes, since colour factors greatly reduce the potential
for cancellations between diagrams.



E.g., the three-loop photon propagator (J. Rosner 1967)
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• Extensive cancellations for this type of sums of diagrams (K. Johnson,
M. Baker and R. Willey; P. Cvitanovic; D. Broadhurst.....).

• They are clearly related to gauge invariance.

• Even for QED, little is known about the influence of these cancellations
on the large-order behaviour of the QED perturbation series.



Gravity - inspired studies of the structure of QED amplitudes

• S.D. Badger, N.E.J. Bjerrum-Bohr, and P. Vanhove, JHEP 0902:038
(2009).

• A. Brandhuber, G. Travaglini, M. Vincon, arXiv:0908.1306 [hep-th].

• S.D. Badger and J.M. Henn, Phys. Lett. B 692 143 (2010).

In the following, we will study more generally the mixed photon – graviton
amplitudes (ongoing work with F. Bastianelli, O. Corradini, J.M. Dávila).



Properties of the QED N photon amplitudes

(Scalar and Spinor QED - no real differences)

4 photon amplitude:

proof that the number of distinct Feynman diagrams at nth

loop order grows like (n
2 )!n! (iii) the fact that there are no

sign cancellations between graphs. This led Hurst to con-
jecture that the analog statement holds true for other renor-
malizable quantum field theories and in particular for QED.
However, QED was already well-established experimentally
in 1952. To account for this fact, Hurst postulated that the
QED perturbation series, while not convergent, is an asymp-
totic series and thus still makes sense numerically.

Today the fact that the perturbation series is asymptotic
rather than convergent is not only well-established for QED,
but believed to be a generic property of nontrivial quantum
field theories (see [2–5, 9, 10]). Convergence of the series
can be expected only in trivial cases where higher-order ra-
diative corrections are absent altogether (usually on account
of some symmetry).

In the absence of convergence, the reconstruction of the
exact physical quantities from their perturbation series must
be attempted using summation methods. For this there are
various possibilities, and we mention here only the one which
has been most widely used in QFT, Borel summation [9, 10].
For a factorially divergent series

F (α) ∼
∞∑

n=0

cnαn+1 (1.3)

one defines the Borel transform as

B(t) ≡
∞∑

n=0

cn
tn

n!
(1.4)

Assuming that B(t) has no singularities on the positive real
axis and does not increase too rapidly at infinity, one can also
define the Borel integral

F̃ (α) ≡
∫ ∞

0

dt e− t
α B(t) (1.5)

F̃ is the Borel sum of the original seriesF . F is asymptotic to
F̃ by construction, although the physical quantity represented
by the series F might still differ from F̃ by nonperturbative
terms. Even when the Borel transform has singularities it re-
mains a useful concept, since these singularities contain de-
tailed information on the divergence structure of the theory.
In many cases they can be traced either to instantons (related
to tunneling between vacua) or Euclidean bounces (related
to vacuum decay) or to renormalons. Those latter typically
arise in renormalizable theories and are related to large or
small loop momentum behaviour. Diagramatically, they can
be analyzed in terms of “infinitely long” chains of ‘bubble’
diagrams (for a review, see [11]).

Despite of the many insights which have been gained
along these lines, a point which remains poorly understood is

the influence of gauge cancellations on the divergence struc-
ture of a gauge theory. Generally, in gauge theory individual
diagrams do not give gauge invariant results; gauge invari-
ance is recovered only after summing over certain classes of
diagrams. In QED a textbook example is provided by one-
loop photon-photon scattering, where a gauge invariant (as
well as UV finite) result is obtained only after performing a
sum over the six inequivalent orderings of the external mo-
menta for the basic diagram in fig. 1.
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Fig. 1: Sum of one loop photon scattering diagrams.

This recovery of gauge invariance generally implies can-
cellations in the sum over gauge related diagrams, and leads
one to expect that the coefficients of the perturbation series
for such amplitudes should come out smaller in magnitude
than predicted by a naive combinatorial analysis. However,
it is presently not known what implications this has for the
large order behaviour of amplitudes in either QED or other
gauge theories. In 1977 Cvitanovic [12] performed a de-
tailed diagramatic analysis of the effect of gauge cancella-
tions in a previous calculation of the sixth order contribution
to the electron magnetic moment [13]. Based on this ex-
ample, he suggested that in QED their effect is sufficiently
strong to modify estimates based on the basic factorial growth
in the number of Feynman diagrams; more realistic estimates
might be obtained by counting gauge invariant classes of dia-
grams instead. The asymptotic growth of the number of these
classes is, however, less than factorial. For the case at hand,
the electron g − 2, he conjectured that its perturbation series
even converges in the ‘quenched’ approximation, i.e. for the
contribution represented by diagrams not involving electron
loops.

In the present paper, we present an analogous conjecture
for the N - photon amplitudes, in scalar and spinor QED.
Here the ‘quenched’ approximation corresponds to taking
only the diagrams involving just one electron loop, which is
also the O(Nf ) part of the amplitude in QEDwithNf flavors.
Our conjecture is that this part of the amplitude converges
in perturbation theory when renormalized on-shell. We use
known results on the QED effective Lagrangian to obtain in-
formation on the large order behaviour of this amplitude for
the special case of ‘all +’ polarizations, in the limit of low
photon energies and large photon numberN .

2

Sum of photon scattering diagrams.

First calculation by R. Karplus and M. Neumann 1950.



Massless QED

Use a helicity basis, and the spinor helicity formalism:

ε±µ (k) = ±〈q
∓|γµ|k∓〉√
2〈q∓|k±〉

Massless 6 photon amplitude:

T. Binoth, G. Heinrich, T. Gehrmann, P. Mastrolia, PLB 649, 422 (2007).

Four independent helicity components:

A6(+ + + + ++)

A6(−+ + + ++)

A6(−−+ + ++)

A6(−−−+ ++)

(CP invariance, no need to order legs in the abelian case.)



Mahlon’s theorem: AN(+ + + . . .+ +) = AN(−+ + · · ·+ +) = 0

for N > 4 (G. Mahlon, Phys. Rev. D 49, 2197 (1994)).

Closed formula for the “two −” case:

AN(1−, 2−, 3+, . . . , N+) = −i(−e
√

2)N

8π2

∑

Perm(3...N)

N∑

j=4

[〈1 | 3〉〈j | 3〉∗〈j | 2〉]2
〈3 | 4〉〈4 | 5〉 · · · 〈n | 3〉

Λ(3, . . . , j)

(2k3 · kj)2
,

where q(i, j) ≡ k2+ki+ · · ·+kj and

Λ(3, . . . , j) = Li2

[
1−q

2(3, j)q2(4, j−1)

q2(4, j)q2(3, j−1)

]
− Li2

[
1−q

2(3, j)

q2(4, j)

]
− Li2

[
1−q

2(4, j−1)

q2(3, j−1)

]

− Li2

[
1− q2(3, j)

q2(3, j−1)

]
− Li2

[
1−q

2(4, j−1)

q2(4, j)

]
− 1

2
ln2

[
q2(3, j−1)

q2(4, j)

]

(G. Mahlon, FermilabConf94/421-T, hep-ph/9412350.)



S. Badger, N.E.J. Bjerrum-Bohr, P. Vanhove, JHEP 0902:038 (2009):

N ≥ 8 photon amplitudes involve only box functions
(no triangles).

(Using both the worldline formalism and unitarity methods.)

Similar to the “no triangle” property of N = 8 supergravity

(important for possible finiteness).



Low energy limit of massive photon amplitudes

L.C. Martin, C. S., V.M. Villanueva, NPB 668, 335 (2003).

Low energy = large mass limit: All photon energies small compared to
the electron mass, ωi � m.

Information on the N photon amplitudes in this limit contained in the
Euler-Heisenberg resp. Weisskopf Lagrangians:



Spinor QED

L(EH)
spin (F ) = − 1

8π2

∫ ∞

0

dT

T 3
e−m

2T

[
(eaT )(ebT )

tanh(eaT )tan(ebT )
− 1

3
(a2 − b2)T 2 − 1

]

(W. Heisenberg and H. Euler, 1936)

Scalar QED

L(EH)
scal (F ) =

1

16π2

∫ ∞

0

dT

T 3
e−m

2T

[
(eaT )(ebT )

sinh(eaT ) sin(ebT )
+

1

6
(a2 − b2)T 2 − 1

]

(V. Weisskopf, 1936)

Here T is the proper-time of the loop particle and a, b are defined
by a2 − b2 = B2 − E2, ab = E ·B.



N - photon amplitudes in the low energy limit

A
(EH)
spin [ε+1 ; . . . ; ε+K ; ε−K+1; . . . ; ε

−
N ] = −m

4

8π2

(2ie

m2

)N
(N − 3)!

×
K∑

k=0

N−K∑

l=0

(−1)N−K−l
Bk+lBN−k−l

k!l!(K − k)!(N −K − l)!χ
+
Kχ
−
N−K

A
(EH)
scal [ε+1 ; . . . ; ε+K ; ε−K+1; . . . ; ε

−
N ] =

m4

16π2

(2ie

m2

)N
(N − 3)!

×
K∑

k=0

N−K∑

l=0

(−1)N−K−l
(
1− 21−k−l)

)(
1− 21−N+k+l

)
Bk+lBN−k−l

k!l!(K − k)!(N −K − l)! χ+
Kχ
−
N−K

The Bk are Bernoulli numbers.



The variables χ±K are written, in spinor helicity notation,

χ+
K =

(K2 )!

2
K
2

{
[12]2[34]2 · · · [(K − 1)K]2 + all permutations

}

χ−K =
(K2 )!

2
K
2

{
〈12〉2〈34〉2 · · · 〈(K − 1)K〉2 + all permutations

}

These variables appear naturally in the low energy limit. Since
they require even numbers of positive and negative helicity po-
larizations, we get a

Selection rule (“double Furry theorem”):

A
(EH)
spin,scal[ε

+
1 ; . . . ; ε+K ; ε−1 ; . . . ; ε−L ] = 0

unless both K and L are even. This rule holds to all loop orders.



For the MHV (“all +” or “all −”) case:

A
(EH)
spin [ε+1 ; . . . ; ε+N ] = −2A

(EH)
scal [ε+1 ; . . . ; ε+N ]

Corresponds to a self-dual background, in which the Dirac oper-
ator has a quantum-mechanical supersymmetry (M.J.Duff, C.J.
Isham, PLB 86, 157 (1979); G.V. Dunne, H. Gies, C.S., JHEP
0211:032 (2002)).



Worldline approach to Einstein-Maxwell theory

Worldline representation of the one-loop N photon M graviton amplitude:

Photon vertex operator:

V A
scal[k, ε] =

∫ T

0

dτ ε · ẋ(τ) eik·x(τ)

V A
spin[k, ε] =

∫ T

0

dτ
(
ε · ẋ(τ) + 2iε · ψk · ψ

)
eik·x(τ)

Graviton vertex operator:

V h
scal[k, ε] = εµν

∫ T

0

dτ
(
ẋµ(τ)ẋν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ) + 4ξ̄(δµνk2 − kµkν)

)
eik·x(τ)

V h
spin[k, ε] = εµν

∫ T

0

dτ
(
ẋµ(τ)ẋν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)

+2(ψµ(τ)ψ̇ν(τ) + αµ(τ)αν(τ) + iẋµ(τ)ψν(τ)ψ(τ) · k) eik·x(τ)



Correlators:

〈xµ(τ1)x
ν(τ2)〉 = −δµν GB(τ1, τ2)

〈ψµ(τ1)ψ
ν(τ2)〉 =

1

2
δµν GF (τ1, τ2)

GB, GF are the ‘worldline Green’s functions’

GB(τ1, τ2) = | τ1 − τ2 | −
(τ1 − τ2)2

T
− T

6
GF (τ1, τ2) = sign(τ1 − τ2)



The ghost fields a, b, c, α have to do with the nontrivial path
integral measure in curved space,

Dx = Dx
∏

0≤τ<T

√
det gµν(x(τ))

Their correlators involve only δ functions

〈aµ(τ1) a
ν(τ2)〉 = 2δ(τ1 − τ2) δµν

〈bµ(τ1) c
ν(τ2)〉 = −4δ(τ1 − τ2) δµν

〈αµ(τ1)α
ν(τ2)〉 = δ(τ1 − τ2) δµν,

and essentially remove singularities.



One-loop effective action in Einstein-Maxwell theory

Effective action for the low energy limit of the N photon –
one graviton amplitude (F. Bastianelli, J.M. Dávila, C.S., JHEP
03 (2009) 086; J. M. Dávila, C.S., CQG 27 075007 (2010)).

L(EH)(R)
spin = − 1

8π2

∫ ∞

0

dT

T 3
e−m

2Tdet−1/2
[

tan(FT )

FT

]

×
{

1 +
iT 2

8
Fµν;αβ GαβB11

(
ĠµνB11 − 2GµνF11

)

+
iT 2

8
(Fµν;βα + Fµν;αβ) ĠµβB11GναB11 +

T

3
Rαβ GαβB11

−iT
2

24
FλνR

λ
αβµ

(
ĠνµB11 GαβB11 + ĠαµB11 GνβB11 + ĠβµB11 GναB11 + 4GµνF11 GαβB11

)

+
T

12
Rµαβν

(
ĠµαB11ĠβνB11 + ĠµβB11ĠανB11 +

(
G̈µνB11 − 2gµνδ(0)

)
GαβB11

+ĠαβB11 GµνF11 + ĠνβB11 GµαF11 − GαβB11

(
ĠµνF11 − 2gµνδ(0)

))

−1

6
T 3Fαβ;γ Fµν;δ

∫ 1

0

dτ1

(
ĠανB12 ĠβµB12 GγδB12 + ĠανB12 GβδB12 ĠγµB12 +

3

2
GγδB12 GαµF12 GβνF12

)}



Field-dependent worldline correlators:

〈xµ(τ1)x
ν(τ2)〉 = −GµνB (τ1, τ2)

〈ψµ(τ1)ψ
ν(τ2)〉 =

1

2
GµνF (τ1, τ2)

GB(τ1, τ2) =
T

2(Z)2

( Z
sin(Z)

e−iZĠB12 + iZĠB12 − 1

)

GF (τ1, τ2) = GF12
e−iZĠB12

cos(Z)

Here Zµν = eTFµν.



Expand out in powers of Fµν, do the integrals, reduce number
of terms using Bianchi identities....

Two photon - one graviton level

Lhγγscal =
1

360m2(4π)2

[
5(6ξ − 1)RF 2

µν + 4RµνF
µαF ν

α − 6RµναβF
µνF αβ

−2(∇αFαµ)
2 − 8(∇αFµν)

2 − 12Fµν F µν
]

Lhγγspin =
1

180m2(4π)2

[
5RF 2

µν − 4RµνF
µαF ν

α − 9RµναβF
µνF αβ

+2(∇αFαµ)
2 − 7(∇αFµν)

2 − 18Fµν F µν
]



Four photon - one graviton level

Lh,4γspin = − 1

8 π2
1

m6

[
− 1

432
R(Fµν)

4 +
7

1080
R tr[F 4]− 1

945
Rαβ(F 4)αβ

− 1

540
Rαβ(F 2)αβ(Fγδ)

2 +
4

135
Rαµβν(F

3)αµF βν +
1

108
RαµβνF

αµF βν(Fγδ)
2

+
7

270
(F 3)µν Fµν +

1

108
F µν Fµν(Fγδ)

2 +
1

270
Fµν;αβ(F 2)αβF µν

− 1

540
(Fαβ;γ)

2(Fµν)
2 − 1

945
Fµν;α F

µν
;β(F 2)αβ − 11

945
Fαβ;γF

β;γ
µ (F 2)αµ

− 2

189
Fαβ;γF

γ
µν; F

αµF βν − 2

189
Fαβ;γF

α
µ ;δF

βµF γδ

]



The graviton – photon – photon amplitude and its properties

F. Bastianelli, O. Corradini, J.M. Dávila, C.S., in preparation
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Figure 1: Gluon – gluon scattering amplitude.
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Effective action → on-shell amplitude with graviton polarizations

ε++
0µν(k0) = ε+µ (k0)ε

+
ν (k0)

ε−−0µν(k0) = ε−µ (k0)ε
−
ν (k0)



Nonvanishing only

A
(++;++)
spin =

κ e2

90(4π)2m2
[01]2 [02]2

A
(−−;−−)
spin =

κ e2

90(4π)2m2
〈01〉2 〈02〉2

A
(++;++)
spin = (−2)A

(++;++)
scal

A
(−−;−−)
spin = (−2)A

(−−;−−)
scal



Simple relation to the four photon amplitudes:

A++++[k1, k2, k3, k4] ∼ [12]2[34]2 + [13]2[24]2 + [14]2[23]2 ,

A+++−[k1, k2, k3, k4] = 0 ,

A++−−[k1, k2, k3, k4] ∼ [12]2〈34〉2 ,
A+−−−[k1, k2, k3, k4] = 0 ,

A−−−−[k1, k2, k3, k4] ∼ 〈12〉2〈34〉2 + 〈13〉2〈24〉2 + 〈14〉2〈23〉2 ,

Replacing k1 → k0, k2 → k0 in the 4 photon amplitudes,

A++++[k0, k0, k3, k4] ∼ 2[03]2[04]2 ∼ A++;++[k0, k3, k4]

A+++−[k0, k0, k3, k4] = 0 = A++;+−[k0, k3, k4]

A++−−[k0, k0, k3, k4] = 0 = A++;−−[k0, k3, k4]

A−−++[k0, k0, k3, k4] = 0 = A−−;++[k0, k3, k4]

A−−+−[k0, k0, k3, k4] = 0 = A−−;+−[k0, k3, k4]

A−−−−[k0, k0, k3, k4] ∼ 2〈03〉2〈04〉2 ∼ A−−;−−[k0, k3, k4]



For the three-point case, have also checked the (off-shell) Ward
identities:

Gauge Ward identity:

kiαi
Aµν,α1...αN [k0, . . . , kN ] = 0 , i = 1, . . . , N

Gravitational Ward identity:

2k0µA
µν,α1...αN [k0, . . . , kN ] = −

N∑

i=1

Aµα1...α̂i...αN [k0 + ki, k1, . . . , k̂i, . . . , kN ]

×(δαi
µ k

ν
i − ηαiνkiµ)



Outlook

• On to the 4 photon - 1 graviton case...

• In the low energy limit, is the information on the N photon
– M graviton amplitude contained in the N + 2M photon
amplitude?


