$\mathcal{N}=4$ SYM low-energy effective action in $\mathcal{N}=4$ harmonic superspace

Igor B. Samsonov

INFN, Padova, Italy
SQS'11, Dubna, 22 July 2011

References

D.V. Belyaev, I.B. Samsonov, JHEP 1104 (2011) 112, arXiv:1103.5070
D.V. Belyaev, I.B. Samsonov, arXiv:1106.0611

The Problem

$\mathcal{N}=4 d=4$ gauge multiplet: $\Phi=\left(X_{A}, \Psi_{\alpha}^{N}, A_{m}\right)$,

- $X_{A}, A=1,2,3,4,5,6$ six real scalars,
- $\Psi_{\alpha}^{N}, N=1,2,3,4$ four Weyl spinors
- A_{m} one vector field with Maxwell field strength $F_{m n}$

Low-energy effective action

$$
\Gamma=\Gamma[\Phi]
$$

- In Coulomb branch, $\left\langle X_{A}\right\rangle \neq 0$
\Rightarrow gauge symmetry $\mathrm{SU}(\mathrm{n})$ is broken down spontaneously to $[\mathrm{U}(1)]^{n-1}$
- Low-energy effective action depends only on the massless fields, $\Phi=\left(X_{A}, \Phi_{\alpha}^{N}, A_{m}\right)$ - massless fields
- We are interested in $\Gamma[\Phi]$ on-shell, i.e., on classical equations of motion,

$$
\square X_{A}=0, \quad \not \partial \Psi^{N}=0, \quad \partial^{m} F_{m n}=0
$$

The Problem

Look for $\Gamma[\Phi]$ within the derivative expansion,
$\Gamma[\Phi]=\Gamma_{0}+\Gamma_{2}+\Gamma_{4}+\Gamma_{6}+\ldots$
$\Gamma_{0}=\int d^{4} x \mathcal{L}_{\text {eff }}(\Phi) \equiv 0 \quad$ no effective potential
$\Gamma_{2}=S_{2}=\int d^{4} x \mathcal{L}_{2}\left(\partial_{m} \Phi \partial^{m} \Phi\right) \quad$ free classical action
$\Gamma_{4}=\int d^{4} x \mathcal{L}_{4}\left(\partial^{m} \Phi \partial^{n} \Phi \partial^{r} \Phi \partial^{s} \Phi\right) \quad$ first non-trivial quantum contribution

Our aim

Find an expression for $\Gamma_{4}[\Phi]$ in some superspace, which
(1) Depends on all fields X_{A}, Ψ^{N}, A_{m}
(2) Contains no more than four derivatives of these fields
(3) Is explicitly $\mathcal{N}=4$ supersymmetric

- is at least scale invariant (may be superconformal)

Some known results

Different superspace approaches

$\mathcal{N}=0 \quad$ No full expression for Γ_{4} is known; only some terms were found, e.g.,

$$
F^{4} / X^{4} \equiv \frac{1}{(8 \pi)^{2}} \int d^{4} x \frac{\left(F_{m n} F^{n k} F_{k l} F^{l m}-\frac{1}{4} F_{m n} F^{m n}\right)^{2}}{\left(X^{A} X^{A}\right)^{2}}
$$

$\mathcal{N}=1 \quad$ No full expression for Γ_{4} is known; only some terms were found
$\mathcal{N}=2$ The complete expression for Γ_{4} was obtained by Buchbinder and Ivanov in 2002
$\mathcal{N}=3 \quad$ Nothing about the effective action is known
$\mathcal{N}=4$ The expression for Γ_{4} is obtained in our works

Buchbinder and Ivanov 2002

$\mathcal{N}=2$ harmonic superspace

- q_{a}^{+}hypermultiplet
- W vector multiplet
$\mathcal{N}=4$ SYM free (abelian) action

$$
S=\frac{1}{2} \int d \zeta^{(-4)} q_{a}^{+} D^{++} q^{+a}+\frac{1}{4} \int d^{4} x d^{4} \theta W^{2}+\frac{1}{4} \int d^{4} x d^{4} \bar{\theta} \bar{W}^{2}
$$

Hidden $\mathcal{N}=2$ supersymmetry

$$
\begin{aligned}
\delta W & =\bar{\epsilon}^{\dot{\alpha} a} \bar{D}_{\dot{\alpha}}^{-} q_{a}^{+}, \quad \delta \bar{W}=\epsilon^{\alpha a} D_{\alpha}^{-} q_{a}^{+} \\
\delta q_{a}^{+} & =\epsilon_{a}^{\beta} D_{\beta}^{+} W+\bar{\epsilon}_{a}^{\dot{\alpha}} \bar{D}_{\dot{\alpha}}^{+} \bar{W}
\end{aligned}
$$

Buchbinder and Ivanov 2002

Non-holomorphic potential [Dine and Seiberg 1997; Seiberg 1998]

$$
\int d^{4} x d^{8} \theta \ln W \ln \bar{W}
$$

Unique $\mathcal{N}=4$ supersymmetric generalization of this expression is

$$
\Gamma_{4}=c \int d^{4} x d^{8} \theta d u\left[\ln W \ln \bar{W}+\sum_{n=1}^{\infty} \frac{1}{n^{2}(n+1)}\left(-\frac{q^{+a} q_{a}^{-}}{W \bar{W}}\right)^{n}\right]
$$

- This is full expression for the four-derivative part of the effective action, i.e., it contains all component fields and is $\mathcal{N}=4$ supersymmetric
- This expression was obtained latter in [Buchbinder and Pletnev 2004-2006] using direct quantum computations in the $\mathcal{N}=2$ harmonic superspace
- The coefficient $c=1 /(8 \pi)^{2}$ in the case of gauge group $\operatorname{SU}(2)$ spontaneously broken down U(1)
- In components it contains, in particular, the F^{4} / X^{4} term in the $\mathrm{SO}(6)$ covariant form

Our aim:

To find an analog of this action in $\mathcal{N}=4$ harmonic superspace

$\mathcal{N}=4$ harmonic superspace

Standard $\mathcal{N}=4$ superfield strengths $W^{I J}=-W^{I J}, I, J=1,2,3,4$

$$
\begin{equation*}
D_{\alpha}^{I} W^{J K}+D_{\alpha}^{J} W^{I K}=0, \quad \bar{W}_{I J}=\frac{1}{2} \epsilon_{I J K L} W^{K L} \tag{1}
\end{equation*}
$$

SU(4) harmonics [Hartwell, Howe 1995]

- Introduce harmonic variables $u_{I}^{(p, q, r)}$ which belong to a coset $\mathrm{SU}(4) / \mathrm{H}$ where H is a subgroup of $\mathrm{SU}(4)$, e.g., $\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$
- Rotate the $\operatorname{SU}(4)$ indices of $W^{I J}$ with these harmonics, $W^{I J} \rightarrow \mathcal{W}^{(p, q, r)}$
- For these rotated superfield strengths $\mathcal{W}^{(p, q, r)}$ obtain full set of constraints which are equivalent to (1)
\Rightarrow Grassmann analyticity
\Rightarrow Harmonic analyticity
- Under these constraints, all auxiliary fields vanish while the physical fields obey the free equations of motion

$$
\square X_{A}=0, \quad \not \partial \Psi^{N}=0, \quad \partial^{m} F_{m n}=0
$$

$\mathcal{N}=4$ USp(4) harmonic superspace

$$
D_{\alpha}^{I} W^{J K}+D_{\alpha}^{J} W^{I K}=0, \quad \bar{W}_{I J}=\frac{1}{2} \epsilon_{I J K L} W^{K L}
$$

USp(4) harmonics variables [Buchbinder, Lechtenfeld, Samsonov 2008]

- Introduce the harmonic variables $u_{I}^{(\pm, 0)}, u_{I}^{(0, \pm)}$ which belong to the coset USp(4)/[U(1)×U(1)]
- Contract the superfield strengths with harmonics, e.g.,

$$
\mathcal{W}=W^{I J}\left(u_{I}^{(+, 0)} u_{J}^{(-, 0)}+u_{I}^{(0,+)} u_{J}^{(0,-)}\right)
$$

Obtain six independent superfields,

$$
W^{I J} \rightarrow\left(\mathcal{W}, \mathcal{W}^{\prime}, \mathcal{W}^{(+,+)}, \mathcal{W}^{(-,-)}, \mathcal{W}^{(+,-)}, \mathcal{W}^{(-,+)}\right)
$$

- Rewrite the initial constraints in terms of these new superfields.
\Rightarrow Grassmann analyticity
\Rightarrow Harmonic analyticity
- These constraints eliminate all auxiliary fields from \mathcal{W} and put the physical component field on shell.

$\mathcal{N}=4$ harmonic superspace

Most general four-derivative action with $\mathcal{N}=4$ chargeless superfield

$$
\int d^{4} x d^{8} \theta d u H(\mathcal{W})
$$

$H(\mathcal{W})$ is some function of \mathcal{W} without derivatives Note that $d^{8} \theta \sim(D)^{8} \sim\left(\partial_{m}\right)^{4}$

Require scale invariance:

- $d^{4} x d^{8} \theta$ is dimensionless $\Rightarrow H(\mathcal{W})$ is dimensionless, but $[\mathcal{W}]=1$
- Hence, $H(\mathcal{W})=H(\mathcal{W} / \Lambda),[\Lambda]=1, \Lambda=$ const
- Scale invariance imply

$$
\Lambda \frac{d}{d \Lambda} H(\mathcal{W} / \Lambda)=\text { const } \quad \Rightarrow \quad H(\mathcal{W} / \Lambda)=c \ln \frac{\mathcal{W}}{\Lambda}
$$

Our main result

$$
\Gamma_{4}=c \int d^{4} x d^{8} \theta d u \ln \frac{\mathcal{W}}{\Lambda}
$$

$\mathcal{N}=4 \mathbf{S U}(2) \times \mathbf{S U}(2)$ harmonic superspace [Belyaev, Samsonov, arXiv:1106.0611]

SU(4) index $I \longrightarrow(i, a)-\operatorname{SU}(2) \times \operatorname{SU}(2)$ indices

$$
W^{I J} \longrightarrow\left(W^{(i j)}, W^{(a b)}\right)
$$

- Introduce the $\operatorname{SU}(2)$ harmonic variables $u_{i}^{ \pm}$and $v_{a}^{ \pm}$which belong to two SU(2)
- Contract the superfield strengths with harmonics, e.g.,

$$
\mathcal{W}=W^{i j} u_{i}^{+} u_{j}^{-}-W^{a b} v_{a}^{+} v_{b}^{-}
$$

Obtain six independent superfields,

$$
W^{I J} \rightarrow\left(\mathcal{W}, \mathcal{W}^{\prime}, \mathcal{W}^{(++, 0)}, \mathcal{W}^{(--, 0)}, \mathcal{W}^{(0,++)}, \mathcal{W}^{(0,--)}\right)
$$

- Rewrite the $\mathcal{N}=4$ SYM constraints in terms of these new superfields.
\Rightarrow Grassmann analyticity
\Rightarrow Harmonic analyticity
- These constraints eliminate all auxiliary fields from \mathcal{W} and put the physical component field on shell.
- Scale invariant action

$$
\Gamma_{4}=c \int d^{4} x d^{8} \theta d u d v \ln \frac{\mathcal{W}}{\Lambda}
$$

R-symmetry

There are three different forms of Γ_{4} :
(1) Buchbinder-Ivanov action, has $\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ explicit R-symmetry
(2) Our action in USp(4) harmonic superspace
(0) Our action in $\mathrm{SU}(2) \times \mathrm{SU}(2)$ harmonic superspace

Question:

Is there a superspace which makes manifest full $\operatorname{SU}(4)$ R-symmetry in the $\mathcal{N}=4$ SYM effective action?

Our answer:

No. In any four-dimensional superspace only a subgroup of $\mathrm{SU}(4)$ can be manifest in the $\mathcal{N}=4$ SYM effective action

R-symmetry, Wess-Zumino term

The $\mathcal{N}=4$ SYM effective action contains the Wess-Zumino term for the six scalar fields [Tseytlin, Zarembo 2000]

$$
S_{W Z}=-\frac{1}{60 \pi^{2}} \varepsilon^{M N K L P} \varepsilon^{A B C D E F} \int d^{5} x \frac{X_{A} \partial_{M} X_{B} \partial_{N} X_{C} \partial_{K} X_{D} \partial_{L} X_{E} \partial_{P} X_{F}}{|X|^{6}}
$$

- The Wess-Zumino action has manifest $\mathrm{SO}(6)$ symmetry only in the five-dimensional formulation.
- It can be rewritten in the four-dimensional form as soon as the WZ action is the integral of the exact differential form

$$
S_{W Z}=\int_{M_{5}} \Omega_{5}=\int_{M_{5}} d \omega_{4}=\int_{\partial M_{5}} \omega_{4}
$$

The form ω_{4} is invariant only under one of the following three subgroups of SO(6):
(1) $\mathrm{SO}(5) \simeq \mathrm{USp}(4)(\mathcal{N}=4 \mathrm{USp}(4)$ harmonic superspace action $)$
(2) $\mathrm{SO}(4) \times \mathrm{SO}(2) \simeq \mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1)(\mathcal{N}=2$ Buchbinder-Ivanov action $)$
(0) $\mathrm{SO}(3) \times \mathrm{SO}(3) \simeq \operatorname{SU}(2) \times \mathrm{SU}(2)(\mathcal{N}=4$ bi-harmoic superspace action)

Results:

(1) The four-derivative part Γ_{4} of the $\mathcal{N}=4$ SYM effective action is constructed in $\mathcal{N}=4$ harmonic superspace in manifestly $\mathcal{N}=4$ supersymmetric form
(2) Although the effective action has $\mathrm{SO}(6) \mathrm{R}$-symmetry, only one of the three subgroups $\mathrm{SO}(5), \mathrm{SO}(4) \times \mathrm{SO}(2)$ or $\mathrm{SO}(3) \times \mathrm{SO}(3)$ can be manifest in a four-dimensional formulation.

Open problems:

- $\mathcal{N}=4$ SYM effective action in $\mathcal{N}=0,1,3$ superspaces
- F^{6} and other higher-order contributions to the $\mathcal{N}=4 \mathrm{SYM}$ action and its comparison with the D3 brane action in the $A d S_{5} \times S^{5}$ background

