(2+1)Dirac Darboux transformation

Ekaterina Pozdeeva

SINP MSU, Moscow, Russia

SQS'2011
18-23 July, 2011, Dubna

Darboux transformation method

The Darboux transformation method ${ }^{1}$ based on the intertwining relation:

$$
L H_{0}=H_{1} L,
$$

where L is transformation operator, H_{0}, H_{1} are one-dimensional Hamiltonians of the Shrödinger equation.
${ }^{\text {G G. Darboux, Compt. Rend. Acad. Sci. Paris, 94, 1343; } 1456}$ (1882) [physics/9908003].
G. Darboux, Compt. Leçons sur la théorie générale des surfaces et les application géométriques du calcul infinitésimate, Paris: Guatier-Villar et Fils, 522 (1889).

- For application the Darboux transformation method the initial Shrödinger equation must be analytically solvable

$$
H_{0} \psi=E \psi
$$

- Then the transformed Shrödinger equation will the analytically solvable too

$$
H_{1} \tilde{\psi}=E \tilde{\psi}
$$

where $\tilde{\psi}=L \psi$.

- The Darboux transformation of Shrödinger equation is related with supersymmetric quantum mechanics ${ }^{2}$ in the two supercharges case Q_{1}, Q_{2}.
- In charge terms $Q=\left(Q_{1}+i Q_{2}\right) / \sqrt{2}, Q^{+}=\left(Q_{1}-i Q_{2}\right) / \sqrt{2}$ the algebra

$$
\begin{gather*}
\left\{Q_{i}, Q_{j}\right\}=\delta_{i j} H, \quad i, j=1,2, \ldots N \tag{1}\\
{\left[Q_{i}, H\right]=0} \tag{2}
\end{gather*}
$$

${ }^{2}$ E. Witten, Nucl. Phys. B, 185, 513 (1981). E. Witten, Nucl. Phys. B, 202, 253 (1982).
can be represeted by the following relations ${ }^{3}$:

$$
\begin{gather*}
H=\left\{Q, Q^{+}\right\}, \quad Q^{2}=\left(Q^{+}\right)^{2}=0 \tag{3}\\
{[Q, H]=\left[Q^{+}, H\right]=0} \tag{4}
\end{gather*}
$$

where

$$
\begin{align*}
Q & =\left(\begin{array}{cc}
0 & 0 \\
L & 0
\end{array}\right), \quad Q^{+}=\left(\begin{array}{cc}
0 & L^{+} \\
0 & 0
\end{array}\right), \tag{5}\\
H & \equiv\left(\begin{array}{cc}
H_{0} & 0 \\
0 & H_{1}
\end{array}\right) . \tag{6}
\end{align*}
$$

The charges Q, Q^{+}are commutates with Hamiltonian H, thus spectrum is degenerated.
.V.F. Marchenko, Inverse dispersion problem, Kharkov, KhSU(1960)

- The Darboux transformation are applied to generalized Dirac equation in two dimensions ${ }^{4}$.
- At present report we apply the Darboux transformation to $(2+1)$-dimensional Dirac equation.
> «E. Pozdeeva, A. Schulze-Halberg,Darboux transformations for a generalized Dirac equation in two dimensions, Journal of mathematical physics 51, 113501 (2010)

Dirac equation.

- The non-stationary $(3+1)$ Dirac equation has the form:

$$
i \hbar \frac{\partial \psi(t, x, y, z)}{\partial t}=-i \hbar c \alpha_{i} \frac{\partial \psi(t, x, y, z)}{\partial x_{i}}-W
$$

where $-W=m c^{2} \beta-V$.
For simplicity we work in unit $\hbar=c=1$

$$
i \frac{\partial \psi(t, x, y, z)}{\partial t}=-i \alpha_{i} \frac{\partial \psi(t, x, y, z)}{\partial x_{i}}-W
$$

where $-W=m \beta-V$.
Here β, α_{i} are matrixes in standard Dirac-Pauli representation. We suppose that the potential V as well as the wave function ψ not depend on the z. Thus we suppose that the particles move on plane.

The intertwine relation for $(2+1)$ Dirac equation

- Let us consider the intertwine relation

$$
\begin{equation*}
L H_{0}=H_{1} L \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& L=A \partial_{y}+B \partial_{x}+\Omega \tag{8}\\
& H_{0}=i \partial_{t}+i \alpha_{x} \partial_{x}+i \alpha_{y} \partial_{y}+W_{0} \tag{9}\\
& H_{1}=i \partial_{t}+i \alpha_{x} \partial_{x}+i \alpha_{y} \partial_{y}+W_{1} \tag{10}
\end{align*}
$$

Substitute the operators forms to the intertwining relations we obtain conditions to matrixes A, B

$$
\begin{aligned}
& {\left[A, i \alpha_{1}\right]+\left[B, i \alpha_{2}\right]=0,} \\
& {\left[A, i \alpha_{2}\right]=0} \\
& {\left[B, i \alpha_{1}\right]=0}
\end{aligned}
$$

These relations can be satisfied if

$$
\begin{aligned}
& A=f(t, x, y) \alpha_{2}+g_{A}(t, x, y) I \\
& B=f(t, x, y) \alpha_{1}+g_{B}(t, x, y) I
\end{aligned}
$$

Thus, we can consider only the following equations:

$$
\begin{aligned}
& i B_{t}+i \alpha_{1} B_{x}+i \alpha_{2} B_{y}+W_{1} B-B W_{0}+\left[i \alpha_{1}, \Omega\right]=0 \\
& i A_{t}+i \alpha_{1} A_{x}+i \alpha_{2} A_{y}+W_{1} A-A W_{0}+\left[i \alpha_{2}, \Omega\right]=0 \\
& i \Omega_{t}+i \alpha_{1} \Omega_{x}+i \alpha_{2} \Omega_{y}+W_{1} \Omega-\Omega W_{0}-A W_{0 y}-B W_{0 x}=0
\end{aligned}
$$

Simplest choosing of A and B

Standard Darboux transformation
Let us consider the case: $A=0, B=I$. In this case system of equations has the form:

$$
\begin{aligned}
& D=-\left[i \alpha_{1}, \Omega\right] \\
& {\left[i \alpha_{2}, \Omega\right]=0, \quad \text { or } \quad \alpha_{2} \Omega=\Omega \alpha_{2}} \\
& i \Omega_{t}+i \alpha_{1} \Omega_{x}+i \alpha_{2} \Omega_{y}+W_{1} \Omega-\Omega W_{0}-W_{0 x}=0
\end{aligned}
$$

Let us make linearization. Suppose

$$
\Omega=-u_{x} u^{-1}
$$

and substitute it into the equation to Ω using the property of Ω :

$$
\left[u^{-1}\left(i u_{t}+i \alpha_{1} u_{x}+i \alpha_{2} u_{y}+W_{0}\right)\right]_{x}=0
$$

Analogously, if $A=I, B=0$, then we obtain the following system of equations:

$$
\begin{aligned}
& D=-\left[i \alpha_{2}, \Omega\right] \\
& {\left[i \alpha_{1}, \Omega\right]=0, \quad \text { or } \quad \alpha_{1} \Omega=\Omega \alpha_{1}} \\
& i \Omega_{t}+i \alpha_{1} \Omega_{x}+i \alpha_{2} \Omega_{y}+W_{1} \Omega-\Omega W_{0}-W_{0 y}=0 .
\end{aligned}
$$

Let us try to make linearization

$$
\Omega=-u_{y} u^{-1}
$$

and substitute it into the equation to Ω using the another property of Ω :

$$
\left[u^{-1}\left(i u_{t}+i \alpha_{1} u_{x}+i \alpha_{2} u_{y}+W_{0}\right)\right]_{y}=0
$$

The considered simplifications can be useful for the construction $W_{i}=\alpha_{3} \Phi(x, y)$ type potentials for the Dirac equation. The potentials of this type can correspond to a magnetic field.

Choosing of $A=I$ and $B=I$

- Let us consider the case then $A=I, B=I$:

$$
L=\partial_{x}+\partial_{y}+\Omega
$$

then from

$$
\begin{aligned}
& i B_{t}+i \alpha_{1} B_{x}+i \alpha_{2} B_{y}+W_{1} B-B W_{0}+\left[i \alpha_{1}, \Omega\right]=0 \\
& i A_{t}+i \alpha_{1} A_{x}+i \alpha_{2} A_{y}+W_{1} A-A W_{0}+\left[i \alpha_{2}, \Omega\right]=0 \\
& i \Omega_{t}+i \alpha_{1} \Omega_{x}+i \alpha_{2} \Omega_{y}+W_{1} \Omega-\Omega W_{0}-A W_{0 y}-B W_{0 x}=0 .
\end{aligned}
$$

we obtain the following equations system:

$$
\begin{aligned}
& D=\left[\Omega, i \alpha_{1}\right] \\
& D=\left[\Omega, i \alpha_{2}\right] \\
& i \Omega_{t}+i \alpha_{1} \Omega_{x}+i \alpha_{2} \Omega_{y}+W_{1} \Omega-\Omega W_{0}-W_{0 y}-W_{0 x}=0
\end{aligned}
$$

From potential difference expressions, evidently that Ω has the form:

$$
\Omega=\Omega_{I} I+\Omega_{1} \alpha_{1}+\Omega_{2} \alpha_{2}
$$

where $\Omega_{2}=-\Omega_{1}$.
If suppose $\Omega=-u_{x} u^{-1}$ and use the equation to Ω we get:
$-u\left(\left(u^{-1}\left(i u_{t}+i \alpha_{1} u_{x}+i \alpha_{2} u_{y}+W_{0} u\right)\right)_{x}-u^{-1} D u_{y}\right) u^{-1}=W_{0 y}$.
The equation can be represented in the form
$\left(u^{-1}\left(i u_{t}+i \alpha_{1} u_{x}+i \alpha_{2} u_{y}+W_{0} u\right)\right)_{x}-u^{-1} D u_{y}=-u^{-1} W_{0 y} u$
or in the form
$\left(u^{-1}\left(i u_{t}+i \alpha_{1} u_{x}+i \alpha_{2} u_{y}+W_{0} u\right)\right)_{x}=-u^{-1}\left(W_{0 y}+D u_{y} u^{-1}\right) u$.

- The integration of last equation gives the following:
$i u_{t}+i \alpha_{1} u_{x}+i \alpha_{2} u_{y}+W_{0} u=-u \int u^{-1}\left(W_{0 y}+D u_{y} u^{-1}\right) u d x$,
where we can suppose

$$
\Lambda(t, y)=\int u^{-1}\left(W_{0 y}+D u_{y} u^{-1}\right) u d x
$$

and consider the equation:

$$
i u_{t}+i \alpha_{1} u_{x}+i \alpha_{2} u_{y}+W_{0} u=-u \Lambda(t, y) .
$$

Now suppose that:

$$
u=\hat{u} \Gamma(t, y),
$$

and obtain the initial Dirac equation with right part:

$$
i \hat{u}_{t}+i \alpha_{1} \hat{u}_{x}+i \alpha_{2} \hat{u}_{y}+W_{0} \hat{u}=-\hat{u}\left(\Lambda+i \Gamma_{t} \Gamma^{-1}+i \alpha_{2} \Gamma_{y} \Gamma^{-1}\right)
$$

Here we can choose matrix function Γ such way that,
$i \Gamma_{t} \Gamma^{-1}+i \alpha_{2} \Gamma_{y} \Gamma^{-1}=-\Lambda(t, y)=-\int u^{-1}\left(W_{0 y}+D u_{y} u^{-1}\right) u d x$ and from where evidently:

$$
i \hat{u}_{t}+i \alpha_{1} \hat{u}_{x}+i \alpha_{2} \hat{u}_{y}+W_{0} \hat{u}=0
$$

- Thus, in considered case

$$
\begin{gathered}
\Omega=\Omega_{I} I+\Omega_{1} \alpha_{1}+\Omega_{2} \alpha_{2}, \quad \Omega_{2}=-\Omega_{1}, \quad \Omega=-u_{x} u^{-1} \\
D=\left[\Omega, i \alpha_{1}\right]=\left[\Omega, i \alpha_{2}\right], \\
u=\hat{u} \Gamma(t, y) \\
i \Gamma_{t} \Gamma^{-1}+i \alpha_{2} \Gamma_{y} \Gamma^{-1}=-\Lambda(t, y)=-\int \hat{u}^{-1}\left(W_{0 y}+D \hat{u}_{y} \hat{u}^{-1}\right) \hat{u} d x
\end{gathered}
$$ where \hat{u} is matrix solution to initial Dirac equation:

$$
i \hat{u}_{t}+i \alpha_{1} \hat{u}_{x}+i \alpha_{2} \hat{u}_{y}+W_{0} \hat{u}=0
$$

Such as $u_{x} u^{-1}=\hat{u}_{x} \hat{u}^{-1}$, the potential difference $W_{1}-W_{0}=D$ can be represented it in the form: $D=\left[-\hat{u}_{x} \hat{u}^{-1}, i \alpha_{2}\right]$.

Analogically we can consider the $\Omega=-u_{y} u^{-1}$ case:

$$
\begin{gathered}
\Omega=\Omega_{I} I+\Omega_{1} \alpha_{1}+\Omega_{2} \alpha_{2}, \quad \Omega_{2}=-\Omega_{1}, \quad \Omega=-u_{y} u^{-1} \\
D=\left[\Omega, i \alpha_{1}\right]=\left[\Omega, i \alpha_{2}\right] \\
u=\hat{u} \Gamma(t, x), \\
i \Gamma_{t} \Gamma^{-1}+i \alpha_{1} \Gamma_{x} \Gamma^{-1}=-\Lambda(t, x)=-\int \hat{u}^{-1}\left(W_{0 x}+D \hat{u}_{x} \hat{u}^{-1}\right) \hat{u} d y
\end{gathered}
$$ where \hat{u} is solution to initial Dirac equation:

$$
i \hat{u}_{t}+i \alpha_{1} \hat{u}_{x}+i \alpha_{2} \hat{u}_{y}+W_{0} \hat{u}=0
$$

Such as $u_{y} u^{-1}=\hat{u}_{y} \hat{u}^{-1}$, the potential difference $W_{1}-W_{0}=D$ can be represented it in the form: $D=\left[-\hat{u}_{y} \hat{u}^{-1}, i \alpha_{2}\right]$

Summarizing

-In this report the application of Darboux transformation to twodimensional non-stationary Dirac equation firstly considered.

- Also the intertwine operator $L=A \partial_{x}+B \partial_{y}+\Omega$ with two nonzero coefficients A, B firstly applied to DE.
- The transformation potential can be constructed using the matrix solution of initial Dirac equation.

Thak you for attention

