$\mathrm{N}=1$ Supersymmetric Liouville Equation

Z. Popowicz
Institute of Theoretical Physics, University of Wroclaw, pl. Maxa Borna 9 WROCŁAW

SQS 2011 Supersymmetries and Quantum Symmetries

$$
\text { July 14, } 2011
$$

Supersymmetric Liouville Equation

$$
\begin{aligned}
& S=\int d z d \bar{z} d \theta d \bar{\theta}\left(\mathcal{D} \Phi \overline{\mathcal{D}} \Phi+i e^{\Phi}\right) \\
& \mathcal{D}=\partial_{\theta}+\theta \partial_{z}, \quad \overline{\mathcal{D}}=\partial_{\bar{\theta}}+\bar{\theta} \partial_{\bar{z}} \\
& \mathcal{Q}=\partial_{\theta}-\theta \partial_{z}, \quad \overline{\mathcal{Q}}=\partial_{\bar{\theta}}-\bar{\theta} \partial_{\bar{z}} \\
& \Phi=\phi+i \theta \psi+i \bar{\theta} \bar{\psi}+i \theta \bar{\theta} F
\end{aligned}
$$

The equation of motion in the component

$$
\begin{aligned}
\phi_{z, \bar{z}} & =F e^{\phi}+i \psi \bar{\psi} \\
\psi_{\bar{z}} & =-i e^{\phi} \bar{\psi}, \quad \bar{\psi}_{z}=i e^{\phi} \psi \\
F & =e^{\phi}
\end{aligned}
$$

references: M. Chaichian, P. Kulish (1978) E. Ivanov, S. Krivonos (1984) $\mathrm{N}=2$ and $\mathrm{N}=4$ super Liouville

Why it is interesting susy generalization ?

1.) Connection with superstrings and four dimensional supergauge theory.
Energy stress tensor $T(z)$ and $T(\bar{z})$ and superconformal current $S(z)$ and $S(\bar{z})$

$$
\begin{aligned}
& T(z)=-\frac{1}{2}(\partial \phi \partial \phi+\psi \partial \psi)=\sum_{n \varepsilon Z} z^{n-2} L_{-n} \\
& S(z)=i(\psi \partial \phi-2 \partial \psi)=\sum_{k \varepsilon Z+\frac{1}{2}} z^{k-\frac{3}{2}} S_{-k}
\end{aligned}
$$

We obtain Neveue - Schwartz algebra (super Virasoro) assuming the OPE for $T(z), S(z)$

$$
\begin{aligned}
{\left[L_{m}, L_{n}\right] } & =(m n) L_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m+n} \\
{\left[L_{m}, S_{k}\right] } & =\frac{m-2 k}{2} S_{m+k} \\
\left\{S_{k}, S_{l}\right\} & =2 L_{k+l}+\frac{c}{3}\left(k^{2}-\frac{1}{4}\right) \delta_{k+l}, \quad c=12+\frac{3}{2}
\end{aligned}
$$

This susy generalization follows from the following observation
it means that one goes to the zero-curvature representation on some superalgebra containing the algebra of an analogous representation of the original bosonic equation as an even subalgebra. In doing so, the systems with the simple as well as extended supersymmetries can be obtained
E.A. Ivanov, S.O. Krivonos U(1)- supersymmetric extension of the Liouville equation

Comment:
We have no any quaranty that all properties of Liouville equation are transformed to susy case

What we can say on other properties of Liouville equation ? The reciprocal link of Liouville and Hunter - Saxton equation Hunter - Saxton Equation

$$
u_{x, t}=\frac{1}{2} u_{x}^{2}+u u_{x x}
$$

Change variables $x, t \Rightarrow y(x, t), \tau(x, t)$ as

$$
\begin{aligned}
d y & =v d x+\left(v \partial^{-2} v^{2}\right) d t, \quad d \tau=d t \\
\partial_{x} & =v \partial_{y}, \quad \partial_{t}=\partial_{\tau}+\left(v \partial_{x}^{-2} v^{2}\right) \partial_{y} \\
v^{2} & =u_{x x}, \quad(\log v)_{y, \tau}=v
\end{aligned}
$$

Is it possible to construct the supersymmetric reciprocal transformation ?

Classical Harry Dym Hierarchy

$$
w_{t}=\left(w^{-\frac{1}{2}}\right)_{x x x}, \quad u_{t}=\partial\left(\partial^{2} u^{-2}-3 u_{x}^{2} u^{-4}\right)
$$

where $u=\sqrt{w} . \quad$ It is a Tri - Hamiltonian system

$$
\begin{aligned}
w_{t} & =P_{1} \frac{\delta H_{-1}}{\delta w}=P_{2} \frac{\delta H_{-2}}{\delta w}=P_{3} \frac{\delta H_{-3}}{\delta w} \\
P_{1} & =\partial^{3}, \quad P_{2}=2 \sqrt{w} \partial \sqrt{w}, \quad P_{3}=P_{2} P_{1}^{-1} P_{2} \\
H_{-1} & =2 \int d x \sqrt{w}, \quad H_{-2}=\frac{1}{8} \int d x w^{-\frac{5}{2}} w_{x}^{2} \\
H_{-3} & =\frac{1}{8} \int d x\left(16 w_{x x}^{2} w^{-\frac{7}{2}}-35 w_{x}^{4} w^{-\frac{11}{2}}\right)
\end{aligned}
$$

P_{i} is the so called Poisson tensor or Hamiltonian operator which is connected with the Poisson bracket as

$$
\begin{equation*}
\{w(x), w(y)\}_{i}=P_{i} \delta(x-y) \tag{1}
\end{equation*}
$$

Lax representation

$$
L=w^{-2} \partial^{2}, \quad \Rightarrow \quad L_{t}=\left[L_{2}^{\frac{3}{2}}, L\right]
$$

Inverse Hierarchy

$$
\begin{aligned}
w_{t_{1}} & =P_{1} \frac{\delta H_{0}}{\delta w}=P_{2} \frac{\delta H_{-1}}{\delta w}=P_{3} \frac{\delta H_{-2}}{\delta w}=0 \\
w_{t_{2}} & =P_{1} \frac{\delta H_{1}}{\delta w}=P_{2} \frac{\delta H_{0}}{\delta w}=w_{x} \\
w_{\tau} & =P_{1} \frac{\delta H_{2}}{\delta w}=P_{2} \frac{\delta H_{1}}{\delta w}=P_{3} \frac{\delta H_{0}}{\delta w}=2 w \partial^{-1} w+w_{x} \partial^{-2} w \\
H_{0} & =\int d x w, \quad H_{1}=\frac{1}{2} \int d x\left(\partial^{-1} w\right)^{2} \\
H_{2} & =\frac{1}{2} \int d x\left(\partial^{-2} w\right)\left(\partial^{-1} w\right)^{2}
\end{aligned}
$$

The last equation is the Hunter - Saxton equation which is connected with the Liouville equation by reciprocal transformation

Even and Odd Susy Harry Dym Equation

J.C.Brunelli, A. Das, Z. Popowicz (2003)
Q.P.Liu, Z. Popowicz, Kai Tian (2010)
A.) Tri - Hamiltonian structure
B.) Lax representation
\Longrightarrow Even
\Longrightarrow Odd
Even Structure in Quantum Field Theory

$$
\begin{aligned}
{[\text { Boson, Boson }] } & \Rightarrow \text { Boson } \\
{[\text { Boson, Fermion }] } & \Rightarrow \text { Fermion } \\
{[\text { Fermion, Fermion }] } & \Rightarrow \text { Boson }
\end{aligned}
$$

Odd Structure in Quantum Field Theory

$$
\begin{aligned}
{[\text { Boson, Boson }] } & \Rightarrow \text { Fermion } \\
{[\text { Boson, Fermion }] } & \Rightarrow \text { Boson } \\
{[\text { Fermion, Fermion }] } & \Rightarrow \text { Fermion }
\end{aligned}
$$

Buttin first idea,
Leites, Kupershmidt, Soroka, Batalin, Vikovski, Khudaverian,
Volkov, Pashnev, Frydryszak
Leites: in the classical supersymmetrical models can occurs the even as well as odd Hamiltonian structures.

A.) Even case Susy Harry Dym equation

$$
\begin{aligned}
W_{t}= & K_{1} \frac{\delta H_{-1}}{\delta W}=K_{2} \frac{\delta H_{-2}}{\delta W}=K_{3} \frac{\delta H_{-3}}{\delta W}= \\
& =\frac{1}{4} \partial^{2}\left[-4 W(\mathcal{D} W)^{-\frac{1}{2}}+3 W\left(\mathcal{D} W_{x}\right)(\mathcal{D} W)^{-\frac{5}{2}}\right] \\
K_{1}= & \mathcal{D} \partial, \quad K_{3}=K_{2} K_{1}^{-1} K_{2} \\
K_{2}= & \frac{1}{2}[W \partial+2 \partial W+(\mathcal{D} W) \mathcal{D}]
\end{aligned}
$$

where $W=\xi+\theta w$ and K_{2} corresponds to the centerless susy $N=1$ Virasoro algebra

$$
\begin{aligned}
& H_{-1}=\int d x d \theta W(\mathcal{D} W)^{-\frac{1}{2}} \\
& H_{-2}=\int d x d \theta\left[W_{x}\left(\mathcal{D} W_{x}\right)(\mathcal{D} W)^{-\frac{5}{2}}-15 W W_{x} W_{x x}(\mathcal{D} W)^{-\frac{7}{2}}\right]
\end{aligned}
$$

and H_{-3} is complicated.

Even Negative hierarchy

$$
\begin{aligned}
W_{t_{1}} & =K_{1} \frac{\delta H_{0}}{\delta W}=K_{2} \frac{\delta H_{-1}}{\delta W}=K_{3} \frac{\delta H_{-2}}{\delta W}=0 \\
W_{t_{2}} & =K_{1} \frac{\delta H_{1}}{\delta W}=K_{2} \frac{\delta H_{0}}{\delta W}=W_{x} \\
H_{0} & =\int d x d \theta W, \quad H_{1}=\int d x d \theta\left(\mathcal{D}^{-3} W\right) W
\end{aligned}
$$

Even Susy Hunter - Saxton equation

$$
\begin{aligned}
W_{\tau}= & K_{1} \frac{\delta H_{2}}{\delta W}=K_{2} \frac{\delta H_{1}}{\delta W}=K_{3} \frac{\delta H_{0}}{\delta W}= \\
& =-\frac{3}{2} W\left(\mathcal{D}^{-1} W\right)-W_{x}\left(\mathcal{D}^{-3} W\right) W-\frac{1}{2}(\mathcal{D} W) \partial^{-1} W \\
H_{2}= & \int d x d \theta\left(\mathcal{D}^{-1} W\right)\left(\partial^{-1} W\right)\left(\mathcal{D}^{-3} W\right)
\end{aligned}
$$

In terms of $U=\mathcal{D} W$ we have

$$
\begin{aligned}
U_{t} & =2 U_{x} \partial^{-2} U+4 U \partial^{-1} U-(\mathcal{D} U) \partial^{-2}(\mathcal{D} U) \\
\left(U^{\frac{1}{4}}\right)_{t} & =\mathcal{D}\left[U^{\frac{1}{4}} \partial^{-2}(\mathcal{D} U)+\frac{1}{8}(\mathcal{D} U)^{\frac{1}{4}} \partial^{-2} U\right]
\end{aligned}
$$

Susy Reciprocal Transformation

Q.P.Liu, Z.Popowicz, K.Tian (2010)

Theorem: If G is a conserved quantity such that

$$
\frac{\partial G}{\partial t}=\mathcal{D} \Psi
$$

and exists potential Ω such that

$$
\mathcal{D} \Omega=2 G \Psi
$$

then the Susy recipocal transformation is

$$
\begin{aligned}
(x, \theta, t) & \Rightarrow(y, \rho, \tau) \Rightarrow(y(x, \theta, t), \rho(y, x, \theta), \tau) \\
\hat{\mathcal{D}} & =\frac{\partial}{\partial \rho}+\rho \frac{\partial}{\partial y}, \quad \mathcal{D}=G \hat{\mathcal{D}} \\
\frac{\partial}{\partial t} & =\frac{\partial}{\partial \tau}+\Omega \frac{\partial}{\partial y}+\Psi \hat{\mathcal{D}}
\end{aligned}
$$

Even Susy Liouville Equation

$$
\begin{gathered}
\Omega=2 U^{\frac{1}{2}} \partial^{-2} U \\
\partial_{y, \tau} \log U=4 U^{\frac{3}{2}}-8\left(\left(\hat{\mathcal{D}} U^{\frac{1}{4}}\right) \hat{\mathcal{D}}^{-1} U^{\frac{1}{4}} \partial^{-1} U^{\frac{3}{2}}\right)_{y}
\end{gathered}
$$

B. Odd Susy Harry - Dym Equation

The Lax representation A.C.Brunelli, A. Das, Z. Popowicz (2003)

$$
\begin{aligned}
L & =V^{-1} \mathcal{D} V^{-1} \partial, \quad L_{t}=\left[L_{2}^{\frac{3}{2}}, L\right] \\
V_{t} & =\frac{1}{8}\left[\partial^{3} V^{-2}-3 \mathcal{D} \partial(\mathcal{D} V) V_{x} V^{-4}\right]
\end{aligned}
$$

where $V=u+\theta \xi$ is a superbosonic function.

Odd Hamiltonian Structure

This equation is the Bi - Hamiltonian only not tri

$$
\begin{aligned}
V_{t} & =P_{2} \frac{\partial H_{-2}}{\partial V}=P_{3} \frac{\partial H_{-3}}{\partial V} \\
P_{2} & =\mathcal{D}^{3}, \quad \Pi=V^{\frac{1}{2}} \mathcal{D} V^{\frac{1}{2}} \mathcal{D} V \\
P_{3} & =-\Pi \mathcal{D}^{5} \Pi^{\star}, \quad H_{-2}=\frac{1}{8} \int d x d \theta(\mathcal{D} V) V_{x} V \\
H_{-3} & =\int d x d \theta(\mathcal{D} V)\left[4 V_{x x x} V^{5}-30 V_{x x} V_{x} V^{6}+35 V_{x}^{3} V^{7}\right]
\end{aligned}
$$

Odd negative hierarchy of Susy Harry Dym Equation

$$
\begin{aligned}
V_{t_{1}} & =P_{2} \frac{\partial H_{-1}}{\partial V}=P_{3} \frac{\partial H_{-2}}{\partial V}=0 \\
H_{-1} & =\int d x d \theta V^{-1} \mathcal{D}^{-1} V \\
V_{t_{2}} & =P_{2} \frac{\delta H_{0}}{\partial V}=V_{x}, \quad H_{0}=\int d x d \theta V \mathcal{D}^{-1} V
\end{aligned}
$$

Odd Susy Hunter - Saxton Equation

The next flow in the negative hierarchy is

$$
\begin{aligned}
V_{t}= & P_{2} \frac{\partial H_{1}}{\partial V}=P_{3} \frac{\partial H_{0}}{\partial V} \\
= & \frac{1}{2}\left[\partial V \mathcal{D}^{-3} V \partial^{-1} \mathcal{D} V-(\mathcal{D} V) \partial^{-1} V \partial^{-1} \mathcal{D} V\right] \\
H_{1}= & \int d x d \theta\left[2\left(\mathcal{D}^{-1} V\right) V \mathcal{D}^{-3}-(\mathcal{D} V)\left(\mathcal{D}^{-3} V\right) \partial^{-1}\right] V \mathcal{D}^{-1} V
\end{aligned}
$$

Let us rewrite this equation as

$$
\left(V^{\frac{1}{2}}\right)_{t}=\frac{\partial}{\partial x}\left(V^{\frac{1}{2}} \mathcal{D}^{-3} V \mathcal{D}^{-1} V\right)+\mathcal{D}\left(V^{-\frac{1}{2}}(\mathcal{D} V) \mathcal{D}^{-3} V \mathcal{D}^{-1} V\right)
$$

Odd Susy Liouville Equation

Using previous theorem we have

$$
\begin{aligned}
& \Omega= 2 V \mathcal{D}^{-3} V \mathcal{D}^{-1} V, \quad \mathcal{D}=V^{\frac{1}{2}} \hat{\mathcal{D}}, \quad G=V^{\frac{1}{2}} \\
& \frac{\partial}{\partial t}= \frac{\partial}{\partial \tau}+2 G V\left(\mathcal{D}^{-3} V \mathcal{D}^{-1} V\right) \frac{\partial}{\partial y}+\left(V^{-\frac{1}{2}}(\mathcal{D} V) \mathcal{D}^{-3} V \mathcal{D}^{-1} V+\right. \\
&\left.V^{-\frac{1}{2}} \partial^{-1} V \mathcal{D}^{-1} V\right) \hat{\mathcal{D}} \\
& V_{\tau}= 2 V \hat{\mathcal{D}}^{-1} V^{-\frac{1}{2}} \hat{\mathcal{D}}^{-1} V^{\frac{1}{2}}
\end{aligned}
$$

Introducing $V=(\hat{\mathcal{D}} \Lambda)^{2}$ we obtain Susy Odd Liouville equation

$$
\frac{\partial}{\partial \tau} \hat{\mathcal{D}} \ln (\hat{\mathcal{D}} \Lambda)=(\hat{\mathcal{D}} \Lambda) \Lambda, \quad \hat{\mathcal{D}}=\partial_{\rho}+\rho \partial_{y}
$$

In components $\Lambda=\xi+\rho u$ we have

$$
\frac{\partial^{2}}{\partial y \partial \tau} \ln u=u^{2}+\xi_{y} \xi, \quad\left(u^{-1} \xi\right)_{\tau}=u \xi
$$

