Unfolded Scalar Supermultiplet

D. Ponomarev

Lebedev Physical Institute
Joint Institute for Nuclear Research, Dubna, July 19, 2011
D.P. and M.A. Vasiliev, [arXiv:1012.2903[hep-th]].

Plan of the Talk

- Unfolded equations: definitions, properties, examples
- Analysis of unfolded equations, σ_{-}-cohomology technics
- $\mathcal{N}=1 d=4$ unfolded scalar supermultiplet
- σ_{-}-spectral sequences

Proca field

$$
\begin{gathered}
\partial^{\mu} \partial_{\mu} A_{\nu}-\partial^{\mu} \partial_{\nu} A_{\mu}+m^{2} A_{\nu}=0 \quad \Rightarrow \quad \partial^{\nu} A_{\nu}=0, \\
\partial^{\mu} \partial_{\mu} A_{\nu}-(1+\alpha) \partial^{\mu} \partial_{\nu} A_{\mu}+m^{2} A_{\nu}=0 \quad \nRightarrow \quad \partial^{\nu} A_{\nu}=0,
\end{gathered}
$$

Scalar electrodynamics

$$
S_{A}=\int d^{d} x\left(-F_{\mu \nu} F^{\mu \nu}-A^{\mu} j_{\mu}\right) \quad \Rightarrow \quad \frac{\delta S_{A}}{\delta A^{\nu}} \sim \partial^{\mu} F_{\mu \nu}-j_{\nu}=0 \quad \Rightarrow
$$

requires conserved current $\partial^{\mu}{ }_{j \mu}=0$.

$$
S_{\phi}=\int d^{d} x\left(\partial^{\mu} \phi^{*} \partial_{\mu} \phi-m^{2} \phi^{*} \phi\right) \quad \Rightarrow \quad \partial^{\mu} j_{\mu}=0,
$$

where $j_{\mu}=\phi^{*} \partial_{\mu} \phi-\phi \partial_{\mu} \phi^{*}$.

$$
\frac{\delta\left(S_{A}+S_{\phi}\right)}{\delta \phi}=0 \quad \Rightarrow \quad \partial^{\mu} j_{\mu} \neq 0 .
$$

Unfolded equations

Generalized curvatures R^{α} for fields W^{α}

$$
\begin{gathered}
R^{\alpha}(x) \stackrel{\text { def }}{=} d W^{\alpha}(x)+G^{\alpha}(W(x)) \\
G^{\alpha}\left(W^{\beta}\right) \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} f_{\beta_{1} \ldots \beta_{n}}^{\alpha} W^{\beta_{1}} \ldots W^{\beta_{n}} .
\end{gathered}
$$

Compatibility condition

$$
G^{\beta}(W) \frac{\delta^{L} G^{\alpha}(W)}{\delta W^{\beta}} \equiv 0 \quad \Rightarrow \quad d R^{\alpha} \equiv R^{\beta} \frac{\delta G^{\alpha}}{\delta W^{\beta}}
$$

Does not depend on base space Equations:

$$
R^{\alpha}(x)=0
$$

Gauge invariance

$$
\delta W^{\alpha}=d \varepsilon^{\alpha}-\varepsilon^{\beta} \frac{\delta^{L} G^{\alpha}(W)}{\delta W^{\beta}} .
$$

Examples

Zero curvature equation in YM theory
Field: 1-form $\hat{\Omega}_{0}=\Omega_{0}^{a} \hat{T}_{a} \in g, g-$ Lie algebra, $\hat{T}_{a}-$ generators.

$$
\hat{R} \stackrel{\text { def }}{=} d \hat{\Omega}_{0}+\hat{\Omega}_{0} \hat{\Omega}_{0}=0
$$

Let g be Poincare algebra ($\hat{P}_{a}, \hat{M}_{a b}$)

$$
\begin{gathered}
\hat{\Omega}_{0}=e_{0}{ }^{a} \hat{P}_{a}+\omega_{0}^{a b} \hat{M}_{a b}, \quad \hat{R}=R_{L}^{a b} \hat{M}_{a b}+T^{a} \hat{P}_{a} \\
R_{L}^{a b}=d \omega_{0}^{a b}+\omega_{0}^{a c} \omega_{0 c}^{b}=0 \\
T^{a}=d e_{0}^{a}+\omega_{0}^{a b} e_{0 b}=0
\end{gathered}
$$

Describes background geometry of Minkowski space.

Examples

Covariant constancy equation

Fields: set of p-forms $C^{i}, W=\Omega_{0}+C+\ldots$.

$$
R^{i} \stackrel{\text { def }}{=} d C^{i}+\Omega_{0}^{a}\left(T_{a}\right)^{i}{ }_{j} C^{j}=0
$$

Representation

$$
\hat{A}=A^{a} \hat{T}_{a} \quad \rightarrow \quad A_{j}^{i}=A^{a}\left(T_{a}\right)^{i}{ }_{j}
$$

$C \in$ representation space,

$$
R^{i}=0 \quad \Leftrightarrow \quad D_{\Omega_{0}} C^{i}=0
$$

Examples

Massless scalar field

Cartesian coordinates

$$
e_{0 m}^{a}=\delta_{m}^{a}, \quad \omega_{0 m}{ }^{a b}=0, \quad D^{L}=d
$$

Fields: 0-forms $C^{a(k)}, C_{b}^{b a(k-2)}=0$.
Curvatures:

$$
R^{a(k)} \stackrel{\operatorname{def}}{=} d C^{a(k)}+e_{0}^{b} C_{b}^{a(k)} .
$$

The first and the second equations

$$
\begin{gathered}
\partial_{a} C(x)+C_{a}(x)=0, \\
\partial_{b} C_{a}(x)+C_{a b}(x)=0
\end{gathered}
$$

entail

$$
C_{b}^{b}(x)=0 \quad \Rightarrow \quad \partial^{a} \partial_{a} C(x)=0
$$

σ_{-}cohomology technics

Unfolded equations for p-forms C

$$
R \stackrel{\text { def }}{=}\left(d+\sum \sigma\right) C=0
$$

σ - algebraic operators.

$$
\begin{aligned}
& \delta C=\left(d+\sum \sigma\right) \varepsilon \\
& I=\left(d+\sum \sigma\right) R \equiv 0
\end{aligned}
$$

- gauge symmetries and Bianchi identities.

How to analyse them? How to identify dynamical fields and dynamical equations?

σ_{-}cohomology technics

The choice of dynamical fields is not unique!

Example

$$
\frac{\partial}{\partial x} B(x)+A(x)=0, \quad \frac{\partial}{\partial x} A(x)+B(x)=0
$$

Introduce \mathbb{Z}-grade \mathcal{G} : diagonalizable on the space of fields, bounded below.

$$
\begin{gathered}
R \stackrel{\text { def }}{=}\left(d+\sigma_{-}\right) C=0 \\
\delta C=\left(d+\sigma_{-}\right) \varepsilon \\
I=\left(d+\sigma_{-}\right) R \equiv 0
\end{gathered}
$$

σ_{-}- the only algebraic operator, lowers grade.
Compatibility conditions $\Rightarrow \quad\left(\sigma_{-}\right)^{2}=0$.

σ_{-}-cohomology technics.

Dynamical fields

Expressing fields in terms of fields of lower grade by means of

$$
\left(d+\sigma_{-}\right) C=0, \quad\left\{d C^{k-1}+\sigma_{-}^{1} C^{k}=0\right\}
$$

we get $C \notin \operatorname{Ker}\left(\sigma_{-}\right) \Rightarrow C-$ auxiliary.
Gauge transformation

$$
\delta C=\left(d+\sigma_{-}\right) \varepsilon
$$

allows to fix $C=0$ if $C \in \operatorname{Im}\left(\sigma_{-}\right)$.
Result: dynamical fields C_{d}

$$
C_{d} \in \frac{\operatorname{Ker}\left(\sigma_{-}\right)}{\operatorname{Im}\left(\sigma_{-}\right)}=H\left(\sigma_{-}\right)
$$

$\sigma_{-}-$cohomology technics. The result

Dynamical fields C_{d}

$$
C_{d} \in \frac{\operatorname{Ker}_{p}\left(\sigma_{-}\right)}{\operatorname{Im}_{p}\left(\sigma_{-}\right)}=H_{p}\left(\sigma_{-}\right)
$$

Dynamical equations $R_{d}=0$

$$
R_{d} \in \frac{\operatorname{Ker}_{p+1}\left(\sigma_{-}\right)}{\operatorname{Im}_{p+1}\left(\sigma_{-}\right)}=H_{p+1}\left(\sigma_{-}\right)
$$

Differential gauge symmetries ε_{d} (cannot be fixed by algebraic gauge)

$$
\varepsilon_{d} \in \frac{\operatorname{Ker}_{p-1}\left(\sigma_{-}\right)}{\operatorname{Im}_{p-1}\left(\sigma_{-}\right)}=H_{p-1}\left(\sigma_{-}\right)
$$

where $p-$ rank of C as a differential form.
[O.V. Shaynkman and M.A. Vasiliev '00]

$H\left(\sigma_{-}\right)$-analysis for massless scalar field

Curvatures:

$$
R^{a(k)} \stackrel{\text { def }}{=} d C^{a(k)}+e_{0}^{b} C_{b}{ }^{a(k)} .
$$

Grade \mathcal{G} counts number of tensor indices, $\sigma_{-}-$contraction with frame e_{0}^{b}, $\left[\mathcal{G}, \sigma_{-}\right]=-\sigma_{-}$.

Dymanical field

 only $C \in \operatorname{Ker}_{0}\left(\sigma_{-}\right), \operatorname{Im}_{0}\left(\sigma_{-}\right)=0 \Rightarrow C \in \mathrm{H}_{0}\left(\sigma_{-}\right)$.
Dynamical equation

has the form $R_{d} \sim e_{0}^{a} t$, where t is 0 -form.
Indeed, $e_{0}{ }^{b} e_{0 b} t=0, e_{0}^{a} t \notin \operatorname{Im}_{1}\left(\sigma_{-}\right) \Rightarrow e_{0}^{a} t \in \mathrm{H}_{1}\left(\sigma_{-}\right)$. Then $t \sim R_{m}{ }^{m}=\partial_{m} C^{m}=0$ yields dynamical equation.
[O.V. Shaynkman and M.A. Vasiliev '00]

Flat superspace

Background fields: 1-form $\Omega_{0} \in \mathcal{N}=1, d=4$ SUSY:

$$
\begin{aligned}
& \Omega_{0}=e_{0}{ }^{a} P_{a}+\omega_{0}^{a b} M_{a b}+\phi^{\alpha} Q_{\alpha}+\bar{\phi}_{\dot{\alpha}} \bar{Q}^{\dot{\alpha}} \\
& R=T_{a} P_{a}+R_{0 L}^{a b} M_{a b}+S^{\alpha} Q_{\alpha}+\bar{S}_{\dot{\alpha}} \bar{Q}^{\dot{\alpha}} .
\end{aligned}
$$

Zero curvature equations

$$
\begin{gathered}
R_{L}^{a b}=d \omega_{0}^{a b}+\omega_{0}^{a c} \omega_{0 c}^{b}=0 \\
T^{a}=d e_{0}^{a}+\omega_{0}^{a b} e_{0 b}+2 i \phi^{\alpha} \bar{\phi}^{\dot{\alpha}}\left(\sigma^{a}\right)_{\alpha \dot{\alpha}}=0, \\
S^{\alpha}=d \phi^{\alpha}+\frac{i}{4} \omega_{0}^{a b} \phi^{\beta}\left(\sigma_{a b}\right)_{\beta^{\alpha}}^{\alpha}=0 .
\end{gathered}
$$

Diff. forms: space \rightarrow superspace

$$
e_{m}^{a}(x) d x^{m} \rightarrow E_{M}^{a}(z) d z^{M}, \quad \phi_{m}^{\alpha}(x) d x^{m} \rightarrow E_{M}^{\alpha}(z) d z^{M}, \ldots
$$

Scalar supermultiplet

Minkowski space

$$
\begin{gathered}
R^{a(k)} \stackrel{\text { def }}{=} D^{L} C^{a(k)}+e_{b} C^{a(k) b}=0 \\
r_{\alpha}^{a(k)} \stackrel{\text { def }}{=} D^{L} \chi_{\alpha}^{a(k)}+e_{b} \chi_{\alpha}^{a(k) b}=0 .
\end{gathered}
$$

Superspace

$$
\begin{gathered}
R^{a(k)} \stackrel{\text { def }}{=} D^{L} C^{a(k)}+E_{b} C^{a(k) b}-\sqrt{2} E^{\alpha} \chi_{\alpha}^{a(k)}=0, \\
r_{\alpha}^{a(k)} \stackrel{\text { def }}{=} D^{L} \chi_{\alpha}^{a(k)}+E_{b} \chi_{\alpha}^{a(k) b}-\sqrt{2} i E^{\dot{\alpha}}\left(\sigma_{b}\right)_{\alpha \dot{\alpha}} C^{a(k) b}=0 .
\end{gathered}
$$

Scalar supermultiplet

Minkowski space

$$
\begin{aligned}
& R \stackrel{\text { def }}{=}\left(D^{L}+\sigma_{-1}\right) C=0 \\
& r \stackrel{\text { def }}{=}\left(D^{L}+\sigma_{-1}\right) \chi=0
\end{aligned}
$$

$\mathrm{H}\left(\sigma_{-1}\right)$-cohomology analysis.
Superspace

$$
\begin{aligned}
& R \stackrel{\text { def }}{=}\left(D^{L}+\sigma_{-1}\right) C+\sigma_{-1 / 2} \chi=0 \\
& r \stackrel{\text { def }}{=}\left(D^{L}+\sigma_{-1}\right) \chi+\sigma_{-1 / 2} C=0
\end{aligned}
$$

Dynamical fields and equations - ?

σ_{-}-spectral sequences

As for beginning, dynamical fields and equations $\subset \mathrm{H}\left(\sigma_{-1}\right)$
But these equation can be further analysed!
Compatibility conditions:

$$
\begin{gathered}
\left(\sigma_{-1}\right)^{2}=0, \quad\left\{\sigma_{-1}, \sigma_{-1 / 2}\right\}=0, \quad\left(\sigma_{-1 / 2}\right)^{2}+\left\{D, \sigma_{-1}\right\}=0 . \\
\left\{\sigma_{-1}, \sigma_{-1 / 2}\right\}=0 \Rightarrow \sigma_{-1 / 2}\left(\mathrm{H}_{p}\left(\sigma_{-1}\right)\right) \subset \mathrm{H}_{p+1}\left(\sigma_{-1}\right) .
\end{gathered}
$$

Introducing $\tilde{\sigma}_{-1 / 2}=\left.\sigma_{-1 / 2}\right|_{\mathrm{H}\left(\sigma_{-1}\right)}$ we get

$$
\left(\sigma_{-1 / 2}\right)^{2}+\left\{D, \sigma_{-1}\right\}=0 \Rightarrow\left(\tilde{\sigma}_{-1 / 2}\right)^{2}=0
$$

We define $\mathrm{H}\left(\tilde{\sigma}_{-1 / 2}\right) \stackrel{\text { def }}{=} \mathrm{H}\left(\sigma_{-1 / 2} \mid \sigma_{-1}\right)$ (spectral sequence). They identify dynamical fields and dynamical equations!

Conclusion

- Unfolded equations for $\mathcal{N}=1, d=4$ chiral supermultiplet are built
- The independence of unfolded equations from base manifold is efficiently used to build superfield formulation from component one
- $\mathrm{H}\left(\sigma_{-}\right)$technics has been generalized to the case of few negative grade algebraic operators. The dynamical content is defined by spectral sequence.

