Stringy Differential Geometry, beyond Riemann

Supersymmetries \& Quantum Symmetries - SQS'2011, Dubna

Jeong-Hyuck Park

Sogang University, Seoul

Prologue

- In Riemannian geometry, the fundamental object is the metric, $g_{\mu \nu}$.
- String theory puts $g_{\mu \nu}, B_{\mu \nu}$ and ϕ on an equal putting.
- This may suggests the existence of a veiled unifying description of them, bevond Riemann.

Prologue

- In Riemannian geometry, the fundamental object is the metric, $g_{\mu \nu}$.
- String theory puts $g_{\mu \nu}, B_{\mu \nu}$ and ϕ on an equal putting.
- This may suggests the existence of a veiled unifying description of them, beyond Riemann.

Prologue

- In Riemannian geometry, the fundamental object is the metric, $g_{\mu \nu}$.
- String theory puts $g_{\mu \nu}, B_{\mu \nu}$ and ϕ on an equal putting.
- This may suggests the existence of a veiled unifying description of them, beyond Riemann.

Talk is based on works

in collaboration with Imtak Jeon and Kanghoon Lee

- Differential geometry with a projection: Application to double field theory

```
JHEP 1104:014 (2011),
arXiv:1011.1324
```

- Double field formulation of Yang-Mills theory
Phys. Lett. B 701:260 (2011), arXiv:1102.0419
- Stringy differential geometry, beyond Riemann

$$
\text { arXiv: } 1105.6294
$$

Introduction

Symmetry

- guides the structure of Lagrangians.
- organizes the physical laws into simple forms.
- for example, in Maxwell theory,
- U(1) gatge symmetry forbids $m^{2} A_{\mu} A^{\mu}$

Introduction

Symmetry

- guides the structure of Lagrangians.
- organizes the physical laws into simple forms.
- for example, in Maxwell theory,
- $\mathrm{U}(1)$ gauge symmetry forbids $m^{2} A_{\mu} A^{\mu}$

Introduction

Symmetry

- guides the structure of Lagrangians.
- organizes the physical laws into simple forms.
- for example, in Maxwell theory,
- $\mathrm{U}(1)$ gauge symmetry forbids $m^{2} A_{\mu} A^{\mu}$
- Lorentz symmetry unifies the original 4 eqs into 2.

Introduction

Symmetry

- guides the structure of Lagrangians.
- organizes the physical laws into simple forms.
- for example, in Maxwell theory,
- $\mathrm{U}(1)$ gauge symmetry forbids $m^{2} A_{\mu} A^{\mu}$
- Lorentz symmetry unifies the original 4 eqs into 2.

Essence of Riemannian geometry

- Diffeomorphism: $\partial_{\mu} \longrightarrow \nabla_{\mu}=\partial_{\mu}+\Gamma_{\mu}$
- $\nabla_{\lambda} g_{\mu \nu}=0 \longrightarrow \Gamma_{\mu \nu}^{\lambda}=\frac{1}{2} g^{\lambda \rho}\left(\partial_{\mu} g_{\nu \rho}+\partial_{\nu} g_{\mu \rho}-\partial_{\rho} g_{\mu \nu}\right)$
- Curvature: $\left[\nabla_{\mu}, \nabla_{\nu}\right] \longrightarrow R_{g}$.

Essence of Riemannian geometry

- Diffeomorphism: $\partial_{\mu} \longrightarrow \nabla_{\mu}=\partial_{\mu}+\Gamma_{\mu}$
- $\nabla_{\lambda} g_{\mu \nu}=0 \longrightarrow \Gamma_{\mu \nu}^{\lambda}=\frac{1}{2} g^{\lambda \rho}\left(\partial_{\mu} g_{\nu \rho}+\partial_{\nu} g_{\mu \rho}-\partial_{\rho} g_{\mu \nu}\right)$
- Curvature: $\left[\nabla_{\mu}, \nabla_{\nu}\right] \longrightarrow R_{g}$.

Essence of Riemannian geometry

- Diffeomorphism: $\partial_{\mu} \longrightarrow \nabla_{\mu}=\partial_{\mu}+\Gamma_{\mu}$
- $\nabla_{\lambda} g_{\mu \nu}=0 \longrightarrow \Gamma_{\mu \nu}^{\lambda}=\frac{1}{2} g^{\lambda \rho}\left(\partial_{\mu} g_{\nu \rho}+\partial_{\nu} g_{\mu \rho}-\partial_{\rho} g_{\mu \nu}\right)$
- Curvature: $\left[\nabla_{\mu}, \nabla_{\nu}\right] \longrightarrow R_{g}$.

Closed string

- $g_{\mu \nu}, B_{\mu \nu}, \phi$ are on an equal footing completing the massless sector.
- Low energy effective action of them:

- Diffeomorphism and one-form gauge symmetry are manifest

Closed string

- $g_{\mu \nu}, B_{\mu \nu}, \phi$ are on an equal footing completing the massless sector.
- Low energy effective action of them:

$$
S_{\text {eff. }}=\int \mathrm{d} x^{D} \sqrt{-g} e^{-2 \phi}\left(R_{g}+4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu}\right)
$$

- Diffeomorphism and one-form gauge symmetry are manifest

Closed string

- $g_{\mu \nu}, B_{\mu \nu}, \phi$ are on an equal footing completing the massless sector.
- Low energy effective action of them:

$$
S_{\text {eff. }}=\int \mathrm{d} x^{D} \sqrt{-g} e^{-2 \phi}\left(R_{g}+4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu}\right)
$$

- Diffeomorphism and one-form gauge symmetry are manifest

$$
x^{\mu} \rightarrow x^{\mu}+\delta x^{\mu}, \quad B_{\mu \nu} \rightarrow B_{\mu \nu}+\partial_{\mu} \Lambda_{\nu}-\partial_{\nu} \Lambda_{\mu}
$$

Closed string

- $g_{\mu \nu}, B_{\mu \nu}, \phi$ are on an equal footing completing the massless sector.
- Low energy effective action of them:

$$
S_{\text {eff. }}=\int \mathrm{d} x^{D} \sqrt{-g} e^{-2 \phi}\left(R_{g}+4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu}\right)
$$

- Though not manifest, this enjoys T-duality which mixes $\left\{g_{\mu \nu}, B_{\mu \nu}, \phi\right\}$

Closed string

- $g_{\mu \nu}, B_{\mu \nu}, \phi$ are on an equal footing completing the massless sector.
- Low energy effective action of them:

$$
S_{\text {eff. }}=\int \mathrm{d} x^{D} \sqrt{-g} e^{-2 \phi}\left(R_{g}+4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu}\right)
$$

- Though not manifest, this enjoys T-duality which mixes $\left\{g_{\mu \nu}, \boldsymbol{B}_{\mu \nu}, \phi\right\}$ Buscher

T-duality

- Redefine the dilaton,

$$
e^{-2 d}=\sqrt{-g} e^{-2 \phi}
$$

- Set a $2 D \times 2 D$ symmetric matrix,

$$
\mathcal{H}_{A B}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right)
$$

- A, B, \ldots. : $2 D$-dimensional vector indices.

T-duality

- T-duality is realized by an $\mathbf{O}(D, D)$ rotation,

$$
\mathcal{H}_{A B} \longrightarrow L_{A}{ }^{C} L_{B}{ }^{D} \mathcal{H}_{C D}, \quad d \longrightarrow d
$$

where

$$
L \in \mathbf{O}(D, D) .
$$

T-duality

- $\mathbf{O}(D, D)$ metric,

$$
\mathcal{J}_{A B}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

freely raises or lowers the $2 D$-dimensional vector indices.

Double Field Theory (DFT)

- Hull and Zwiebach, later with Hohm

$$
S_{\mathrm{DFT}}=\int \mathrm{d} y^{2 D} e^{-2 d} \mathcal{R}(\mathcal{H}, d)
$$

where

$$
\begin{aligned}
\mathcal{R}(\mathcal{H}, d)= & \mathcal{H}^{A B}\left(4 \partial_{A} \partial_{B} d-4 \partial_{A} d \partial_{B} d+\frac{1}{8} \partial_{A} \mathcal{H}^{C D} \partial_{B} \mathcal{H}_{C D}-\frac{1}{2} \partial_{A} \mathcal{H}^{C D} \partial_{C} \mathcal{H}_{B D}\right) \\
& +4 \partial_{A} \mathcal{H}^{A B} \partial_{B} d-\partial_{A} \partial_{B} \mathcal{H}^{A B}
\end{aligned}
$$

- Spacetime is formally doubled, $y^{A}=\left(\tilde{x}_{\mu}, x^{\nu}\right)$.

Double Field Theory (DFT)

- Hull and Zwiebach, later with Hohm

$$
S_{\mathrm{DFT}}=\int \mathrm{d} y^{2 D} e^{-2 d} \mathcal{R}(\mathcal{H}, d)
$$

where

$$
\begin{aligned}
\mathcal{R}(\mathcal{H}, d)= & \mathcal{H}^{A B}\left(4 \partial_{A} \partial_{B} d-4 \partial_{A} d \partial_{B} d+\frac{1}{8} \partial_{A} \mathcal{H}^{C D} \partial_{B} \mathcal{H}_{C D}-\frac{1}{2} \partial_{A} \mathcal{H}^{C D} \partial_{C} \mathcal{H}_{B D}\right) \\
& +4 \partial_{A} \mathcal{H}^{A B} \partial_{B} d-\partial_{A} \partial_{B} \mathcal{H}^{A B}
\end{aligned}
$$

- Spacetime is formally doubled, $y^{A}=\left(\tilde{x}_{\mu}, x^{\nu}\right)$.
- Yet,

$$
\frac{\partial}{\partial \tilde{x}_{\mu}} \equiv 0
$$

Double Field Theory (DFT)

- Hull and Zwiebach, later with Hohm

$$
S_{\mathrm{DFT}}=\int \mathrm{d} y^{2 D} e^{-2 d} \mathcal{R}(\mathcal{H}, d)
$$

where

$$
\begin{aligned}
\mathcal{R}(\mathcal{H}, d)= & \mathcal{H}^{A B}\left(4 \partial_{A} \partial_{B} d-4 \partial_{A} d \partial_{B} d+\frac{1}{8} \partial_{A} \mathcal{H}^{C D} \partial_{B} \mathcal{H}_{C D}-\frac{1}{2} \partial_{A} \mathcal{H}^{C D} \partial_{C} \mathcal{H}_{B D}\right) \\
& +4 \partial_{A} \mathcal{H}^{A B} \partial_{B} d-\partial_{A} \partial_{B} \mathcal{H}^{A B}
\end{aligned}
$$

- Spacetime is formally doubled, $y^{A}=\left(\tilde{x}_{\mu}, x^{\nu}\right)$.
- More covariantly,

Double Field Theory (DFT)

- Hull and Zwiebach, later with Hohm

$$
S_{\mathrm{DFT}}=\int \mathrm{d} y^{2 D} e^{-2 d} \mathcal{R}(\mathcal{H}, d)
$$

where

$$
\begin{aligned}
\mathcal{R}(\mathcal{H}, d)= & \mathcal{H}^{A B}\left(4 \partial_{A} \partial_{B} d-4 \partial_{A} d \partial_{B} d+\frac{1}{8} \partial_{A} \mathcal{H}^{C D} \partial_{B} \mathcal{H}_{C D}-\frac{1}{2} \partial_{A} \mathcal{H}^{C D} \partial_{C} \mathcal{H}_{B D}\right) \\
& +4 \partial_{A} \mathcal{H}^{A B} \partial_{B} d-\partial_{A} \partial_{B} \mathcal{H}^{A B}
\end{aligned}
$$

- Spacetime is formally doubled, $y^{A}=\left(\tilde{x}_{\mu}, x^{\nu}\right)$.
- More covariantly,

$$
\partial_{A} \partial^{A} \Phi=2 \frac{\partial^{2}}{\partial \tilde{x}_{\mu} \partial x^{\mu}} \Phi \equiv 0, \quad \partial_{A} \Phi_{1} \partial^{A} \Phi_{2} \equiv 0
$$

Double Field Theory (DFT)

- Closed string

$$
\begin{aligned}
& X_{L}\left(\sigma^{+}\right)=\frac{1}{2}(x+\tilde{x})+\frac{1}{2}(p+w) \sigma^{+}+\cdots, \\
& X_{R}\left(\sigma^{-}\right)=\frac{1}{2}(x-\tilde{x})+\frac{1}{2}(p-w) \sigma^{-}+\cdots .
\end{aligned}
$$

- Under T-duality,

$$
X_{L}+X_{R} \longrightarrow X_{L}-X_{R},
$$

such that

$$
(x, \tilde{x}, p, w) \longrightarrow(\tilde{x}, x, w, p) .
$$

- Level matching condition for the massless sector,

Double Field Theory (DFT)

- Closed string

$$
\begin{aligned}
& X_{L}\left(\sigma^{+}\right)=\frac{1}{2}(x+\tilde{x})+\frac{1}{2}(p+w) \sigma^{+}+\cdots, \\
& X_{R}\left(\sigma^{-}\right)=\frac{1}{2}(x-\tilde{x})+\frac{1}{2}(p-w) \sigma^{-}+\cdots .
\end{aligned}
$$

- Under T-duality,

$$
X_{L}+X_{R} \longrightarrow X_{L}-X_{R},
$$

such that

$$
(x, \tilde{x}, p, w) \longrightarrow(\tilde{x}, x, w, p)
$$

- Level matching condition for the massless sector,

$$
p \cdot w \equiv 0 \quad \Longleftrightarrow \quad \partial_{A} \partial^{A}=2 \frac{\partial^{2}}{\partial \tilde{x}_{\mu} \partial x^{\mu}} \equiv 0
$$

Double Field Theory (DFT)

- Upon the level matching constraint,

$$
S_{\mathrm{DFT}} \Longrightarrow S_{\mathrm{eff.}}=\int \mathrm{d} x^{D} \sqrt{-g} e^{-2 \phi}\left(R_{g}+4(\partial \phi)^{2}-\frac{1}{12} H^{2}\right)
$$

Double Field Theory (DFT)

- Thus, in the DFT formulation of the effective action by Hull, Zwiebach and Hohm, the $\mathbf{O}(D, D)$ T-duality structure is manifest.
- What about the diffeomorphism and the one-form gauge symmetry?

Double Field Theory (DFT)

- Thus, in the DFT formulation of the effective action by Hull, Zwiebach and Hohm, the $\mathbf{O}(D, D)$ T-duality structure is manifest.
- What about the diffeomorphism and the one-form gauge symmetry?

Diffeomorphism \& one-form gauge symmetry

- Introduce a unifying parameter,

$$
X^{A}=\left(\Lambda_{\mu}, \delta x^{\nu}\right)
$$

- Unifying transformation rule, upon the level matching constraint,

$$
\begin{aligned}
& \delta_{X} \mathcal{H}_{A B} \equiv X^{C} \partial_{C} \mathcal{H}_{A B}+2 \partial_{[A} X_{C]} \mathcal{H}_{B}^{C}+2 \partial_{[B} X_{C]} \mathcal{H}_{A}^{C} \\
& \delta_{X}\left(e^{-2 d}\right) \equiv \partial_{A}\left(X^{A} e^{-2 d}\right)
\end{aligned}
$$

- In fact, these coincide with the generalized Lie derivative,

Diffeomorphism \& one-form gauge symmetry

- Introduce a unifying parameter,

$$
X^{A}=\left(\Lambda_{\mu}, \delta x^{\nu}\right)
$$

- Unifying transformation rule, upon the level matching constraint,

$$
\begin{aligned}
& \delta_{X} \mathcal{H}_{A B} \equiv X^{C} \partial_{C} \mathcal{H}_{A B}+2 \partial_{[A} X_{C]} \mathcal{H}_{B}^{C}+2 \partial_{[B} X_{C]} \mathcal{H}_{A}^{C} \\
& \delta_{X}\left(e^{-2 d}\right) \equiv \partial_{A}\left(X^{A} e^{-2 d}\right)
\end{aligned}
$$

- In fact, these coincide with the generalized Lie derivative,

$$
\delta_{X} \mathcal{H}_{A B}=\hat{\mathcal{L}}_{X} \mathcal{H}_{A B}, \quad \quad \delta_{X}\left(e^{-2 d}\right)=\hat{\mathcal{L}}_{X}\left(e^{-2 d}\right)=-2\left(\hat{\mathcal{L}}_{X} d\right) e^{-2 d}
$$

Generalized Lie derivative

- Definition, Siegel, Courant, Grana ...

$$
\hat{\mathcal{L}}_{X} T_{A_{1} \cdots A_{n}}:=X^{B} \partial_{B} T_{A_{1} \cdots A_{n}}+\omega \partial_{B} X^{B} T_{A_{1} \cdots A_{n}}+\sum_{i=1}^{n}\left(\partial_{A_{i}} X_{B}-\partial_{B} X_{A_{i}}\right) T_{A_{1} \cdots A_{i-1}}{ }^{B}{ }_{A_{i+1} \cdots A_{n}}
$$

- cf. ordinary one,
$\mathcal{L}_{X} T_{A_{1} \cdots A_{n}}:=X^{B} \partial_{B} T_{A_{1}}$
- Commutator of the generalized Lie derivatives,

$$
\left[\hat{\mathcal{L}}_{X}, \hat{\mathcal{L}}_{Y}\right] \equiv \hat{\hat{\mathcal{L}}}_{[X, Y]_{\mathrm{c}}}
$$

where $[X, Y]_{\mathrm{c}}$ denotes the Courant bracket,

Generalized Lie derivative

- Definition, Siegel, Courant, Grana ...

$$
\hat{\mathcal{L}}_{X} T_{A_{1} \cdots A_{n}}:=X^{B} \partial_{B} T_{A_{1} \cdots A_{n}}+\omega \partial_{B} X^{B} T_{A_{1} \cdots A_{n}}+\sum_{i=1}^{n}\left(\partial_{A_{i}} X_{B}-\partial_{B} X_{A_{i}}\right) T_{A_{1} \cdots A_{i-1}}{ }^{B}{ }_{A_{i+1} \cdots A_{n}} .
$$

- cf. ordinary one,

$$
\mathcal{L}_{X} T_{A_{1} \cdots A_{n}}:=X^{B} \partial_{B} T_{A_{1} \cdots A_{n}}+\omega \partial_{B} X^{B} T_{A_{1} \cdots A_{n}}+\sum_{i=1}^{n} \partial_{A_{i}} X_{B} T_{A_{1} \cdots A_{i-1}}{ }^{B}{ }_{A_{i+1} \cdots A_{n}}
$$

- Commutator of the generalized Lie derivatives,

$$
\left[\hat{\mathcal{L}}_{X}, \hat{\mathcal{L}}_{Y}\right] \equiv \hat{\mathcal{L}}_{\left[X, Y_{]}\right.},
$$

where $[X, Y]_{\mathrm{c}}$ denotes the Courant bracket,

Generalized Lie derivative

- Definition, Siegel, Courant, Grana ...

$$
\hat{\mathcal{L}}_{X} T_{A_{1} \cdots A_{n}}:=X^{B} \partial_{B} T_{A_{1} \cdots A_{n}}+\omega \partial_{B} X^{B} T_{A_{1} \cdots A_{n}}+\sum_{i=1}^{n}\left(\partial_{A_{i}} X_{B}-\partial_{B} X_{A_{i}}\right) T_{A_{1} \cdots A_{i-1}}{ }^{B}{ }_{A_{i+1} \cdots A_{n}} .
$$

- cf. ordinary one,

$$
\mathcal{L}_{X} T_{A_{1} \cdots A_{n}}:=X^{B} \partial_{B} T_{A_{1} \cdots A_{n}}+\omega \partial_{B} X^{B} T_{A_{1} \cdots A_{n}}+\sum_{i=1}^{n} \partial_{A_{i}} X_{B} T_{A_{1} \cdots A_{i-1}}{ }^{B}{ }_{A_{i+1} \cdots A_{n}}
$$

- Commutator of the generalized Lie derivatives,

$$
\left[\hat{\mathcal{L}}_{X}, \hat{\mathcal{L}}_{Y}\right] \equiv \hat{\mathcal{L}}_{\left[X, Y_{\mathbf{c}}\right.}
$$

where $[X, Y]_{\mathrm{c}}$ denotes the Courant bracket,

$$
[X, Y]_{\mathrm{c}}^{A}:=X^{B} \partial_{B} Y^{A}-Y^{B} \partial_{B} X^{A}+\frac{1}{2} Y^{B} \partial^{A} X_{B}-\frac{1}{2} X^{B} \partial^{A} Y_{B}
$$

Diffeomorphism \& one-form gauge symmetry

- Brute force computation shows that

$$
\begin{aligned}
& \hat{\mathcal{L}}_{X} \mathcal{H}_{A B} \equiv X^{C} \partial_{C} \mathcal{H}_{A B}+2 \partial_{[A} X_{C]} \mathcal{H}_{B}^{C}+2 \partial_{[B} X_{C]} \mathcal{H}_{A}{ }^{C} \\
& \hat{\mathcal{L}}_{X}\left(e^{-2 d}\right) \equiv \partial_{A}\left(X^{A} e^{-2 d}\right)
\end{aligned}
$$

are symmetry of the action by Hull, Zwiebach and Hohm,

$$
S_{\mathrm{DFT}}=\int \mathrm{d} y^{2 D} e^{-2 d} \mathcal{R}(\mathcal{H}, d)
$$

where

$$
\begin{aligned}
\mathcal{R}(\mathcal{H}, d)= & \mathcal{H}^{A B}\left(4 \partial_{A} \partial_{B} d-4 \partial_{A} d \partial_{B} d+\frac{1}{8} \partial_{A} \mathcal{H}^{C D} \partial_{B} \mathcal{H}_{C D}-\frac{1}{2} \partial_{A} \mathcal{H}^{C D} \partial_{C} \mathcal{H}_{B D}\right) \\
& +4 \partial_{A} \mathcal{H}^{A B} \partial_{B} d-\partial_{A} \partial_{B} \mathcal{H}^{A B}
\end{aligned}
$$

Diffeomorphism \& one-form gauge symmetry

- Brute force computation shows that

$$
\begin{aligned}
& \hat{\mathcal{L}}_{X} \mathcal{H}_{A B} \equiv X^{C} \partial_{C} \mathcal{H}_{A B}+2 \partial_{[A} X_{C]} \mathcal{H}_{B}^{C}+2 \partial_{[B} X_{C]} \mathcal{H}_{A}{ }^{C} \\
& \hat{\mathcal{L}}_{X}\left(e^{-2 d}\right) \equiv \partial_{A}\left(X^{A} e^{-2 d}\right)
\end{aligned}
$$

are symmetry of the action by Hull, Zwiebach and Hohm,

$$
S_{\mathrm{DFT}}=\int \mathrm{d} y^{2 D} e^{-2 d} \mathcal{R}(\mathcal{H}, d)
$$

where

$$
\begin{aligned}
\mathcal{R}(\mathcal{H}, d)= & \mathcal{H}^{A B}\left(4 \partial_{A} \partial_{B} d-4 \partial_{A} d \partial_{B} d+\frac{1}{8} \partial_{A} \mathcal{H}^{C D} \partial_{B} \mathcal{H}_{C D}-\frac{1}{2} \partial_{A} \mathcal{H}^{C D} \partial_{C} \mathcal{H}_{B D}\right) \\
& +4 \partial_{A} \mathcal{H}^{A B} \partial_{B} d-\partial_{A} \partial_{B} \mathcal{H}^{A B}
\end{aligned}
$$

- This expression may be analogous to the case of writing the scalar curvature, R_{g}, in terms of the metric and its derivative.

Diffeomorphism \& one-form gauge symmetry

- Brute force computation shows that

$$
\begin{aligned}
& \hat{\mathcal{L}}_{X} \mathcal{H}_{A B} \equiv X^{C} \partial_{C} \mathcal{H}_{A B}+2 \partial_{[A} X_{C]} \mathcal{H}_{B}^{C}+2 \partial_{[B} X_{C]} \mathcal{H}_{A}{ }^{C} \\
& \hat{\mathcal{L}}_{X}\left(e^{-2 d}\right) \equiv \partial_{A}\left(X^{A} e^{-2 d}\right)
\end{aligned}
$$

are symmetry of the action by Hull, Zwiebach and Hohm,

$$
S_{\mathrm{DFT}}=\int \mathrm{d} y^{2 D} e^{-2 d} \mathcal{R}(\mathcal{H}, d)
$$

where

$$
\begin{aligned}
\mathcal{R}(\mathcal{H}, d)= & \mathcal{H}^{A B}\left(4 \partial_{A} \partial_{B} d-4 \partial_{A} d \partial_{B} d+\frac{1}{8} \partial_{A} \mathcal{H}^{C D} \partial_{B} \mathcal{H}_{C D}-\frac{1}{2} \partial_{A} \mathcal{H}^{C D} \partial_{C} \mathcal{H}_{B D}\right) \\
& +4 \partial_{A} \mathcal{H}^{A B} \partial_{B} d-\partial_{A} \partial_{B} \mathcal{H}^{A B}
\end{aligned}
$$

Diffeomorphism \& one-form gauge symmetry

- Brute force computation shows that

$$
\begin{aligned}
& \hat{\mathcal{L}}_{X} \mathcal{H}_{A B} \equiv X^{C} \partial_{C} \mathcal{H}_{A B}+2 \partial_{[A} X_{C]} \mathcal{H}_{B}^{C}+2 \partial_{[B} X_{C]} \mathcal{H}_{A}{ }^{C} \\
& \hat{\mathcal{L}}_{X}\left(e^{-2 d}\right) \equiv \partial_{A}\left(X^{A} e^{-2 d}\right)
\end{aligned}
$$

are symmetry of the action by Hull, Zwiebach and Hohm,

$$
S_{\mathrm{DFT}}=\int \mathrm{d} y^{2 D} e^{-2 d} \mathcal{R}(\mathcal{H}, d)
$$

where

$$
\begin{aligned}
\mathcal{R}(\mathcal{H}, d)= & \mathcal{H}^{A B}\left(4 \partial_{A} \partial_{B} d-4 \partial_{A} d \partial_{B} d+\frac{1}{8} \partial_{A} \mathcal{H}^{C D} \partial_{B} \mathcal{H}_{C D}-\frac{1}{2} \partial_{A} \mathcal{H}^{C D} \partial_{C} \mathcal{H}_{B D}\right) \\
& +4 \partial_{A} \mathcal{H}^{A B} \partial_{B} d-\partial_{A} \partial_{B} \mathcal{H}^{A B}
\end{aligned}
$$

- What is the underlying geometry?

Stringy differential geometry

We propose a novel differential geometry which

- treats the three objects of the massless sector in a unified manner,
- manifests not only diffeomorphism and one-form gauge symmetry but also $\mathbf{O}(D, D)$ T-duality,
- and enables us to rewrite the low energy effective action of them as a single term,

Stringy differential geometry

We propose a novel differential geometry which

- treats the three objects of the massless sector in a unified manner,
- manifests not only diffeomorphism and one-form gauge symmetry but also $\mathbf{O}(D, D)$ T-duality,
- and enables us to rewrite the low energy effective action of them as a single term,

Stringy differential geometry

We propose a novel differential geometry which

- treats the three objects of the massless sector in a unified manner,
- manifests not only diffeomorphism and one-form gauge symmetry but also $\mathbf{O}(D, D)$ T-duality,
- and enables us to rewrite the low energy effective action of them as a single term,

Stringy differential geometry

We propose a novel differential geometry which

- treats the three objects of the massless sector in a unified manner,
- manifests not only diffeomorphism and one-form gauge symmetry but also $\mathbf{O}(D, D)$ T-duality,
- and enables us to rewrite the low energy effective action of them as a single term,

$$
S_{\text {eff. }}=\int \mathrm{d} x^{D} e^{-2 d} \mathcal{H}^{A B} S_{A B}
$$

Stringy differential geometry

- Motivated by the observation that,

$$
\mathcal{H}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right)
$$

is of the most general form to satisfy

$$
\mathcal{H}_{A}{ }^{C} \mathcal{H}_{C}{ }^{B}=\delta_{A}{ }^{B}, \quad \mathcal{H}_{A B}=\mathcal{H}_{B A}
$$

and the upper left $D \times D$ block of \mathcal{H} is non-degenerate,

- we focus on a symmetric projection,

$$
P_{A}^{B} P_{B}^{C}=P_{A}^{C} \quad \quad P_{A B}=P_{B A},
$$

which is related to \mathcal{H} by

$$
P_{A B}=\frac{1}{2}\left(J_{A B}+\mathcal{H}_{A B}\right)
$$

Stringy differential geometry

- Motivated by the observation that,

$$
\mathcal{H}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right)
$$

is of the most general form to satisfy

$$
\mathcal{H}_{A}{ }^{C} \mathcal{H}_{C}{ }^{B}=\delta_{A}{ }^{B}, \quad \mathcal{H}_{A B}=\mathcal{H}_{B A}
$$

and the upper left $D \times D$ block of \mathcal{H} is non-degenerate,

- we focus on a symmetric projection,

$$
P_{A}^{B} P_{B}^{C}=P_{A}^{C} \quad P_{A B}=P_{B A}
$$

which is related to \mathcal{H} by

$$
P_{A B}=\frac{1}{2}\left(\mathcal{J}_{A B}+\mathcal{H}_{A B}\right)
$$

Stringy differential geometry

- Three basic objects:

$$
\mathcal{J}_{A B}, \quad P_{A B}, \quad d .
$$

- We postulate a "semi-covariant" derivative, ∇_{A},
- In particular,

Stringy differential geometry

- Three basic objects:

$$
\mathcal{J}_{A B}, \quad P_{A B}, \quad d .
$$

- We postulate a "semi-covariant" derivative, ∇_{A},

$$
\nabla_{C} T_{A_{1} A_{2} \cdots A_{n}}=\partial_{C} T_{A_{1} A_{2} \cdots A_{n}}-\omega \Gamma^{B}{ }_{B C} T_{A_{1} A_{2} \cdots A_{n}}+\sum_{i=1}^{n} \Gamma_{C A_{i}}{ }^{B} T_{A_{1} \cdots A_{i-1} B A_{i+1} \cdots A_{n}}
$$

- In particular,

Stringy differential geometry

- Three basic objects:

$$
\mathcal{J}_{A B}, \quad P_{A B}, \quad d .
$$

- We postulate a "semi-covariant" derivative, ∇_{A},

$$
\nabla_{C} T_{A_{1} A_{2} \cdots A_{n}}=\partial_{C} T_{A_{1} A_{2} \cdots A_{n}}-\omega \Gamma^{B}{ }_{B C} T_{A_{1} A_{2} \cdots A_{n}}+\sum_{i=1}^{n} \Gamma_{C A_{i}}{ }^{B} T_{A_{1} \cdots A_{i-1} B A_{i+1} \cdots A_{n}} .
$$

- In particular,

$$
\begin{aligned}
& \nabla_{C}\left(e^{-2 d}\right)=\partial_{C} e^{-2 d}-\Gamma_{B C}^{B} e^{-2 d}=-2\left(\nabla_{C} d\right) e^{-2 d} \\
& \Longrightarrow \quad \nabla_{C} d:=\partial_{C} d+\frac{1}{2} \Gamma_{B C}^{B}
\end{aligned}
$$

Stringy differential geometry

- We demand the following compatibility conditions,

$$
\nabla_{A} \mathcal{J}_{B C}=0, \quad \nabla_{A} P_{B C}=0, \quad \nabla_{A} d=0
$$

as for the unifying description of the massless modes (cf. $\nabla_{\lambda} g_{\mu \nu}=0$ in Riemannian geometry).

- Further we require,

- The connection must be torsionful : non-Riemannian.

Stringy differential geometry

- We demand the following compatibility conditions,

$$
\nabla_{A} \mathcal{J}_{B C}=0, \quad \nabla_{A} P_{B C}=0, \quad \nabla_{A} d=0
$$

as for the unifying description of the massless modes (cf. $\nabla_{\lambda} g_{\mu \nu}=0$ in Riemannian geometry).

- Further we require,

$$
\Gamma_{C A B}+\Gamma_{C B A}=0, \quad \Gamma_{A B C}+\Gamma_{C A B}+\Gamma_{B C A}=0
$$

- The connection must be torsionful : non-Riemannian.

Stringy differential geometry

- We demand the following compatibility conditions,

$$
\nabla_{A} \mathcal{J}_{B C}=0, \quad \nabla_{A} P_{B C}=0, \quad \nabla_{A} d=0
$$

as for the unifying description of the massless modes

$$
\left(c f . \nabla_{\lambda} g_{\mu \nu}=0\right. \text { in Riemannian geometry) }
$$

- Further we require,

$$
\Gamma_{C A B}+\Gamma_{C B A}=0, \quad \Gamma_{A B C}+\Gamma_{C A B}+\Gamma_{B C A}=0
$$

- The connection must be torsionful : non-Riemannian.

Stringy differential geometry

- Then, we may replace ∂_{A} by ∇_{A} in $\hat{\mathcal{L}}_{X}$ and also in $[X, Y]_{C}^{A}$,

$$
\begin{aligned}
& \hat{\mathcal{L}}_{X} T_{A_{1} \cdots A_{n}}=X^{B} \nabla_{B} T_{A_{1} \cdots A_{n}}+\omega \nabla_{B} X^{B} T_{A_{1} \cdots A_{n}}+\sum_{i=1}^{n} 2 \nabla_{\left[A_{i}\right.} X_{B]} T_{A_{1} \cdots A_{i-1}}{ }^{B} A_{A_{i+1} \cdots A_{n}}, \\
& {[X, Y]_{c}^{A}=X^{B} \nabla_{B} Y^{A}-Y^{B} \nabla_{B} X^{A}+\frac{1}{2} Y^{B} \nabla^{A} X_{B}-\frac{1}{2} X^{B} \nabla^{A} Y_{B} .}
\end{aligned}
$$

- cf. In Riemannian geometry, torsion free condition implies

Stringy differential geometry

- Then, we may replace ∂_{A} by ∇_{A} in $\hat{\mathcal{L}}_{X}$ and also in $[X, Y]_{c}^{A}$,

$$
\hat{\mathcal{L}}_{X} T_{A_{1} \cdots A_{n}}=X^{B} \nabla_{B} T_{A_{1} \cdots A_{n}}+\omega \nabla_{B} X^{B} T_{A_{1} \cdots A_{n}}+\sum_{i=1}^{n} 2 \nabla_{\left[A_{i}\right.} X_{B]} T_{A_{1} \cdots A_{i-1}}{ }^{B}{ }_{A_{i+1} \cdots A_{n}},
$$

$$
[X, Y]_{C}^{A}=X^{B} \nabla_{B} Y^{A}-Y^{B} \nabla_{B} X^{A}+\frac{1}{2} Y^{B} \nabla^{A} X_{B}-\frac{1}{2} X^{B} \nabla^{A} Y_{B} .
$$

- cf. In Riemannian geometry, torsion free condition implies
$\mathcal{L}_{X} T_{\mu_{1} \cdots \mu_{n}}=X^{\nu} \nabla_{\nu} T_{\mu_{1} \cdots \mu_{n}}+\omega \nabla_{\nu} X^{\nu} T_{\mu_{1} \cdots \mu_{n}}+\sum_{i=1}^{n} \nabla_{\mu_{i}} X^{\nu} T_{\mu_{1} \cdots \mu_{i-1} \nu \mu_{i+1} \cdots \mu_{n}}$, $[X, Y]^{\mu}=X^{\nu} \nabla_{\nu} Y^{\mu}-Y^{\nu} \nabla_{\nu} X^{\mu}$.

Stringy differential geometry

- Explicitly, the connection is

$$
\begin{aligned}
\Gamma_{C A B} & =2\left(P \partial_{C} P \bar{P}\right)_{[A B]}+2\left(\bar{P}_{[A}^{D} \bar{P}_{B]}{ }^{E}-P_{[A}^{D} P_{B]}^{E}\right) \partial_{D} P_{E C} \\
& -\frac{4}{D-1}\left(\bar{P}_{C[A} \bar{P}_{B]}^{D}+P_{C[A} P_{B]}^{D}\right)\left(\partial_{D} d+\left(P \partial^{E} P \bar{P}\right)_{[E D]}\right) .
\end{aligned}
$$

where \bar{P} is the complementary projection,

$$
\bar{P}=\frac{1}{2}(1-\mathcal{H}) .
$$

Stringy differential geometry

- Further, we set

$$
\begin{aligned}
& \mathcal{P}_{C A B}^{D E F}:=P_{C}^{D} P_{[A}^{[E} P_{B]}^{F]}+\frac{2}{D-1} P_{C[A} P_{B]}^{[E} P^{F] D}, \\
& \overline{\mathcal{P}}_{C A B}{ }^{D E F}:=\bar{P}_{C}{ }^{D} \bar{P}_{[A}^{[E} \bar{P}_{B]}^{F]}+\frac{2}{D-1} \bar{P}_{C[A} \bar{P}_{B]}{ }^{[E} \bar{P}^{F] D},
\end{aligned}
$$

which satisfy

$$
\begin{aligned}
& \mathcal{P}_{C A B D E F}=\mathcal{P}_{D E F C A B}=\mathcal{P}_{C[A B] D[E F]}, \\
& \mathcal{P}_{C A B}{ }^{D E F} \mathcal{P}_{D E F}{ }^{G H I}=\mathcal{P}_{C A B}{ }^{G H I}, \\
& \mathcal{P}^{A}{ }_{A B D E F}=0, \quad P^{A B} \mathcal{P}_{A B C D E F}=0, \quad \text { etc. }
\end{aligned}
$$

- The connection belongs to the kernel of these rank six-projectors
uniqueness
$\mathcal{P}_{C A B}{ }^{D E F} \Gamma_{D E F}=0, \quad \overline{\mathcal{P}}_{C A B}{ }^{D E F} \Gamma_{D E F}=0$.

Stringy differential geometry

- Further, we set

$$
\begin{aligned}
& \mathcal{P}_{C A B}^{D E F}:=P_{C}^{D} P_{[A}^{[E} P_{B]}^{F]}+\frac{2}{D-1} P_{C[A} P_{B]}^{[E} P^{F] D}, \\
& \overline{\mathcal{P}}_{C A B}{ }^{D E F}:=\bar{P}_{C}^{D} \bar{P}_{[A}^{[E} \bar{P}_{B]}^{F]}+\frac{2}{D-1} \bar{P}_{C[A} \bar{P}_{B]}{ }^{[E} \bar{P}^{F] D},
\end{aligned}
$$

which satisfy

$$
\begin{aligned}
& \mathcal{P}_{C A B D E F}=\mathcal{P}_{D E F C A B}=\mathcal{P}_{C[A B] D[E F]} \\
& \mathcal{P}_{C A B}{ }^{D E F} \mathcal{P}_{D E F}{ }^{G H I}=\mathcal{P}_{C A B}{ }^{G H I} \\
& \mathcal{P}^{A}{ }_{A B D E F}=0, \quad P^{A B} \mathcal{P}_{A B C D E F}=0, \quad \text { etc. }
\end{aligned}
$$

- The connection belongs to the kernel of these rank six-projectors uniqueness

$$
\mathcal{P}_{C A B}{ }^{D E F} \Gamma_{D E F}=0, \quad \overline{\mathcal{P}}_{C A B}{ }^{D E F} \Gamma_{D E F}=0
$$

Stringy differential geometry

- Under $\delta_{X} \mathcal{H}_{A B}=\hat{\mathcal{L}}_{X} \mathcal{H}_{A B}$ and $\delta_{X} d=\hat{\mathcal{L}}_{X} d$, the diffeomorphism and the one-form gague symmetry, or shortly double-gauge symmetry, we obtain

$$
\left(\delta_{X}-\hat{\mathcal{L}}_{X}\right) \Gamma_{C A B} \equiv 2\left[(\mathcal{P}+\overline{\mathcal{P}})_{C A B}{ }^{F D E}-\delta_{C}^{F} \delta_{A}^{D} \delta_{B}^{E}\right] \partial_{F} \partial_{[D} X_{E]},
$$

and

$$
\left(\delta_{X}-\hat{\mathcal{L}}_{X}\right) \nabla_{C} T_{A_{1} \ldots A_{n}} \equiv \sum_{i} 2(\mathcal{P}+\overline{\mathcal{P}})_{C A_{i}}^{B F D E} \partial_{F} \partial_{[D} X_{E]} T_{\ldots B \ldots}
$$

- Hence, these are not double-gauge covariant,

Stringy differential geometry

- Under $\delta_{X} \mathcal{H}_{A B}=\hat{\mathcal{L}}_{X} \mathcal{H}_{A B}$ and $\delta_{X} d=\hat{\mathcal{L}}_{X} d$, the diffeomorphism and the one-form gague symmetry, or shortly double-gauge symmetry, we obtain

$$
\left(\delta_{X}-\hat{\mathcal{L}}_{X}\right) \Gamma_{C A B} \equiv 2\left[(\mathcal{P}+\overline{\mathcal{P}})_{C A B}{ }^{F D E}-\delta_{C}^{F} \delta_{A}^{D} \delta_{B}^{E}\right] \partial_{F} \partial_{[D} X_{E]}
$$

and

$$
\left(\delta_{X}-\hat{\mathcal{L}}_{X}\right) \nabla_{C} T_{A_{1} \cdots A_{n}} \equiv \sum_{i} 2(\mathcal{P}+\overline{\mathcal{P}})_{C A_{i}}^{B F D E} \partial_{F} \partial_{[D} X_{E]} T_{\ldots B \ldots}
$$

- Hence, these are not double-gauge covariant,

$$
\delta_{X} \neq \hat{\mathcal{L}}_{X}
$$

Stringy differential geometry

- However, the characteristic property of our derivative, ∇_{A}, is that, combined with the projections, it can generate various $\mathbf{O}(D, D)$ and double-gauge covariant quantities:

$$
\begin{gathered}
P_{C}{ }^{D} \bar{P}_{A_{1}}^{B_{1}} \bar{P}_{A_{2}}^{B_{2}} \cdots \bar{P}_{A_{n}}^{B_{n}} \nabla_{D} T_{B_{1} B_{2} \cdots B_{n}}, \\
\bar{P}_{C}^{D} P_{A_{1}}^{B_{1}} P_{A_{2}}^{B_{2}} \cdots P_{A_{n}}^{B_{n}} \nabla_{D} T_{B_{1} B_{2} \cdots B_{n}}, \\
P^{A B} \nabla_{A} T_{B}, \\
P_{B}^{A B} \bar{P}_{C_{1}} D_{1} \ldots \bar{P}_{C_{n}}{ }^{D_{n}} \nabla_{A} \nabla_{B} T_{D_{1} \cdots D_{n}}, \\
\bar{P}^{A B} P_{C_{1}} D_{1} \ldots P_{C_{n}}^{D_{n}} \nabla_{A} \nabla_{B} T_{D_{1} \cdots D_{n}}
\end{gathered}
$$

- This suggests us to call ∇_{A} as semi-covariant derivative

Stringy differential geometry

- However, the characteristic property of our derivative, ∇_{A}, is that, combined with the projections, it can generate various $\mathbf{O}(D, D)$ and double-gauge covariant quantities:

$$
\begin{gathered}
P_{C}{ }^{D} \bar{P}_{A_{1}}^{B_{1}} \bar{P}_{A_{2}}^{B_{2}} \ldots \bar{P}_{A_{n}}{ }^{B_{n}} \nabla_{D} T_{B_{1} B_{2} \cdots B_{n}}, \\
\bar{P}_{C}^{D} P_{A_{1}}^{B_{1}} P_{A_{2}}^{B_{2}} \cdots P_{A_{n}}^{B_{n}} \nabla_{D} T_{B_{1} B_{2} \cdots B_{n}}^{A B} \nabla_{A} T_{B}, \\
P^{A B} \nabla_{A} T_{B}, \\
P^{A B} \bar{P}_{C_{1}}{ }^{D_{1}} \ldots \bar{P}_{C_{n}}{ }^{D_{n}} \nabla_{A} \nabla_{B} T_{D_{1} \cdots D_{n}}, \\
\bar{P}^{A B} P_{C_{1}}{ }^{D_{1}} \ldots P_{C_{n}}{ }^{D_{n}} \nabla_{A} \nabla_{B} T_{D_{1} \cdots D_{n}} .
\end{gathered}
$$

- This suggests us to call ∇_{A} as semi-covariant derivative.

Curvature

- The usual curvature,

$$
R_{C D A B}=\partial_{A} \Gamma_{B C D}-\partial_{B} \Gamma_{A C D}+\Gamma_{A C}{ }^{E} \Gamma_{B E D}-\Gamma_{B C}{ }^{E} \Gamma_{A E D},
$$

satisfying

$$
\left[\nabla_{A}, \nabla_{B}\right] T_{C_{1} C_{2} \cdots C_{n}}=-\Gamma_{D A B} \nabla^{D} T_{C_{1} C_{2} \cdots C_{n}}+\sum_{i=1}^{n} R_{C_{i} D A B} T_{C_{1} \cdots C_{i-1}}{ }^{D} C_{C_{i+1} \cdots C_{n}}
$$

is NOT double-gauge covariant,

$$
\delta_{X} R_{A B C D} \neq \hat{\mathcal{L}}_{X} R_{A B C D}
$$

Generalized curvature

- Instead, we define, as for a key quantity in our formalism,

$$
S_{A B C D}:=\frac{1}{2}\left(\mathcal{R}_{A B C D}+\mathcal{R}_{C D A B}-\Gamma^{E}{ }_{A B} \Gamma_{E C D}\right) .
$$

- This is related to a commutator,

$$
P_{l}^{A} \bar{P}_{J}^{B}\left[\nabla_{A}, \nabla_{B}\right] T_{C} \equiv 2 P_{l}^{A} \bar{P}_{j}^{B} S_{C D A B} T^{D}
$$

- It can be shown, by brute force computation, to meet - just like the Riemann curvature

$$
S_{A B C D}=\frac{1}{2}\left(S_{[A B][C D]}+S_{[C D][A B]}\right) \equiv S_{\{A B C D\}}, \quad S_{A[B C D]}=0
$$

Generalized curvature

- Instead, we define, as for a key quantity in our formalism,

$$
S_{A B C D}:=\frac{1}{2}\left(\mathcal{R}_{A B C D}+\mathcal{R}_{C D A B}-\Gamma^{E}{ }_{A B} \Gamma_{E C D}\right) .
$$

- This is related to a commutator,

$$
P_{l}^{A} \bar{P}_{J}^{B}\left[\nabla_{A}, \nabla_{B}\right] T_{C} \equiv 2 P_{I}^{A} \bar{P}_{J}^{B} S_{C D A B} T^{D}
$$

- It can be shown, by brute force computation, to meet
- just like the Riemann curvature,
$S_{A B C D}=\frac{1}{2}\left(S_{[A B][C D]}+S_{[C D][A B]}\right) \equiv S_{\{A B C D\}}, \quad S_{A[B C D]}=0$,

Generalized curvature

- Instead, we define, as for a key quantity in our formalism,

$$
S_{A B C D}:=\frac{1}{2}\left(\mathcal{R}_{A B C D}+\mathcal{R}_{C D A B}-\Gamma^{E}{ }_{A B} \Gamma_{E C D}\right)
$$

- This is related to a commutator,

$$
P_{l}^{A} \bar{P}_{J}^{B}\left[\nabla_{A}, \nabla_{B}\right] T_{C} \equiv 2 P_{l}^{A} \bar{P}_{J}^{B} S_{C D A B} T^{D}
$$

- It can be shown, by brute force computation, to meet
- just like the Riemann curvature,

$$
S_{A B C D}=\frac{1}{2}\left(S_{[A B][C D]}+S_{[C D][A B]}\right) \equiv S_{\{A B C D\}}, \quad S_{A[B C D]}=0
$$

- and further

$$
P_{I}{ }^{A} P_{J}{ }^{B} \bar{P}_{K}^{C} \bar{P}_{L}^{D} S_{A B C D} \equiv 0, \quad P_{I}{ }^{A} \bar{P}_{J}^{B} P_{K}^{C} \bar{P}_{L}^{D} S_{A B C D} \equiv 0,
$$

Generalized curvature

- Instead, we define, as for a key quantity in our formalism,

$$
S_{A B C D}:=\frac{1}{2}\left(\mathcal{R}_{A B C D}+\mathcal{R}_{C D A B}-\Gamma^{E}{ }_{A B} \Gamma_{E C D}\right) .
$$

- This is related to a commutator,

$$
P_{l}^{A} \bar{P}_{J}^{B}\left[\nabla_{A}, \nabla_{B}\right] T_{C} \equiv 2 P_{I}^{A} \bar{P}_{J}^{B} S_{C D A B} T^{D}
$$

- It can be shown, by brute force computation, to meet
- just like the Riemann curvature,

$$
S_{A B C D}=\frac{1}{2}\left(S_{[A B][C D]}+S_{[C D][A B]}\right) \equiv S_{\{A B C D\}}, \quad S_{A[B C D]}=0
$$

- and further

$$
P_{I}{ }^{A} P_{J}^{B} \bar{P}_{K}^{C} \bar{P}_{L}^{D} S_{A B C D} \equiv 0, \quad P_{I}^{A} \bar{P}_{J}^{B} P_{K}^{C} \bar{P}_{L}^{D} S_{A B C D} \equiv 0, \quad \text { etc. }
$$

Generalized curvature

- Under the double-gauge transformations, we get

$$
\left(\delta_{X}-\hat{\mathcal{L}}_{X}\right) S_{A B C D} \equiv 4 \nabla_{\{A}\left[(\mathcal{P}+\overline{\mathcal{P}})_{B C D\}}{ }^{E F G} \partial_{E} \partial_{[F} X_{G]} .\right]
$$

- Hence, $S_{A B C D}$ is not double-gauge covariant.
- Nevertheless, contracting indices we can obtain covariant quantities.

Generalized curvature

- Under the double-gauge transformations, we get

$$
\left(\delta_{X}-\hat{\mathcal{L}}_{X}\right) S_{A B C D} \equiv 4 \nabla_{\{A}\left[(\mathcal{P}+\overline{\mathcal{P}})_{B C D\}}{ }^{E F G} \partial_{E} \partial_{[F} X_{G]} .\right] .
$$

- Hence, $S_{A B C D}$ is not double-gauge covariant.
- Nevertheless, contracting indices we can obtain covariant quantities.

Generalized curvature

- Under the double-gauge transformations, we get

$$
\left(\delta_{X}-\hat{\mathcal{L}}_{X}\right) S_{A B C D} \equiv 4 \nabla_{\{A}\left[(\mathcal{P}+\overline{\mathcal{P}})_{B C D\}}{ }^{E F G} \partial_{E} \partial_{[F} X_{G]} .\right] .
$$

- Hence, $S_{A B C D}$ is not double-gauge covariant.
- Nevertheless, contracting indices we can obtain covariant quantities.

Covariant curvature

- Double-gauge covariant rank two-tensor,

$$
P_{l}^{A} \bar{P}_{J}^{B} S_{A B}
$$

- Double-gauge covariant scalar,

$$
\mathcal{H}^{A B} S_{A B}
$$

In the above, we set

$$
S_{A B}=S_{B A}:=S_{A C B}^{C},
$$

which turns out to be traceless,

$$
S_{A}^{A} \equiv 0 .
$$

Covariant curvature and DFT

- Especially, the covariant scalar constitutes the effective action as

$$
\mathcal{H}^{A B} S_{A B} \equiv R_{g}+4 \square \phi-4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu}
$$

- It also agrees with Hull, Zwiebach and Hohm,

$$
\begin{aligned}
\mathcal{H}^{A B} S_{A B} \equiv & \mathcal{H}^{A B}\left(4 \partial_{A} \partial_{B} d-4 \partial_{A} d \partial_{B} d+\frac{1}{8} \partial_{A} \mathcal{H}^{C D} \partial_{B} \mathcal{H}_{C D}-\frac{1}{2} \partial_{A} \mathcal{H}^{C D} \partial_{C} \mathcal{H}_{B D}\right) \\
& +4 \partial_{A} \mathcal{H}^{A B} \partial_{B} d-\partial_{A} \partial_{B} \mathcal{H}^{A B}
\end{aligned}
$$

Deriving Equations of motion

- Under arbitrary infinitesimal transformations of the dilaton and the projection, we get

$$
\delta S_{A B C D}=\nabla_{[A} \delta \Gamma_{B] C D}+\nabla_{[C} \delta \Gamma_{D] A B}
$$

where explicitly

$$
\begin{aligned}
\delta \Gamma_{C A B}= & 2 P_{[A}^{D} \bar{P}_{B]}^{E} \nabla_{C} \delta P_{D E}+2\left(\bar{P}_{[A}^{D} \bar{P}_{B]}^{E}-P_{[A}^{D} P_{B]}^{E}\right) \nabla_{D} \delta P_{E C} \\
& -\frac{4}{D-1}\left(\bar{P}_{C[A} \bar{P}_{B]}^{D}+P_{C[A} P_{B]}^{D}\right)\left(\partial_{D} \delta d+P_{E[G} \nabla^{G} \delta P_{D]}^{E}\right) \\
& -\Gamma_{F D E} \delta(\mathcal{P}+\overline{\mathcal{P}})_{C A B}{ }^{F D E} .
\end{aligned}
$$

Deriving Equations of motion

- With $\nabla_{A} d=0$, from the manipulation,

$$
\delta S_{\text {eff. }} \equiv \int \mathrm{d} y^{2 D} 2 e^{-2 d}\left(\delta P^{A B} S_{A B}-\delta d \mathcal{H}^{A B} S_{A B}\right)
$$

and the relation,

$$
\delta P=P \delta P \bar{P}+\bar{P} \delta P P
$$

it is now very easy to derive the equations of motion:

$$
P_{(I}{ }^{A} \bar{P}_{J)}^{B} S_{A B}=0, \quad \mathcal{H}^{A B} S_{A B}=0
$$

Double-vielbein

- $\mathcal{J}_{A B}$ and $\mathcal{H}_{A B}$ can be simultaneously diagonalized,

$$
\begin{aligned}
& \mathcal{J}=\left(\begin{array}{ll}
V & \bar{V}
\end{array}\right)\left(\begin{array}{cc}
\eta^{-1} & 0 \\
0 & -\bar{\eta}
\end{array}\right)\left(\begin{array}{ll}
V & \bar{V}
\end{array}\right)^{t} \\
& \mathcal{H}
\end{aligned}=\left(\begin{array}{ll}
V & \bar{V}
\end{array}\right)\left(\begin{array}{cc}
\eta^{-1} & 0 \\
0 & \bar{\eta}
\end{array}\right)\left(\begin{array}{ll}
V & \bar{V}
\end{array}\right)^{t} .
$$

Here η and $\bar{\eta}$ are two copies of the D-dimensional Minkowskian metric. Both V and \bar{V} are $2 D \times D$ matrices which we name 'double-vielbein '.

- They must satisfy

$$
\begin{array}{lll}
V=P V, & V \eta^{-1} V^{t}=P, & V^{t} \mathcal{J} V=\eta, \quad V^{t} \mathcal{J} \bar{V}=0, \\
\bar{V}=\bar{P} \bar{V}, & \bar{V} \bar{\eta} \bar{V}^{t}=-\bar{P}, & \bar{V}^{t} \mathcal{J} \bar{V}=-\bar{\eta}^{-1} .
\end{array}
$$

Double-vielbein

- $\mathcal{J}_{A B}$ and $\mathcal{H}_{A B}$ can be simultaneously diagonalized,

$$
\begin{aligned}
& \mathcal{J}=\left(\begin{array}{ll}
V & \bar{V}
\end{array}\right)\left(\begin{array}{cc}
\eta^{-1} & 0 \\
0 & -\bar{\eta}
\end{array}\right)\left(\begin{array}{ll}
V & \bar{V}
\end{array}\right)^{t} \\
& \mathcal{H}
\end{aligned}=\left(\begin{array}{ll}
V & \bar{V}
\end{array}\right)\left(\begin{array}{cc}
\eta^{-1} & 0 \\
0 & \bar{\eta}
\end{array}\right)\left(\begin{array}{ll}
V & \bar{V}
\end{array}\right)^{t} .
$$

Here η and $\bar{\eta}$ are two copies of the D-dimensional Minkowskian metric.
Both V and \bar{V} are $2 D \times D$ matrices which we name 'double-vielbein'.

- They must satisfy

$$
\begin{array}{lll}
V=P V, & V_{\eta}^{-1} V^{t}=P, & V^{t} \mathcal{J} V=\eta, \quad V^{t} \mathcal{J} \bar{V}=0, \\
\bar{V}=\bar{P} \bar{V}, & \bar{V} \bar{\eta} \bar{V}^{t}=-\bar{P}, & \bar{V}^{t} \mathcal{J} \bar{V}=-\bar{\eta}^{-1} .
\end{array}
$$

Double-vielbein

- Double-vielbein is of the following general form, Siegel, Hassan

$$
V_{A m}=\frac{1}{\sqrt{2}}\binom{\left(e^{-1}\right)_{m}^{\mu}}{(B+e)_{\nu m}}, \quad \bar{V}_{A}^{\bar{n}}=\frac{1}{\sqrt{2}}\binom{\left(\bar{e}^{-1}\right)^{\bar{n} \mu}}{(\bar{B}-\bar{e})_{\nu}^{\bar{n}}}
$$

- Here, $\boldsymbol{e}_{\mu}{ }^{m}$ and $\overline{\boldsymbol{e}}_{\nu}{ }^{\bar{n}}$ are two copies of the D-dimensional vielbein corresponding to the same spacetime metric,

$$
\begin{gathered}
e_{\mu}{ }^{m} e_{\nu m}=\bar{e}_{\mu}{ }^{\bar{n}} \bar{e}_{\nu \bar{n}}=g_{\mu \nu} . \\
\text { We set } B_{\mu m}=B_{\mu \nu}\left(e^{-1}\right)_{m}{ }^{\nu}, \bar{B}_{\mu \bar{n}}=B_{\mu \nu}\left(\bar{e}^{-1}\right)_{\bar{n}}{ }^{\nu}, \text { etc. }
\end{gathered}
$$

Double-vielbein

- Double-vielbein is of the following general form, Siegel, Hassan

$$
V_{A m}=\frac{1}{\sqrt{2}}\binom{\left(e^{-1}\right)_{m^{\mu}}}{(B+e)_{\nu m}}, \quad \bar{V}_{A} \overline{\bar{n}}=\frac{1}{\sqrt{2}}\binom{\left(\bar{e}^{-1}\right)^{\bar{n} \mu}}{(\bar{B}-\bar{e})_{\nu}^{\bar{n}}} .
$$

- Here, $\boldsymbol{e}_{\mu}{ }^{m}$ and $\overline{\boldsymbol{e}}_{\nu}{ }^{\bar{n}}$ are two copies of the D-dimensional vielbein corresponding to the same spacetime metric,

$$
e_{\mu}{ }^{m} e_{\nu m}=\bar{e}_{\mu}{ }^{\bar{n}} \bar{e}_{\nu \bar{n}}=g_{\mu \nu}
$$

- We set $B_{\mu m}=B_{\mu \nu}\left(e^{-1}\right)_{m}^{\nu}, \bar{B}_{\mu \bar{n}}=B_{\mu \nu}\left(\bar{e}^{-1}\right)_{\bar{n}}^{\nu}$, etc.

Double-vielbein

- Double-vielbein is of the following general form, Siegel, Hassan

$$
V_{A m}=\frac{1}{\sqrt{2}}\binom{\left(e^{-1}\right)_{m^{\mu}}}{(B+e)_{\nu m}}, \quad \bar{V}_{A}^{\bar{n}}=\frac{1}{\sqrt{2}}\binom{\left(\bar{e}^{-1}\right)^{\bar{n} \mu}}{(\bar{B}-\bar{e})_{\nu}^{\bar{n}}} .
$$

- Here, $\boldsymbol{e}_{\mu}{ }^{m}$ and $\overline{\boldsymbol{e}}_{\nu}{ }^{\bar{n}}$ are two copies of the D-dimensional vielbein corresponding to the same spacetime metric,

$$
e_{\mu}{ }^{m} e_{\nu m}=\bar{e}_{\mu}{ }^{\bar{n}} \bar{e}_{\nu \bar{n}}=g_{\mu \nu}
$$

- We set $B_{\mu m}=B_{\mu \nu}\left(e^{-1}\right)_{m}{ }^{\nu}, \bar{B}_{\mu \bar{n}}=B_{\mu \nu}\left(\bar{e}^{-1}\right)_{\bar{n}}{ }^{\nu}$, etc.

Double-vielbein

- We may identify $(B+e)_{\mu}{ }^{m}$ and $(\bar{B}-\bar{e})_{\nu}{ }^{\bar{n}}$ as two copies of the vielbein for the winding mode coordinate, \tilde{x}_{μ}, since

$$
(B+e)_{\mu}^{m}(B+e)_{\nu m}=(\bar{B}-\bar{e})_{\mu}{ }^{\bar{n}}(\bar{B}-\bar{e})_{\nu \bar{n}}=\left(g-B g^{-1} B\right)_{\mu \nu} .
$$

Double vielbein

- Internal symmetry group is

$$
\mathbf{S O}(1, D-1) \times \overline{\mathbf{S O}}(1, D-1)
$$

of which the former and the latter rotates each unbarred and barred small Roman alphabet index.

- $O(D, D)$ acts only on the capital indices.
- Hence, both $V_{A m}$ and $\bar{V}_{A}{ }^{\bar{n}}$ are $\mathbf{O}(D, D)$ vectors.

Double vielbein

- Internal symmetry group is

$$
\mathbf{S O}(1, D-1) \times \overline{\mathbf{S O}}(1, D-1)
$$

of which the former and the latter rotates each unbarred and barred small Roman alphabet index.

- $\mathbf{O}(D, D)$ acts only on the capital indices.
- Hence, both $V_{A m}$ and $\bar{V}_{A}{ }^{n}$ are $O(D, D)$ vectors.

Double vielbein

- Internal symmetry group is

$$
\mathbf{S O}(1, D-1) \times \overline{\mathbf{S O}}(1, D-1)
$$

of which the former and the latter rotates each unbarred and barred small Roman alphabet index.

- $\mathbf{O}(D, D)$ acts only on the capital indices.
- Hence, both $V_{A m}$ and $\bar{V}_{A}{ }^{\bar{n}}$ are $\mathbf{O}(D, D)$ vectors.

Double vielbein

- Further, $V_{A m}$ and $\bar{V}_{A}{ }^{\bar{n}}$ are double-gauge covariant vectors,

$$
\begin{aligned}
& \delta_{X} V_{A m} \equiv X^{B} \partial_{B} V_{A m}+2 \partial_{[A} X_{B]} V^{B}{ }_{m}=\hat{\mathcal{L}}_{X} V_{A m}, \\
& \delta_{X} \bar{V}_{A}^{\bar{n}} \equiv X^{B} \partial_{B} \bar{V}_{A}^{\bar{n}}+2 \partial_{[A} X_{B]} \bar{V}^{B \bar{n}}=\hat{\mathcal{L}}_{X} \bar{V}_{A}^{\bar{n}} .
\end{aligned}
$$

Ability of the double-vielbein

- Double-vielbein can pull back the chiral and the anti-chiral $2 D$ indices to the more familiar D-dimensional ones without losing any information, since it is an invertible process.
- We pull back the double-gauge covariant rank two-tensor to obtain, $S_{A B} V^{A} \bar{V}^{B}{ }_{\bar{n}}=R_{m \bar{n}}+2 D_{m} D_{\bar{n} \phi}-\frac{1}{4} H_{m \mu \nu} H_{\bar{n}}{ }^{\mu \nu}+\left(\partial^{\lambda} \phi\right) H_{\lambda m \bar{n}}-\frac{1}{2} \nabla^{\lambda} H_{\lambda m \bar{n}}$
- As expected, its symmetric and the anti-symmetric parts correspond to the equations of motion of the effective action for $g_{\mu \nu}$ and $B_{\mu \nu}$ respectively

Ability of the double-vielbein

- Double-vielbein can pull back the chiral and the anti-chiral $2 D$ indices to the more familiar D-dimensional ones without losing any information, since it is an invertible process.
- We pull back the double-gauge covariant rank two-tensor to obtain,
$S_{A B} V^{A}{ }_{m} \bar{V}^{B}{ }_{\bar{n}}=R_{m \bar{n}}+2 D_{m} D_{\bar{n}} \phi-\frac{1}{4} H_{m \mu \nu} H_{\bar{n}}{ }^{\mu \nu}+\left(\partial^{\lambda} \phi\right) H_{\lambda m \bar{n}}-\frac{1}{2} \nabla^{\lambda} H_{\lambda m \bar{n}}$.
- As expected, its symmetric and the anti-symmetric parts correspond to the equations of motion of the effective action for $g_{\mu \nu}$ and $B_{\mu \nu}$ respectively.

Ability of the double-vielbein

- Double-vielbein can pull back the chiral and the anti-chiral $2 D$ indices to the more familiar D-dimensional ones without losing any information, since it is an invertible process.
- We pull back the double-gauge covariant rank two-tensor to obtain,

$$
S_{A B} V^{A}{ }_{m} \bar{V}_{\bar{n}}^{B}=R_{m \bar{n}}+2 D_{m} D_{\bar{n}} \phi-\frac{1}{4} H_{m \mu \nu} H_{\bar{n}}^{\mu \nu}+\left(\partial^{\lambda} \phi\right) H_{\lambda m \bar{n}}-\frac{1}{2} \nabla^{\lambda} H_{\lambda m \bar{n}} .
$$

- As expected, its symmetric and the anti-symmetric parts correspond to the equations of motion of the effective action for $g_{\mu \nu}$ and $B_{\mu \nu}$ respectively.

Another ability of the double-vielbein

- We may construct a rank four tensor:

$$
R_{m n p q}+D_{(p} H_{q) m n}-\frac{1}{4} H_{m n}^{r} H_{p q r}-\frac{3}{4} H_{m[n}^{r} H_{p q] r}
$$

which may provide a powerful tool to organize the higher derivative corrections to the effective action \longrightarrow Vanhove's talk

Application to Yang-Mills

- We postulate a vector potential, \mathcal{V}_{A}, which is
- $O(D, D)$ and double-gauge covariant,
- and transforms under non-Abelian gauge symmetry, $\mathbf{g} \in \mathbf{G}$, $g \nu_{A} g^{-1}-i\left(\partial_{A} g\right) g^{-1}$

Application to Yang-Mills

- We postulate a vector potential, \mathcal{V}_{A}, which is
- $\mathbf{O}(D, D)$ and double-gauge covariant,
- and transforms under non-Abelian gauge symmetry, $\mathrm{g} \in \mathrm{G}$,

Application to Yang-Mills

- We postulate a vector potential, \mathcal{V}_{A}, which is
- $\mathbf{O}(D, D)$ and double-gauge covariant,
- and transforms under non-Abelian gauge symmetry, $\mathbf{g} \in \mathbf{G}$,

$$
\mathcal{V}_{A} \longrightarrow \mathbf{g} \mathcal{V}_{A} \mathbf{g}^{-1}-i\left(\partial_{A} \mathbf{g}\right) \mathbf{g}^{-1}
$$

Application to Yang-Mills

- The usual field strength,

$$
F_{A B}=\partial_{A} \mathcal{V}_{B}-\partial_{B} \mathcal{V}_{A}-i\left[\mathcal{V}_{A}, \mathcal{V}_{B}\right]
$$

is YM gauge covariant, but it is NOT double-gauge covariant,

$$
\delta_{X} F_{A B} \neq \hat{\mathcal{L}}_{X} F_{A B}
$$

Application to Yang-Mills

- Instead, we consider with the semi-covariant derivative,

$$
\mathcal{F}_{A B}:=\nabla_{A} \mathcal{V}_{B}-\nabla_{B} \mathcal{V}_{A}-i\left[\mathcal{V}_{A}, \mathcal{V}_{B}\right]=F_{A B}-\Gamma^{C}{ }_{A B} \mathcal{V}_{C} .
$$

- While this is neither YM gauge nor double-gauge covariant,

$$
\begin{gathered}
\mathcal{F}_{A B} \longrightarrow \mathbf{g} \mathcal{F}_{A B} \mathbf{g}^{-1}+i \Gamma^{C}{ }_{A B}\left(\partial_{C} \mathbf{g}\right) \mathbf{g}^{-1} \\
\delta_{X} \mathcal{F}_{A B} \neq \hat{\mathcal{L}}_{X} \mathcal{F}_{A B},
\end{gathered}
$$

- if projected properly, it can be made so,

$$
\begin{gathered}
P_{A}{ }^{C} \bar{P}_{B}^{D} \mathcal{F}_{C D} \longrightarrow P_{A}^{C} \bar{P}_{B}^{D} \mathbf{g} \mathcal{F}_{C D} \mathbf{g}^{-1}, \\
\delta_{X}\left(P_{A}^{C} \bar{P}_{B}^{D} \mathcal{F}_{C D}\right)=\hat{\mathcal{L}}_{X}\left(P_{A}^{C} \bar{P}_{B}^{D} \mathcal{F}_{C D}\right)
\end{gathered}
$$

Application to Yang-Mills

- Instead, we consider with the semi-covariant derivative,

$$
\mathcal{F}_{A B}:=\nabla_{A} \mathcal{V}_{B}-\nabla_{B} \mathcal{V}_{A}-i\left[\mathcal{V}_{A}, \mathcal{V}_{B}\right]=F_{A B}-\Gamma^{C}{ }_{A B} \mathcal{V}_{C} .
$$

- While this is neither YM gauge nor double-gauge covariant,

$$
\begin{aligned}
\mathcal{F}_{A B} \longrightarrow & \mathbf{g} \mathcal{F}_{A B} \mathbf{g}^{-1}+i \Gamma^{C}{ }_{A B}\left(\partial_{C} \mathbf{g}\right) \mathbf{g}^{-1} \\
& \delta_{X} \mathcal{F}_{A B} \neq \hat{\mathcal{L}}_{X} \mathcal{F}_{A B}
\end{aligned}
$$

- if projected properly, it can be made so,

$$
\begin{gathered}
P_{A}{ }^{C} \bar{P}_{B}^{D} \mathcal{F}_{C D} \longrightarrow P_{A}^{C} \bar{P}_{B}^{D} \mathbf{g} \mathcal{F}_{C D} \mathbf{g}^{-1}, \\
\delta_{X}\left(P_{A}^{C} \bar{P}_{B}^{D} \mathcal{F}_{C D}\right)=\hat{\mathcal{L}}_{X}\left(P_{A}^{C} \bar{P}_{B}^{D} \mathcal{F}_{C D}\right) .
\end{gathered}
$$

Application to Yang-Mills

- Instead, we consider with the semi-covariant derivative,

$$
\mathcal{F}_{A B}:=\nabla_{A} \mathcal{V}_{B}-\nabla_{B} \mathcal{V}_{A}-i\left[\mathcal{V}_{A}, \mathcal{V}_{B}\right]=F_{A B}-\Gamma^{C}{ }_{A B} \mathcal{V}_{C} .
$$

- While this is neither YM gauge nor double-gauge covariant,

$$
\begin{aligned}
\mathcal{F}_{A B} \longrightarrow & \mathbf{g} \mathcal{F}_{A B} \mathbf{g}^{-1}+i \Gamma^{C}{ }_{A B}\left(\partial_{C} \mathbf{g}\right) \mathbf{g}^{-1} \\
& \delta_{X} \mathcal{F}_{A B} \neq \hat{\mathcal{L}}_{X} \mathcal{F}_{A B}
\end{aligned}
$$

- if projected properly, it can be made so,

$$
\begin{gathered}
P_{A}^{C} \bar{P}_{B}^{D} \mathcal{F}_{C D} \longrightarrow P_{A}^{C} \bar{P}_{B}^{D} \mathbf{g} \mathcal{F}_{C D} \mathbf{g}^{-1} \\
\delta_{X}\left(P_{A}^{C} \bar{P}_{B}^{D} \mathcal{F}_{C D}\right)=\hat{\mathcal{L}}_{X}\left(P_{A}^{C} \bar{P}_{B}^{D} \mathcal{F}_{C D}\right)
\end{gathered}
$$

Application to Yang-Mills

That is to say, $P_{A}{ }^{C} \bar{P}_{B}{ }^{D} \mathcal{F}_{C D}$ is fully covariant with respect to

- O(D,D) T-duality
- Gauge symmetry
- Double gauge $=$ Diffeomorphism + one form gauge symmetry
- Yang-Mills gauge

Yang-Mills action

- Our double field formulation of Yang-Mills action is

$$
S_{\mathrm{YM}}=g_{\mathrm{YM}}^{-2} \int \mathrm{~d} y^{2 D} e^{-2 d} \operatorname{Tr}\left(P^{A B} \bar{P}^{C D} \mathcal{F}_{A C} \mathcal{F}_{B D}\right),
$$

- Manifestly, $O(D, D)$ T-duality, double-gauge and Yang-Mills gauge covariant.

Yang-Mills action

- Our double field formulation of Yang-Mills action is

$$
S_{\mathrm{YM}}=g_{\mathrm{YM}}^{-2} \int \mathrm{~d} y^{2 D} e^{-2 d} \operatorname{Tr}\left(P^{A B} \bar{P}^{C D} \mathcal{F}_{A C} \mathcal{F}_{B D}\right),
$$

- Manifestly, $O(D, D)$ T-duality, double-gauge and Yang-Mills gauge covariant.

Yang-Mills in components

- Decompose the vector potential into chiral and anti-chiral ones,

$$
\begin{gathered}
\mathcal{V}_{A}=V_{A}^{+}+V_{A}^{-}, \\
V_{A}^{+}=P_{A}^{B} \mathcal{V}_{B}, \quad V_{A}^{-}=\bar{P}_{A}^{B} \mathcal{V}_{B} .
\end{gathered}
$$

- Their general forms are

Yang-Mills in components

- Decompose the vector potential into chiral and anti-chiral ones,

$$
\begin{gathered}
\mathcal{V}_{A}=V_{A}^{+}+V_{A}^{-} \\
V_{A}^{+}=P_{A}^{B} \mathcal{V}_{B}, \quad V_{A}^{-}=\bar{P}_{A}^{B} \mathcal{V}_{B} .
\end{gathered}
$$

- Their general forms are

$$
V_{A}^{+}=\frac{1}{2}\binom{A^{+\lambda}}{(g+B)_{\mu \nu} A^{+\nu}}, \quad V_{A}^{-}=\frac{1}{2}\binom{-A^{-\lambda}}{(g-B)_{\mu \nu} A^{-\nu}}
$$

Yang-Mills in components

- With the field redefinition,

$$
A_{\mu}:=\frac{1}{2}\left(A_{\mu}^{+}+A_{\mu}^{-}\right), \quad \phi_{\mu}:=\frac{1}{2}\left(A_{\mu}^{+}-A_{\mu}^{-}\right)
$$

we get

$$
\mathcal{V}_{A}=\binom{\phi^{\lambda}}{A_{\mu}+B_{\mu \nu} \phi^{\nu}}
$$

- A_{μ} is YM gauge connection. ϕ_{ν} is YM gauge covariant one-form.

Yang-Mills in components

- With the field redefinition,

$$
A_{\mu}:=\frac{1}{2}\left(A_{\mu}^{+}+A_{\mu}^{-}\right), \quad \phi_{\mu}:=\frac{1}{2}\left(A_{\mu}^{+}-A_{\mu}^{-}\right)
$$

we get

$$
\mathcal{V}_{A}=\binom{\phi^{\lambda}}{A_{\mu}+B_{\mu \nu} \phi^{\nu}}
$$

- A_{μ} is YM gauge connection. ϕ_{ν} is YM gauge covariant one-form.

Yang-Mills in components

- Turning off the \tilde{x}-dependence reduces the action to

$$
S_{\mathrm{YM}} \equiv g_{\mathrm{YM}}^{-2} \int \mathrm{~d} x^{D} \sqrt{-g} e^{-2 \phi} \operatorname{Tr}\left(-\frac{1}{4} \hat{f}^{\mu \nu} \hat{f}_{\mu \nu}\right)
$$

where

$$
\hat{f}_{\mu \nu}:=f_{\mu \nu}-D_{\mu} \phi_{\nu}-D_{\nu} \phi_{\mu}+i\left[\phi_{\mu}, \phi_{\nu}\right]+H_{\mu \nu \lambda} \phi^{\lambda}
$$

and

$$
\begin{aligned}
\operatorname{Tr}\left(\hat{f}_{\mu \nu} \hat{f}^{\mu \nu}\right)= & \operatorname{Tr}\left(f_{\mu \nu} f^{\mu \nu}+2 D_{\mu} \phi_{\nu} D^{\mu} \phi^{\nu}+2 D_{\mu} \phi_{\nu} D^{\nu} \phi^{\mu}-\left[\phi_{\mu}, \phi_{\nu}\right]\left[\phi^{\mu}, \phi^{\nu}\right]\right. \\
& \left.+2 i f_{\mu \nu}\left[\phi^{\mu}, \phi^{\nu}\right]+2\left(f^{\mu \nu}+i\left[\phi^{\mu}, \phi^{\nu}\right]\right) H_{\mu \nu \sigma} \phi^{\sigma}+H_{\mu \nu \sigma} H^{\mu \nu}{ }_{\tau} \phi^{\sigma} \phi^{\tau}\right)
\end{aligned}
$$

- Similar to topologically twisted Yang-Mills, but differs in detail.
- Curved D-branes are 1-nown to convert adjoint sealars into one-form,

Yang-Mills in components

- Turning off the \tilde{x}-dependence reduces the action to

$$
S_{\mathrm{YM}} \equiv g_{\mathrm{YM}}^{-2} \int \mathrm{~d} x^{D} \sqrt{-g} e^{-2 \phi} \operatorname{Tr}\left(-\frac{1}{4} \hat{f}^{\mu \nu} \hat{f}_{\mu \nu}\right)
$$

where

$$
\hat{f}_{\mu \nu}:=f_{\mu \nu}-D_{\mu} \phi_{\nu}-D_{\nu} \phi_{\mu}+i\left[\phi_{\mu}, \phi_{\nu}\right]+H_{\mu \nu \lambda} \phi^{\lambda}
$$

and

$$
\begin{aligned}
\operatorname{Tr}\left(\hat{f}_{\mu \nu} \hat{f}^{\mu \nu}\right)= & \operatorname{Tr}\left(f_{\mu \nu} f^{\mu \nu}+2 D_{\mu} \phi_{\nu} D^{\mu} \phi^{\nu}+2 D_{\mu} \phi_{\nu} D^{\nu} \phi^{\mu}-\left[\phi_{\mu}, \phi_{\nu}\right]\left[\phi^{\mu}, \phi^{\nu}\right]\right. \\
& \left.+2 i f_{\mu \nu}\left[\phi^{\mu}, \phi^{\nu}\right]+2\left(f^{\mu \nu}+i\left[\phi^{\mu}, \phi^{\nu}\right]\right) H_{\mu \nu \sigma} \phi^{\sigma}+H_{\mu \nu \sigma} H^{\mu \nu}{ }_{\tau} \phi^{\sigma} \phi^{\tau}\right)
\end{aligned}
$$

- Similar to topologically twisted Yang-Mills, but differs in detail.
- Curved D-branes are known to convert adjoint scalars into one-form,

Yang-Mills in components

- Turning off the \tilde{x}-dependence reduces the action to

$$
S_{\mathrm{YM}} \equiv g_{\mathrm{YM}}^{-2} \int \mathrm{~d} x^{D} \sqrt{-g} e^{-2 \phi} \operatorname{Tr}\left(-\frac{1}{4} \hat{f}^{\mu \nu} \hat{f}_{\mu \nu}\right)
$$

where

$$
\hat{f}_{\mu \nu}:=f_{\mu \nu}-D_{\mu} \phi_{\nu}-D_{\nu} \phi_{\mu}+i\left[\phi_{\mu}, \phi_{\nu}\right]+H_{\mu \nu \lambda} \phi^{\lambda}
$$

and

$$
\begin{aligned}
\operatorname{Tr}\left(\hat{f}_{\mu \nu} \hat{f}^{\mu \nu}\right)= & \operatorname{Tr}\left(f_{\mu \nu} f^{\mu \nu}+2 D_{\mu} \phi_{\nu} D^{\mu} \phi^{\nu}+2 D_{\mu} \phi_{\nu} D^{\nu} \phi^{\mu}-\left[\phi_{\mu}, \phi_{\nu}\right]\left[\phi^{\mu}, \phi^{\nu}\right]\right. \\
& \left.+2 i f_{\mu \nu}\left[\phi^{\mu}, \phi^{\nu}\right]+2\left(f^{\mu \nu}+i\left[\phi^{\mu}, \phi^{\nu}\right]\right) H_{\mu \nu \sigma} \phi^{\sigma}+H_{\mu \nu \sigma} H^{\mu \nu}{ }_{\tau} \phi^{\sigma} \phi^{\tau}\right)
\end{aligned}
$$

- Similar to topologically twisted Yang-Mills, but differs in detail.
- Curved D-branes are known to convert adjoint scalars into one-form,

$$
\phi^{a} \rightarrow \phi_{\mu}, \quad \text { Bershadsky }
$$

Concluding remarks

- $\mathbf{O}(D, D)$ T-duality, diffeomorphism, one-form gauge symmetry fixes the low energy effective action,

$$
S_{\text {eff. }}=\int \mathrm{d} x^{D} e^{-2 d} \mathcal{H}^{A B} S_{A B} .
$$

- Supersymmetrization, Higher derivative corrections - in progress.
- Application to "doubled sigma model' and generalization to M-theory are of interest
- Perhaps, our formalism may provide some clue to a new framework for string theory, beyond Riemann.

Concluding remarks

- $\mathbf{O}(D, D)$ T-duality, diffeomorphism, one-form gauge symmetry fixes the low energy effective action,

$$
S_{\text {eff. }}=\int \mathrm{d} x^{D} e^{-2 d} \mathcal{H}^{A B} S_{A B}
$$

- Supersymmetrization, Higher derivative corrections - in progress.
- Application to 'doubled sigma model' and generalization to \mathcal{M}-theory are of interest
- Perhaps, our formalism may provide some clue to a new framework for string theory, beyond Riemann.

Concluding remarks

- $\mathbf{O}(D, D)$ T-duality, diffeomorphism, one-form gauge symmetry fixes the low energy effective action,

$$
S_{\text {eff. }}=\int \mathrm{d} x^{D} e^{-2 d} \mathcal{H}^{A B} S_{A B}
$$

- Supersymmetrization, Higher derivative corrections - in progress.
- Application to 'doubled sigma model' and generalization to \mathcal{M}-theory are of interest Ivanov, Hull, Berman, Perry, Bergshoeff
- Perhaps, our formalism may provide some clue to a new framework for string theory, beyond Riemann.

Concluding remarks

- $\mathbf{O}(D, D)$ T-duality, diffeomorphism, one-form gauge symmetry fixes the low energy effective action,

$$
S_{\text {eff. }}=\int \mathrm{d} x^{D} e^{-2 d} \mathcal{H}^{A B} S_{A B}
$$

- Supersymmetrization, Higher derivative corrections - in progress.
- Application to 'doubled sigma model' and generalization to \mathcal{M}-theory are of interest Ivanov, Hull, Berman, Perry, Bergshoeff
- Perhaps, our formalism may provide some clue to a new framework for string theory, beyond Riemann.

Concluding remarks

- $\mathbf{O}(D, D)$ T-duality, diffeomorphism, one-form gauge symmetry fixes the low energy effective action,

$$
S_{\text {eff. }}=\int \mathrm{d} x^{D} e^{-2 d} \mathcal{H}^{A B} S_{A B}
$$

- Supersymmetrization, Higher derivative corrections - in progress.
- Application to 'doubled sigma model' and generalization to \mathcal{M}-theory are of interest Ivanov, Hull, Berman, Perry, Bergshoeff
- Perhaps, our formalism may provide some clue to a new framework for string theory, beyond Riemann.

Thank you.

