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Prologue

In Riemannian geometry, the fundamental object is the metric, gµν .

String theory puts gµν , Bµν and φ on an equal putting.

This may suggests the existence of a veiled unifying description of

them, beyond Riemann.
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Introduction

Symmetry

guides the structure of Lagrangians.

organizes the physical laws into simple forms.

for example, in Maxwell theory,

U(1) gauge symmetry forbids m2AµAµ

Lorentz symmetry unifies the original 4 eqs into 2.
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Essence of Riemannian geometry

Diffeomorphism: ∂µ −→ ∇µ = ∂µ + Γµ

∇λgµν = 0 −→ Γλ
µν = 1

2 gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν)

Curvature: [∇µ,∇ν ] −→ Rg.
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Closed string

gµν , Bµν , φ are on an equal footing completing the massless sector.

Low energy effective action of them:

Seff. =

Z

dxDp−ge−2φ
`

Rg + 4∂µφ∂
µ
φ − 1

12 HλµνHλµν
´

Diffeomorphism and one-form gauge symmetry are manifest

xµ → xµ + δxµ , Bµν → Bµν + ∂µΛν − ∂νΛµ .
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Buscher
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T-duality

Redefine the dilaton,

e−2d =
p

−ge−2φ

Set a 2D × 2D symmetric matrix,

HAB =

0

B

@

g−1 −g−1B

Bg−1 g − Bg−1B

1

C

A

A, B, .... : 2D-dimensional vector indices.
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T-duality

T-duality is realized by an O(D, D) rotation,

HAB −→ LA
CLB

DHCD , d −→ d ,

where

L ∈ O(D, D) .
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T-duality

O(D, D) metric,

JAB :=

0

B

@

0 1

1 0

1

C

A

freely raises or lowers the 2D-dimensional vector indices.
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Double Field Theory (DFT)

Hull and Zwiebach , later with Hohm

SDFT =

Z

dy2D e−2d R(H, d) ,

where

R(H, d) = HAB
`

4∂A∂Bd − 4∂Ad∂Bd + 1
8 ∂AH

CD∂BHCD − 1
2∂AH

CD∂CHBD
´

+4∂AH
AB∂Bd − ∂A∂BH

AB .

Spacetime is formally doubled, yA = (x̃µ, xν).

Yet,
∂

∂x̃µ

≡ 0 .
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Double Field Theory (DFT)

Closed string

XL(σ
+) = 1

2 (x + x̃) + 1
2 (p + w)σ+ + · · · ,

XR(σ−) = 1
2 (x − x̃) + 1

2 (p − w)σ− + · · · .

Under T-duality,

XL + XR −→ XL − XR ,

such that

(x , x̃ , p, w) −→ (x̃ , x , w , p) .

Level matching condition for the massless sector,

p · w ≡ 0 ⇐⇒ ∂A∂
A = 2

∂2

∂x̃µ∂xµ
≡ 0 .
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Double Field Theory (DFT)

Upon the level matching constraint,

SDFT =⇒ Seff. =

Z

dxDp−ge−2φ
“

Rg + 4(∂φ)2 − 1
12 H2

”

.
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Double Field Theory (DFT)

Thus, in the DFT formulation of the effective action by Hull, Zwiebach

and Hohm, the O(D, D) T-duality structure is manifest.

What about the diffeomorphism and the one-form gauge symmetry?
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Diffeomorphism & one-form gauge symmetry

Introduce a unifying parameter,

X A = (Λµ, δxν)

Unifying transformation rule, upon the level matching constraint,

δXHAB ≡ X C∂CHAB + 2∂[AXC]H
C

B + 2∂[BXC]HA
C ,

δX
`

e−2d´ ≡ ∂A
`

X Ae−2d´ .

In fact, these coincide with the generalized Lie derivative,

δXHAB = L̂XHAB , δX (e−2d) = L̂X (e−2d) = −2(L̂X d)e−2d .
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Generalized Lie derivative

Definition, Siegel, Courant, Grana ...

L̂X TA1···An := X B
∂BTA1···An+ω∂BX BTA1···An+

n
X

i=1

(∂Ai XB−∂BXAi )TA1···Ai−1
B

Ai+1···An .

cf. ordinary one,

LX TA1···An := X B
∂BTA1···An + ω∂BX BTA1···An +

n
X

i=1

∂Ai XBTA1···Ai−1
B

Ai+1···An .

Commutator of the generalized Lie derivatives,

[L̂X , L̂Y ] ≡ L̂[X ,Y ]C
,

where [X , Y ]C denotes the Courant bracket,

[X , Y ]AC := X B
∂BY A − Y B

∂BX A + 1
2 Y B

∂
AXB − 1

2 X B
∂

AYB .
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Diffeomorphism & one-form gauge symmetry

Brute force computation shows that

L̂XHAB ≡ X C∂CHAB + 2∂[AXC]H
C

B + 2∂[BXC]HA
C ,

L̂X
`

e−2d´ ≡ ∂A
`

X Ae−2d´ ,

are symmetry of the action by Hull, Zwiebach and Hohm,

SDFT =

Z

dy2D e−2d R(H, d) ,

where

R(H, d) = HAB `4∂A∂Bd − 4∂Ad∂Bd + 1
8 ∂AH

CD∂BHCD − 1
2∂AH

CD∂CHBD
´

+4∂AH
AB∂Bd − ∂A∂BH

AB .

This expression may be analogous to the case of writing the scalar

curvature, Rg , in terms of the metric and its derivative.
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Stringy differential geometry

We propose a novel differential geometry which

treats the three objects of the massless sector in a unified ma nner,

manifests not only diffeomorphism and one-form gauge symme try

but also O (D, D) T-duality,

and enables us to rewrite the low energy effective action of t hem as

a single term,

Seff. =

Z

dxD e−2d HABSAB .
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Stringy differential geometry

Motivated by the observation that,

H =

0

B

@

g−1 −g−1B

Bg−1 g − Bg−1B

1

C

A

is of the most general form to satisfy

HA
CHC

B = δA
B

, HAB = HBA ,

and the upper left D × D block of H is non-degenerate,

we focus on a symmetric projection,

PA
BPB

C = PA
C PAB = PBA ,

which is related to H by

PAB = 1
2 (JAB + HAB) .
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Stringy differential geometry

Three basic objects:

JAB , PAB , d .

We postulate a “semi-covariant" derivative, ∇A,

∇CTA1A2···An= ∂CTA1A2···An−ωΓB
BCTA1A2···An +

n
X

i=1

ΓCAi
BTA1···Ai−1BAi+1···An .

In particular,

∇C(e−2d) = ∂Ce−2d − ΓB
BCe−2d = −2(∇Cd)e−2d

=⇒ ∇Cd := ∂Cd + 1
2ΓB

BC
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Stringy differential geometry

We demand the following compatibility conditions,

∇AJBC = 0 , ∇APBC = 0 , ∇Ad = 0 ,

as for the unifying description of the massless modes

(cf. ∇λgµν = 0 in Riemannian geometry).

Further we require,

ΓCAB + ΓCBA = 0 , ΓABC + ΓCAB + ΓBCA = 0 .

The connection must be torsionful : non-Riemannian.
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Stringy differential geometry

Then, we may replace ∂A by ∇A in L̂X and also in [X , Y ]AC ,

L̂X TA1···An = X B∇BTA1···An + ω∇BX BTA1···An +
Pn

i=1 2∇[Ai
XB]TA1···Ai−1

B
Ai+1···An ,

[X , Y ]AC =X B∇BY A − Y B∇BX A + 1
2 Y B∇AXB − 1

2 X B∇AYB .

cf. In Riemannian geometry, torsion free condition implies

LX Tµ1···µn = Xν∇νTµ1···µn + ω∇νXνTµ1···µn +
Pn

i=1 ∇µi X
νTµ1···µi−1νµi+1···µn ,

[X , Y ]µ = Xν∇νY µ − Y ν∇νXµ .
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Stringy differential geometry

Explicitly, the connection is

ΓCAB = 2
`

P∂CPP̄
´

[AB]
+ 2
`

P̄[A
DP̄B]

E − P[A
DPB]

E´∂DPEC

− 4
D−1

`

P̄C[AP̄B]
D + PC[APB]

D´`∂Dd + (P∂E PP̄)[ED]

´

.

where P̄ is the complementary projection,

P̄ = 1
2 (1 −H) .
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Stringy differential geometry

Further, we set

PCAB
DEF := PC

DP[A
[E PB]

F ] + 2
D−1 PC[APB]

[E PF ]D ,

P̄CAB
DEF := P̄C

DP̄[A
[E P̄B]

F ] + 2
D−1 P̄C[AP̄B]

[E P̄F ]D ,

which satisfy

PCABDEF = PDEFCAB = PC[AB]D[EF ] ,

PCAB
DEFPDEF

GHI = PCAB
GHI ,

PA
ABDEF = 0 , PABPABCDEF = 0 , etc.

The connection belongs to the kernel of these rank six-projectors -

uniqueness

PCAB
DEF ΓDEF = 0 , P̄CAB

DEF ΓDEF = 0 .

Stringy Differential Geometry, beyond Riemann



Stringy differential geometry

Further, we set

PCAB
DEF := PC

DP[A
[E PB]

F ] + 2
D−1 PC[APB]

[E PF ]D ,

P̄CAB
DEF := P̄C

DP̄[A
[E P̄B]

F ] + 2
D−1 P̄C[AP̄B]

[E P̄F ]D ,

which satisfy

PCABDEF = PDEFCAB = PC[AB]D[EF ] ,

PCAB
DEFPDEF

GHI = PCAB
GHI ,

PA
ABDEF = 0 , PABPABCDEF = 0 , etc.

The connection belongs to the kernel of these rank six-projectors -

uniqueness

PCAB
DEF ΓDEF = 0 , P̄CAB

DEF ΓDEF = 0 .

Stringy Differential Geometry, beyond Riemann



Stringy differential geometry

Under δXHAB = L̂XHAB and δX d = L̂X d , the diffeomorphism and the

one-form gague symmetry, or shortly double-gauge symmetry,

we obtain

(δX−L̂X )ΓCAB ≡ 2
ˆ

(P+P̄)CAB
FDE − δ

F
C δ

D
A δ

E
B

˜

∂F∂[DXE ] ,

and

(δX−L̂X )∇CTA1···An≡
X

i

2(P+P̄)CAi
BFDE

∂F∂[DXE ]T···B··· .

Hence, these are not double-gauge covariant,

δX 6= L̂X .
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Stringy differential geometry

However, the characteristic property of our derivative, ∇A, is that,

combined with the projections, it can generate various O(D, D) and

double-gauge covariant quantities:

PC
DP̄A1

B1 P̄A2
B2 · · · P̄An

Bn∇DTB1B2···Bn ,

P̄C
DPA1

B1PA2
B2 · · ·PAn

Bn∇DTB1B2···Bn ,

PAB∇ATB , P̄AB∇ATB ,

PABP̄C1
D1 · · · P̄Cn

Dn∇A∇BTD1···Dn ,

P̄ABPC1
D1 · · ·PCn

Dn∇A∇BTD1···Dn .

This suggests us to call ∇A as semi-covariant derivative .
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Curvature

The usual curvature,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED ,

satisfying

[∇A,∇B ]TC1C2···Cn = −ΓDAB∇
DTC1C2···Cn +

n
X

i=1

RCi DAB TC1···Ci−1
D

Ci+1···Cn ,

is NOT double-gauge covariant,

δX RABCD 6= L̂X RABCD .
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Generalized curvature

Instead, we define, as for a key quantity in our formalism,

SABCD := 1
2

“

RABCD + RCDAB − ΓE
ABΓECD

”

.

This is related to a commutator,

PI
AP̄J

B[∇A,∇B ]TC ≡ 2PI
AP̄J

BSCDABT D
.

It can be shown, by brute force computation, to meet

just like the Riemann curvature,

SABCD = 1
2 (S[AB][CD] + S[CD][AB]) ≡ S{ABCD} , SA[BCD] = 0 ,

and further

P A
I P B

J P̄ C
K P̄ D

L SABCD ≡ 0 , P A
I P̄ B

J P C
K P̄ D

L SABCD ≡ 0 , etc.
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Generalized curvature

Under the double-gauge transformations, we get

(δX − L̂X )SABCD ≡ 4∇{A

h

(P+P̄)BCD}
EFG

∂E∂[F XG] .
i

.

Hence, SABCD is not double-gauge covariant.

Nevertheless, contracting indices we can obtain covariant quantities.
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Covariant curvature

Double-gauge covariant rank two-tensor,

PI
AP̄J

BSAB .

Double-gauge covariant scalar,

HABSAB .

In the above, we set

SAB= SBA:= SC
ACB ,

which turns out to be traceless,

SA
A ≡ 0 .
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Covariant curvature and DFT

Especially, the covariant scalar constitutes the effective action as

HABSAB ≡ Rg + 42φ − 4∂µφ∂
µ
φ − 1

12 HλµνHλµν .

It also agrees with Hull, Zwiebach and Hohm,

HABSAB ≡ HAB `4∂A∂Bd − 4∂Ad∂Bd + 1
8∂AH

CD∂BHCD − 1
2 ∂AH

CD∂CHBD
´

+4∂AH
AB∂Bd − ∂A∂BH

AB .
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Deriving Equations of motion

Under arbitrary infinitesimal transformations of the dilaton and the

projection, we get

δSABCD = ∇[AδΓB]CD + ∇[CδΓD]AB ,

where explicitly

δΓCAB = 2P D
[A P̄ E

B] ∇CδPDE + 2(P̄ D
[A P̄ E

B] − P D
[A P E

B] )∇DδPEC

− 4
D−1 (P̄C[AP̄ D

B] + PC[AP D
B] )(∂Dδd + PE [G∇

GδPE
D])

−ΓFDE δ(P + P̄)CAB
FDE .
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Deriving Equations of motion

With ∇Ad = 0, from the manipulation,

δSeff. ≡

Z

dy2D 2e−2d
“

δPABSAB − δd HABSAB

”

,

and the relation,

δP = PδPP̄ + P̄δPP ,

it is now very easy to derive the equations of motion:

P(I
AP̄J)

BSAB = 0 , HABSAB = 0 .
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Double-vielbein

JAB and HAB can be simultaneously diagonalized,

J =

„

V V̄

«

 

η
−1 0

0 −η̄

!

„

V V̄

«t

,

H =

„

V V̄

«

 

η
−1 0

0 η̄

!

„

V V̄

«t

.

Here η and η̄ are two copies of the D-dimensional Minkowskian metric.

Both V and V̄ are 2D×D matrices which we name ‘double-vielbein ’.

They must satisfy

V = PV , Vη−1V t = P , V tJV = η , V tJ V̄ = 0 ,

V̄ = P̄V̄ , V̄ η̄ V̄ t = −P̄ , V̄ tJ V̄ = −η̄−1 .
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Double-vielbein

Double-vielbein is of the following general form, Siegel, Hassan

VAm = 1√
2

0

B

@

(e−1)m
µ

(B + e)νm

1

C

A
, V̄A

n̄ = 1√
2

0

B

@

(ē−1)n̄µ

(B̄ − ē)ν
n̄

1

C

A
.

Here, eµ
m and ēν

n̄ are two copies of the D-dimensional vielbein

corresponding to the same spacetime metric,

eµ
meνm = ēµ

n̄ēνn̄ = gµν .

We set Bµm = Bµν(e−1)m
ν , B̄µn̄ = Bµν(ē−1)n̄

ν , etc.
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n̄

1

C

A
.

Here, eµ
m and ēν
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n̄ēνn̄ = gµν .

We set Bµm = Bµν(e−1)m
ν , B̄µn̄ = Bµν(ē−1)n̄
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(ē−1)n̄µ

(B̄ − ē)ν
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n̄ēνn̄ = gµν .

We set Bµm = Bµν(e−1)m
ν , B̄µn̄ = Bµν(ē−1)n̄
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Double-vielbein

We may identify (B + e)µ
m and (B̄ − ē)ν

n̄ as two copies of the

vielbein for the winding mode coordinate, x̃µ, since

(B + e)µ
m(B + e)νm = (B̄ − ē)µ

n̄(B̄ − ē)νn̄ = (g − Bg−1B)µν .
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Double vielbein

Internal symmetry group is

SO(1, D−1) × SO(1, D−1) ,

of which the former and the latter rotates each unbarred and barred

small Roman alphabet index.

O(D, D) acts only on the capital indices.

Hence, both VAm and V̄A
n̄ are O(D, D) vectors.
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Double vielbein

Further, VAm and V̄A
n̄ are double-gauge covariant vectors,

δX VAm ≡ X B∂BVAm + 2∂[AXB]V
B

m = L̂X VAm ,

δX V̄A
n̄ ≡ X B∂BV̄A

n̄ + 2∂[AXB]V̄
Bn̄ = L̂X V̄A

n̄ .
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Ability of the double-vielbein

Double-vielbein can pull back the chiral and the anti-chiral 2D indices

to the more familiar D-dimensional ones without losing any

information, since it is an invertible process.

We pull back the double-gauge covariant rank two-tensor to obtain,

SABV A
mV̄ B

n̄ = Rmn̄ + 2DmDn̄φ − 1
4 HmµνHn̄

µν + (∂λφ)Hλmn̄ −
1
2∇

λHλmn̄ .

As expected, its symmetric and the anti-symmetric parts correspond

to the equations of motion of the effective action for gµν and Bµν

respectively.
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Another ability of the double-vielbein

We may construct a rank four tensor:

Rmnpq + D(pHq)mn −
1
4 Hmn

r Hpqr −
3
4 Hm[n

r Hpq]r ,

which may provide a powerful tool to organize the higher derivative

corrections to the effective action −→ Vanhove’s talk
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Application to Yang-Mills

We postulate a vector potential, VA, which is

O(D, D) and double-gauge covariant,

and transforms under non-Abelian gauge symmetry, g ∈ G,

VA −→ gVAg−1 − i(∂Ag)g−1
.
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Application to Yang-Mills

The usual field strength,

FAB = ∂AVB − ∂BVA − i [VA,VB ] ,

is YM gauge covariant, but it is NOT double-gauge covariant,

δX FAB 6= L̂X FAB .
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Application to Yang-Mills

Instead, we consider with the semi-covariant derivative,

FAB := ∇AVB −∇BVA − i [VA,VB ] = FAB − ΓC
ABVC .

While this is neither YM gauge nor double-gauge covariant,

FAB −→ gFABg−1 + iΓC
AB(∂Cg)g−1 ,

δXFAB 6= L̂XFAB ,

if projected properly, it can be made so,

PA
CP̄B

DFCD −→ PA
CP̄B

DgFCDg−1 ,

δX (PA
CP̄B

DFCD) = L̂X (PA
CP̄B

DFCD) .
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Application to Yang-Mills

That is to say, PA
CP̄B

DFCD is fully covariant with respect to

O(D, D) T-duality

Gauge symmetry

Double gauge = Diffeomorphism + one form gauge symmetry

Yang-Mills gauge
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Yang-Mills action

Our double field formulation of Yang-Mills action is

SYM = g−2
YM

Z

dy2D e−2d Tr
“

PABP̄CDFACFBD

”

,

Manifestly, O(D, D) T-duality, double-gauge and Yang-Mills gauge

covariant.
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Yang-Mills in components

Decompose the vector potential into chiral and anti-chiral ones,

VA = V +
A + V−

A ,

V +
A = PA

BVB , V−
A = P̄A

BVB .

Their general forms are

V +
A = 1

2

0

B

@

A+λ

(g+B)µνA+ν

1

C

A
, V−

A = 1
2

0

B

@

−A−λ

(g−B)µνA−ν

1

C

A
.
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Yang-Mills in components

With the field redefinition,

Aµ :=
1
2

(A+
µ + A−

µ ) , φµ :=
1
2
(A+

µ − A−
µ ) ,

we get

VA =

0

B

@

φλ

Aµ + Bµνφν

1

C

A
.

Aµ is YM gauge connection. φν is YM gauge covariant one-form.
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Yang-Mills in components

Turning off the x̃-dependence reduces the action to

SYM ≡ g−2
YM

Z

dxD p−ge−2φ Tr
“

− 1
4 f̂ µν f̂µν

”

,

where

f̂µν := fµν − Dµφν − Dνφµ + i [φµ, φν ] + Hµνλφ
λ

,

and

Tr
“

f̂µν f̂ µν
”

= Tr
“

fµν f µν + 2DµφνDµφν + 2DµφνDνφµ − [φµ, φν ][φµ, φν ]

+2i fµν [φµ, φν ] + 2 (f µν + i[φµ, φν ]) Hµνσφσ + HµνσHµν
τφσφτ

”

.

Similar to topologically twisted Yang-Mills, but differs in detail.

Curved D-branes are known to convert adjoint scalars into one-form,

φa → φµ, Bershadsky
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Concluding remarks

O(D, D) T-duality, diffeomorphism, one-form gauge symmetry fixes the

low energy effective action,

Seff. =

Z

dxD e−2d HABSAB .

Supersymmetrization, Higher derivative corrections – in progress.

Application to ‘doubled sigma model’ and generalization to M-theory

are of interest Ivanov, Hull, Berman, Perry, Bergshoeff

Perhaps, our formalism may provide some clue to a new framework for

string theory, beyond Riemann.
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O(D, D) T-duality, diffeomorphism, one-form gauge symmetry fixes the

low energy effective action,

Seff. =

Z

dxD e−2d HABSAB .

Supersymmetrization, Higher derivative corrections – in progress.

Application to ‘doubled sigma model’ and generalization to M-theory

are of interest Ivanov, Hull, Berman, Perry, Bergshoeff

Perhaps, our formalism may provide some clue to a new framework for

string theory, beyond Riemann.

Thank you.
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