Supersymmetric Galileon Theory

Burt Ovrut
Justin Khoury, Jean-Luc Lehners

SQS 2011 Workshop JINR, Dubna, Russia

July, 2011

Heterotic M-Theory:
Wrapped $\mathrm{N}=$ I supersymmetric 5 -brane collision

But- how does one violate the NEC?
Non-supersymmetric "New Ekpyrotic" cosmology:
$\mathrm{d}=4$ Effective field theory with two real scalars ϕ, χ
NEC violated by "ghost condensate" in field ϕ
But= how do we restore the $\mathrm{N} \equiv$ I supersymmetry!

Supersymmetric Ghost Condensate

Review of Bosonic Ghost Condensation:

Single real scalar field-
Flat space- $\eta_{\mu \nu}$
Higher-derivative Lagrangian

$$
\mathcal{L}=P(X) \quad, \quad X \equiv-\frac{1}{2 m^{4}}(\partial \phi)^{2}=\frac{1}{2 m^{4}}\left(\dot{\phi}^{2}-\phi^{,} \phi_{, i}\right)
$$

Set $\mathrm{m}=\mathrm{I}$. For $\phi=\phi(t)$ the equation of motion is

$$
\frac{d}{d t}\left(P_{, X} \dot{\phi}\right)=0
$$

with solution

$$
\phi=c t
$$

In cosmological FRW context with $a=a(t) \Rightarrow$

$$
P_{, X}=0
$$

Ghost Condensate Solution:

$$
\phi=c t \text { with } P_{, X}=0 \longleftarrow \longleftarrow_{\substack{\text { spontaneously breaks } \\ \text { Lorentz invariance }}}
$$

Expanding in fluctuations $\phi=c t+\delta \phi(t, \vec{x})$, to quadratic order the Lagrangian becomes

$$
\mathcal{L}_{\text {quad }}=X P_{, X X} \cdot(\delta \dot{\phi})^{2}-0 \cdot \delta \phi^{i} \delta \phi_{, i}
$$

a) Temporal gradient: No ghost \Rightarrow take

$$
P_{, X X}>0
$$

\Rightarrow ghost condensate local minimum of $P(X)$.
b) Spatial gradient: Vanishes \Rightarrow on verge of instability! Add higher-derivative terms such as

$$
-\frac{(\square \phi)^{2}}{M^{2}}
$$

Ghost condensate still a solution, but improves the dispersion relation to

$$
\omega^{2} \sim \frac{k^{4}}{M^{2}}
$$

Prototypical Condensate Action:
Near the condensate $P(X)$ is approximately quadratic. \Rightarrow
Without loss of generality can take

$$
\mathcal{L}=-X+X^{2}=+\frac{1}{2}(\partial \phi)^{2}+\frac{1}{4}(\partial \phi)^{4}
$$

\Rightarrow to quadratic order

$$
\mathcal{L}_{\text {quad }}=1(\delta \dot{\phi})^{2}-0 \cdot \delta \phi^{, i} \delta \phi_{, i}
$$

Supersymmetric Ghost Condensation:
Extend to an $\mathrm{N}=\mathrm{I}$ chiral supermultiplet

$$
\phi \longrightarrow\left(A, \psi^{\alpha}, F\right)
$$

where

$$
A=\frac{1}{\sqrt{2}}(\phi+i \chi)
$$

ψ^{α} is a two-component Weyl spinor and F is a complex auxiliary field. These can be written in as a chiral superfield

$$
\begin{array}{r}
\left.\Phi=\boxed{A}+i \theta \sigma^{\mu} \bar{\theta} A_{, \mu}+\frac{1}{4} \theta \theta \bar{\theta} \bar{\theta} \square A+\theta \theta \right\rvert\, \sqrt{2} \theta \underset{\uparrow}{\underline{\psi}}-\frac{i}{\sqrt{2}} \theta \theta \psi_{, \mu} \sigma^{\mu} \bar{\theta} . \\
\text { anticommuting spinor coordinate }
\end{array}
$$

The Supersymmetric Prototypical Action:

We find that

$$
\mathcal{L}^{\mathrm{SUSY}}=\left.\left(-\Phi \Phi^{\dagger}+\frac{1}{16} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\right)\right|_{\theta \theta \bar{\theta} \bar{\theta}}
$$

where $D_{\alpha}=\frac{\partial}{\partial \theta^{\alpha}}+i \sigma_{\alpha \dot{\alpha}}^{\mu} \bar{\theta}^{\dot{\alpha}} \partial_{\mu}$. In component fields

$$
\begin{aligned}
\mathcal{L}^{\text {SUSY }} & =\frac{1}{2}(\partial \phi)^{2}+\frac{1}{4}(\partial \phi)^{4}+\frac{1}{2}(\partial \chi)^{2}-\frac{1}{2}(\partial \phi)^{2}(\partial \chi)^{2}+(\partial \phi \cdot \partial \chi)^{2} \\
& -\frac{i}{2}\left(\psi_{, \mu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}_{, \mu}\right)-\frac{i}{4}(\partial \phi)^{2}\left(\psi_{, \mu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}_{, \mu}\right) \\
& -\phi_{\mu} \phi_{, \nu} \frac{i}{2}\left(\psi^{, \nu} \sigma^{\mu} \bar{\psi} \psi \sigma^{\mu} \bar{\psi}^{, \nu}\right)+\ldots
\end{aligned}
$$

No derivatives on $F \Rightarrow$ remains auxiliary field.

Ghost Condensate Solution:

$$
\phi=c t, \chi=0 \text { and } \psi^{\alpha}=0
$$

Setting $\mathrm{c}=\mathrm{I}$ and expanding in fluctuations

$$
\phi=t+\delta \phi(t, \vec{x}), \quad \chi=\delta \chi(t, \vec{x}), \quad \psi=\delta \psi(t, \vec{x})
$$

to quadratic order the Lagrangian becomes

$$
\begin{aligned}
\mathcal{L}_{\text {quad }}^{\text {SUSY }} & =(\dot{\delta} \phi)^{2}-0 \cdot \delta \phi^{, i} \delta \phi_{, i} \\
& +0 \cdot(\dot{\delta \chi})^{2}+\delta \chi^{, i} \delta \chi_{, i} \\
& +\frac{i}{4}\left(\delta \psi{ }_{, 0} \sigma^{0} \delta \bar{\psi}-\delta \psi \sigma^{0} \delta \bar{\psi}_{, 0}\right)-\frac{i}{4}\left(\delta \psi_{, i} \sigma^{i} \delta \bar{\psi}-\delta \psi \sigma^{i} \delta \bar{\psi}_{, i}\right)
\end{aligned}
$$

The ϕ Fluctuations:

$$
(\dot{\delta \phi} \phi)^{2}-0 \cdot \delta \phi^{, i} \delta \phi, i
$$

Same gradient instability as in pure bosonic condensate case.

In the supersymmetric case, solved by adding

$$
-\left.\frac{1}{2^{11}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\left(\{D, \bar{D}\}\{D, \bar{D}\}\left(\Phi+\Phi^{\dagger}\right)\right)^{2}\right|_{\theta \theta \bar{\theta} \bar{\theta}, \text { quad }}=-(\square \delta \phi)^{2}
$$

Note, does not contain other fields at all to this order.
The χ Fluctuations:

$$
\text { 00. }(\dot{\delta} \chi)^{2} \boxplus \delta \chi^{i} \delta \chi, i
$$

Two serious problems- a) marginal temporal ghost and
b) deep wrong sign spatial gradient.

Adding supersymmetric terms can solve both problems. These are

$$
\begin{aligned}
& {\left[\frac{8}{16^{2}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\left(\{D, \bar{D}\}\left(\Phi-\Phi^{\dagger}\right)\{D, \bar{D}\}\left(\Phi^{\dagger}-\Phi\right)\right)\right.} \\
& \left.-\frac{4}{16^{3}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\left(\{D, \bar{D}\}\left(\Phi+\Phi^{\dagger}\right)\{D, \bar{D}\}\left(\Phi-\Phi^{\dagger}\right)\right)^{2}\right]\left.\right|_{\theta \theta \bar{\theta} \bar{\theta}, \text { quad }} \\
& \quad=-2(\partial \phi)^{4}(\partial \chi)^{2}-(\partial \phi)^{4}(\partial \phi \cdot \partial \chi)^{2}
\end{aligned}
$$

Adding to $\mathcal{L}^{S U S Y}$ and expanding to quadratic order around the ghost condensate \Rightarrow the correct sign Lorentz-covariant expression

$$
\mathcal{L}_{\text {quad }}^{\text {SUSY }}=\ldots+(\delta \dot{\chi})^{2}-\delta \chi^{, i} \delta \chi_{, i}+\ldots
$$

Useful to analyze in more detail. Add the above to the 2nd term in $\mathcal{L}^{S U S Y} \Rightarrow$

$$
\begin{aligned}
& {\left[\frac{8}{16^{2}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\left(\{D, \bar{D}\}\left(\Phi-\Phi^{\dagger}\right)\{D, \bar{D}\}\left(\Phi^{\dagger}-\Phi\right)\right)\right.} \\
& \left.-\frac{4}{16^{3}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\left(\{D, \bar{D}\}\left(\Phi+\Phi^{\dagger}\right)\{D, \bar{D}\}\left(\Phi-\Phi^{\dagger}\right)\right)^{2}+\frac{1}{16} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\right]\left.\right|_{\theta \theta \bar{\theta} \bar{\theta}, \text { quad }} \\
& \quad=\left[-2(\partial \phi)^{4}(\partial \chi)^{2}-(\partial \phi)^{4}(\partial \phi \cdot \partial \chi)^{2}\right]+\left[-\frac{1}{2}(\partial \phi)^{2}(\partial \chi)^{2}+(\partial \phi \cdot \partial \chi)^{2}\right]
\end{aligned}
$$

Evaluated around the ghost condensate gives Lorentz-covariance

$$
\left[-2(\partial \chi)^{2}-(\dot{\dot{ }})^{2}\right]+\left[\frac{1}{2}(\partial \chi)^{2}+(\dot{\chi})^{2}\right]=-\frac{3}{2}(\partial \chi)^{2}
$$

with correct sign. Adding to first term in $\mathcal{L}^{\text {SUSY }}$ gives

$$
\left[\frac{1}{2}(\partial \chi)^{2}\right]+\left[-\frac{3}{2}(\partial \chi)^{2}\right]=-(\partial \chi)^{2}
$$

with canonical normalization.

The ψ^{α} Fluctuations:

$$
\frac{i}{4}\left(\delta \psi{ }_{, 0} \sigma^{0} \delta \bar{\psi}-\delta \psi \sigma^{0} \delta \bar{\psi}_{, 0}\right)-\frac{i}{4}\left(\delta \psi_{, i} \sigma^{i} \delta \bar{\psi}-\delta \psi \sigma^{i} \delta \bar{\psi}_{, i}\right)
$$

a) Temporal gradient: No ghost
b) Spatial gradient: Deep wrong sign spatial gradient.

Analogous to the χ case. \Rightarrow Need to add appropriate supersymmetric terms.
"However, within the context of the supersymmetric extension
of the pure $P(X)$ theory, we are unable to find a fermionic analog of this mechanism"
\Rightarrow fermion spatial kinetic term has wrong sign.
Not necessary unacceptible.

Be that as it may, one can ask a different question: by

${ }^{66}$ modifying the bosonic theory so that it is no longer purely a $P(X)$ theory, can one find a supersymmetric extension that is free of both ghost-like and gradient-like instabilities in all of its component fields? The answer, as we will see, is yes, and leads to another interesting class of higher-derivative Lagrangians - the conformal Galileon theories."

Supersymmetric Galileons

Curing the Fermion Gradient Instability:

To proceed, we must modify the original Lagrangian

$$
\mathcal{L}^{\mathrm{SUSY}}=\left.\left(-\Phi \Phi^{\dagger}+\frac{1}{16} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\right)\right|_{\theta \theta \bar{\theta} \bar{\theta}}
$$

Recall that

$$
\begin{aligned}
\left.\frac{1}{16} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\right|_{\theta \theta \bar{\theta} \bar{\theta}} & =\frac{1}{4}(\partial \phi)^{4}-\frac{i}{4}(\partial \phi)^{2}\left(\psi_{, \mu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}_{, \mu}\right) \\
& -\frac{i}{2} \phi_{, \mu} \phi_{, \nu}\left(\psi^{, \nu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}^{, \nu}\right)+\ldots
\end{aligned}
$$

Let us modify this to

$$
\begin{aligned}
& {\left.\left[\frac{1}{4\left(\Phi+\Phi^{\dagger}\right)^{4}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\right]\right|_{\theta \theta \bar{\theta} \bar{\theta}} }=\frac{1}{4 \phi^{4}}(\partial \phi)^{4}-\frac{i}{4 \phi^{4}}(\partial \phi)^{2}\left(\psi{ }_{, \mu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}, \mu\right) \\
&-\frac{i}{2 \phi^{4}} \phi_{, \mu} \phi_{, \nu}\left(\psi^{, \nu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}, \nu\right)+\ldots \\
& \text { Lorentz }- \text { violating }
\end{aligned}
$$

Note that setting

$$
\psi^{\alpha}=0 \Rightarrow \text { reduces to } \frac{X^{2}}{\phi^{4}}
$$

\Rightarrow the modified term is the supersymmetric extension of a
$P(X, \phi)$ type bosonic Lagrangian. Can we find a supersymmetric interaction that will cancel the Lorentz-violating fermion term?

Consider

$$
\begin{aligned}
& {\left.\left[\frac{-1}{24\left(\Phi+\Phi^{\dagger}\right)^{3}}\left(D \Phi D \Phi \bar{D}^{2} \Phi^{\dagger}+\text { h.c. }\right)\right]\right|_{\theta \theta \bar{\theta} \bar{\theta}}=-\frac{1}{6 \phi^{3}} \square \phi(\partial \phi)^{2}} \\
& -\frac{i}{6 \phi^{3}} \phi_{, \mu}\left(\psi_{, \nu} \sigma^{\nu} \bar{\psi}^{, \mu}-\psi^{, \mu} \sigma^{\nu} \bar{\psi}_{, \nu}\right)+\frac{i}{12 \phi^{3}} \square \phi\left(\psi_{, \nu} \sigma^{\nu} \bar{\psi}-\psi \sigma^{\nu} \bar{\psi}_{, \nu}\right) \\
& -\frac{i}{12 \phi^{3}} \phi_{, \mu}\left(\psi \sigma^{\mu} \square \bar{\psi}-\square \psi \sigma^{\mu} \bar{\psi}\right)-\sqrt{\frac{i}{4 \phi^{4}}(\partial \phi)^{2}\left(\psi_{, \nu} \sigma^{\nu} \bar{\psi}-\psi \sigma^{\nu} \bar{\psi}_{, \nu}\right) \Leftarrow \frac{1}{\left(\Phi+\Phi^{\dagger}\right)^{3}}}
\end{aligned}
$$

Integrating by parts and dropping terms which vanish on ghost condensate background \Rightarrow

$$
\begin{aligned}
{\left.\left[\frac{-1}{24\left(\Phi+\Phi^{\dagger}\right)^{3}}\left(D \Phi D \Phi \bar{D}^{2} \Phi^{\dagger}+\text { h.c. }\right)\right]\right|_{\theta \theta \bar{\theta} \bar{\theta}} } & =-\frac{1}{6 \phi^{3}} \square \phi(\partial \phi)^{2} \\
& +\frac{i}{2 \phi^{4}} \phi_{, \mu} \phi_{, \nu}\left(\psi^{, \nu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}^{, \nu}\right) \\
& -1 \times \text { Lorentz }- \text { violating term }
\end{aligned}
$$

Adding this to the above gives

$$
\begin{aligned}
& {\left.\left[\frac{-1}{24\left(\Phi+\Phi^{\dagger}\right)^{3}}\left(D \Phi D \Phi \bar{D}^{2} \Phi^{\dagger}+\text { h.c. }\right)+\frac{1}{4\left(\Phi+\Phi^{\dagger}\right)^{4}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\right]\right|_{\theta \theta \bar{\theta} \bar{\theta}}} \\
& =-\frac{1}{6 \phi^{3}} \square \phi(\partial \phi)^{2}+\left[\frac{1}{4 \phi^{4}}(\partial \phi)^{4}-\frac{i}{4 \phi^{4}}(\partial \phi)^{2}\left(\psi_{, \mu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}_{, \mu}\right)\right]+\ldots
\end{aligned}
$$

Note that the Lorentz-violating fermion kinetic term has cancelled. Integrating by parts \Rightarrow

$$
-\frac{1}{6 \phi^{3}} \square \phi(\partial \phi)^{2}=-\frac{1}{6 \phi^{4}}(\partial \phi)^{4}+\frac{1}{18 \phi^{2}}\left(\partial_{\mu} \partial_{\nu} \phi\right)^{2}-\frac{1}{18 \phi^{2}}(\square \phi)^{2}
$$

It follows that

$$
\begin{aligned}
& {\left.\left[\frac{-1}{24\left(\Phi+\Phi^{\dagger}\right)^{3}}\left(D \Phi D \Phi \bar{D}^{2} \Phi^{\dagger}+\text { h.c. }\right)+\frac{1}{4\left(\Phi+\Phi^{\dagger}\right)^{4}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\right]\right|_{\theta \theta \bar{\theta} \bar{\theta}}} \\
& =\frac{1}{12 \phi^{4}}(\partial \phi)^{4}+\frac{1}{18 \phi^{2}}\left(\partial_{\mu} \partial_{\nu} \phi\right)^{2}-\frac{1}{18 \phi^{2}}(\square \phi)^{2}-\frac{i}{4 \phi^{4}}(\partial \phi)^{2}\left(\psi, \mu \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}, \mu\right)+\ldots
\end{aligned}
$$

Three fundamental conclusions: " 1) the fermion kinetic term is Lorentz-covariant and, for any purely time-dependent background, of the correct sign - that is, ghost-free with correct-sign spatial gradient; 2) the first term is simply $X^{2} / 3 \phi^{4}$ and is manifestly of the $P(X, \phi)$ type; 3) the remaining ϕ terms are of a different differential form and not of the $P(X, \phi)$ type. Thus, by moving away from purely $P(X, \phi)$ theory we have solved the problem of the fermion gradient instability "

Must now add this to an appropriate " $\frac{1}{\phi^{4}}$ " modification of the quadratic term $-\Phi \Phi^{\dagger}$. Defining

$$
K\left(\Phi, \Phi^{\dagger}\right)=\frac{2}{3\left(\Phi+\Phi^{\dagger}\right)^{2}}
$$

the correct modification is

$$
-\left.K\left(\Phi, \Phi^{\dagger}\right)\right|_{\theta \theta \bar{\theta} \bar{\theta}}=\frac{1}{2 \phi^{4}}(\partial \phi)^{2}-\frac{i}{2 \phi^{4}}\left(\psi_{, \mu}^{\text {Lorentz - covariant }} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}_{, \mu}\right)
$$

where we suppress irrelevant χ and F contributions.
Note that setting

$$
\psi^{\alpha}=0 \Rightarrow \text { reduces to }-\frac{X}{\phi^{4}}
$$

\Rightarrow the modified term is the supersymmetric extension of a $P(X, \phi)$ type bosonic Lagrangian.
Putting everything together, choose $\mathcal{L}^{S U S Y}$ to be

$$
\begin{aligned}
& {\left.\left[-K\left(\Phi, \Phi^{\dagger}\right)-\frac{1}{8\left(\Phi+\Phi^{\dagger}\right)^{3}}\left(D \Phi D \Phi \bar{D}^{2} \Phi^{\dagger}+\text { h.c. }\right)+\frac{3}{4\left(\Phi+\Phi^{\dagger}\right)^{4}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\right]\right|_{\theta \theta \bar{\theta} \bar{\theta}}} \\
& =\frac{1}{2 \phi^{4}}(\partial \phi)^{2}+\frac{1}{4 \phi^{4}}(\partial \phi)^{4}+\frac{1}{6 \phi^{2}}\left(\partial_{\mu} \partial_{\nu} \phi\right)^{2}-\frac{1}{6 \phi^{2}}(\square \phi)^{2} \\
& -\frac{i}{2 \phi^{4}}\left(1+\frac{3}{2}(\partial \phi)^{2}\right)\left(\psi_{, \mu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}_{, \mu}\right)+\ldots \\
& =\frac{1}{\phi^{4}}\left(\frac{\text { prototype }}{-X+X^{2}}\right)+\frac{1}{6 \phi^{2}}\left(\left(\partial_{\mu} \partial_{\nu} \phi\right)^{2}-(\square \phi)^{2}\right)+\frac{i}{4 \phi^{4}}\left(\psi_{, \mu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}_{, \mu}\right)+\ldots \\
& \quad P(X, \phi) \\
& \quad P(\not \subset, \phi)
\end{aligned}
$$

Note that although no longer a pure $P(X, \phi)$ theory, it still admits a "ghost condensate" soluton

$$
\phi=c t, \chi=0 \quad \text { where } c=1
$$

The fermion coefficient is evaluated there.

Final Conclusion: The price one pays to obtain a ghost free, spatially stable, Lorentz-covariant fermion kinetic term is that the bosonic ϕ Lagrangian is no longer pure $P(X, \phi)$!
What theory is it? Answer:

Conformal Galileons

Scalar Conformal Galileons:
Consider real scalar field π

The unique set of Lagrangians symmetric under the infinitesimal dilation and special conformal transformations

$$
\begin{aligned}
\delta_{c} \pi & =c\left(1+x^{\mu} \partial_{\mu} \pi\right) \\
\delta_{v} \pi & =v_{\mu} x^{\mu}-\partial_{\mu} \pi\left(\frac{1}{2} v^{\mu} x^{2}-(v \cdot x) x^{\mu}\right)
\end{aligned}
$$

and leading to second order equations of motion are

$$
\begin{aligned}
\mathcal{L}_{2}= & -\frac{1}{2} e^{2 \pi}(\partial \pi)^{2} \\
\mathcal{L}_{3}= & -\frac{1}{2}(\partial \pi)^{2} \square \pi-\frac{1}{4}(\partial \pi)^{4} \\
\mathcal{L}_{4}= & e^{-2 \pi}(\partial \pi)^{2}\left[-\frac{1}{2}(\square \pi)^{2}+\frac{1}{2} \pi^{, \mu \nu} \pi_{, \mu \nu}\right. \\
& \left.+\frac{1}{5}(\partial \pi)^{2} \square \pi-\frac{1}{5} \pi^{, \mu} \pi^{, \nu} \pi_{, \mu \nu}-\frac{3}{20}(\partial \pi)^{4}\right] \\
\mathcal{L}_{5}= & e^{-4 \pi}(\partial \pi)^{2}\left[-\frac{1}{2}(\square \pi)^{3}-\pi^{, \mu \nu} \pi_{, \nu \rho} \pi^{, \rho}{ }_{\mu}\right. \\
= & \frac{3}{2} \square \pi \pi^{, \mu \nu} \pi_{, \mu \nu}+\frac{3}{2}(\partial \pi)^{2}(\square \pi)^{2}-\frac{3}{2}(\partial \pi)^{2} \pi^{, \mu \nu} \pi_{, \mu \nu} \\
- & \left.\frac{15}{7}(\partial \pi)^{4} \square \pi+\frac{15}{7}(\partial \pi)^{2} \pi^{, \mu} \pi^{, \nu} \pi_{, \mu \nu}-\frac{3}{56}(\partial \pi)^{6}\right]
\end{aligned}
$$

To compare to $P(X, \phi)$ theories, change variables to $\phi \equiv e^{-\pi}$

Then

$$
\begin{aligned}
\mathcal{L}_{2}= & -\frac{1}{2 \phi^{4}}(\partial \phi)^{2} \\
\hline \mathcal{L}_{3}= & \frac{1}{2 \phi^{3}} \square \phi(\partial \phi)^{2}-\frac{3}{4 \phi^{4}}(\partial \phi)^{4} \\
= & -\frac{1}{4 \phi^{4}}(\partial \phi)^{4}-\frac{1}{6 \phi^{2}}\left(\partial_{\mu} \partial_{\nu} \phi\right)^{2}+\frac{1}{6 \phi^{2}}(\square \phi)^{2} \\
\mathcal{L}_{4}= & -\frac{1}{2 \phi^{2}}(\partial \phi)^{2}(\square \phi)^{2}+\frac{1}{2 \phi^{2}}(\partial \phi)^{2} \phi^{, \mu \nu} \phi_{, \mu \nu}+\frac{4}{5 \phi^{3}}(\partial \phi)^{4} \square \phi \\
& -\frac{4}{5 \phi^{3}}(\partial \phi)^{2} \phi^{, \mu} \phi^{, \nu} \phi_{, \mu \nu}-\frac{3}{20 \phi^{4}}(\partial \phi)^{6} \\
\mathcal{L}_{5}= & (\partial \phi)^{2}\left[\frac{1}{2 \phi}(\square \phi)^{3}+\frac{1}{\phi} \phi^{, \mu \nu} \phi_{, \nu \rho} \phi^{, \rho}{ }_{\mu}\right. \\
& -\frac{3}{2 \phi} \square \phi \phi^{, \mu \nu} \phi_{, \mu \nu}-\frac{3}{4 \phi^{2}} \partial_{\mu}(\partial \phi)^{2} \partial^{\mu}(\partial \phi)^{2}+\frac{3}{\phi^{2}} \square \phi \phi^{, \mu \nu} \phi_{, \mu} \phi_{, \nu} \\
& \left.+\frac{6}{7 \phi^{3}}(\partial \phi)^{2} \phi^{, \mu \nu} \phi_{, \mu} \phi_{, \nu}-\frac{6}{7 \phi^{3}}(\partial \phi)^{4} \square \phi-\frac{3}{56 \phi^{4}}(\partial \phi)^{8}\right] \\
= & (\partial \phi)^{2}\left[\frac{1}{2 \phi}(\square \phi)^{3}+\frac{1}{\phi} \phi^{, \mu \nu} \phi_{, \nu \rho} \phi^{, \rho}{ }_{\mu}\right. \\
& -\frac{3}{2 \phi} \square \phi \phi^{, \mu \nu} \phi_{, \mu \nu}-\frac{3}{4 \phi^{2}}(\partial \phi)^{2}(\square \phi)^{2}+\frac{3}{4 \phi^{2}}(\partial \phi)^{2} \phi^{, \mu \nu} \phi_{, \mu \nu} \\
& \left.+\frac{9}{14 \phi^{3}}(\partial \phi)^{4} \square \phi-\frac{9}{14 \phi^{3}}(\partial \phi)^{2} \phi^{, \mu} \phi^{, \nu} \phi_{, \mu \nu}-\frac{3}{56 \phi^{4}}(\partial \phi)^{8}\right]
\end{aligned}
$$

Note that $-\mathcal{L}_{2}$ and $-\mathcal{L}_{3}$ are exactly the ϕ part of the supersymmetric Lagrangians derived earlier!

Conclusion:

${ }^{6}$ although the bosonic Galileon Lagrangians \mathcal{L}_{2} and \mathcal{L}_{3} were introduced for entirely different reasons, they are precisely of the form required by a quadratic and cubic supersymmetric theory to have a ghost condensate vacuum with Lorentz-covariant and canonical sign fermion kinetic energy."

Aside: Note that if we add

$$
\begin{gathered}
{\left.\left[\frac{-1}{24\left(\Phi+\Phi^{\dagger}\right)^{3}}\left(D \Phi D \Phi \bar{D}^{2} \Phi^{\dagger}+\text { h.c. }\right)+\frac{(1+\Delta)}{4\left(\Phi+\Phi^{\dagger}\right)^{4}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\right]\right|_{\theta \theta \bar{\theta} \bar{\theta}}} \\
=\frac{1}{12 \phi^{4}}(\partial \phi)^{4}+\frac{1}{18 \phi^{2}}\left(\partial_{\mu} \partial_{\nu} \phi\right)^{2}-\frac{1}{18 \phi^{2}}(\square \phi)^{2} \stackrel{(1+\Delta) i}{4 \phi^{4}}(\partial \phi)^{2}\left(\psi_{, \mu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}_{, \mu}\right)+ \\
\frac{\Delta}{4 \phi^{4}}(\partial \phi)^{4}-\frac{i \cdot \Delta}{2 \phi^{4}} \quad \phi_{, \mu} \phi_{, \nu}\left(\psi^{, \nu} \sigma^{\mu} \bar{\psi}-\psi \sigma^{\mu} \bar{\psi}^{, \nu}\right)+\ldots \\
\text { Lorentz - violating } \\
\text { dilatation invariant }
\end{gathered}
$$

\Rightarrow leads to supersymmetric theory of generalized
Dilatation Galileons

Supersymmetric Extension of \mathcal{L}_{4} :

Not unique. One choice is

$$
\begin{aligned}
\hat{\mathcal{L}}_{4}^{\mathrm{SUSY}} & =\left(\frac{1}{64\left(\Phi+\Phi^{\dagger}\right)^{2}}\{D, \bar{D}\}(D \Phi D \Phi)\{D, \bar{D}\}\left(\bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\right)\right. \\
& -\frac{1}{128\left(\Phi+\Phi^{\dagger}\right)^{2}}\left[\{D, \bar{D}\}\left(\Phi+\Phi^{\dagger}\right)\{D, \bar{D}\}(D \Phi D \Phi) \bar{D}^{2} \Phi^{\dagger}+\text { h.c. }\right] \\
& -\frac{1}{5 \times 64\left(\Phi+\Phi^{\dagger}\right)^{3}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\{D, \bar{D}\}\{D, \bar{D}\}\left(\Phi+\Phi^{\dagger}\right) \\
& +\frac{6}{5 \times 64\left(\Phi+\Phi^{\dagger}\right)^{3}}\left(D \Phi D \Phi \bar{D}^{2} \Phi^{\dagger}+\text { h.c. }\right)\{D, \bar{D}\} \Phi\{D, \bar{D}\} \Phi^{\dagger} \\
& -\frac{9}{2^{8} \times 5\left(\Phi+\Phi^{\dagger}\right)^{4}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\left(\{D, \bar{D}\}\left(\Phi+\Phi^{\dagger}\right)\{D, \bar{D}\}\left(\Phi-\Phi^{\dagger}\right)\right)^{2} \\
& +\frac{1}{2^{8}\left(\Phi+\Phi^{\dagger}\right)^{2}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\{D, \bar{D}\} D^{2} \Phi\{D, \bar{D}\} \bar{D}^{2} \Phi^{\dagger} \\
& \left.-\frac{1}{2^{9}\left(\Phi+\Phi^{\dagger}\right)^{2}} D \Phi D \Phi \bar{D} \Phi^{\dagger} \bar{D} \Phi^{\dagger}\left|\{D, \bar{D}\} \Phi\{D, \bar{D}\} D^{2} \Phi\right|^{2}\right)\left.\right|_{\theta \theta \bar{\theta} \bar{\theta}}
\end{aligned}
$$

In component fields on condensate background

$$
\begin{array}{r}
\hat{\mathcal{L}}_{4, \text { quad, } X=\text { const }}^{\text {SUSY }}= \\
\\
+\frac{-\frac{1}{4 \phi^{2}} \partial_{\mu}(\partial \phi)^{2} \partial^{\mu}(\partial \phi)^{2}+\frac{1}{\phi^{2}} \square \phi \phi^{, \mu} \phi^{, \nu} \phi_{, \mu \nu}-\frac{1}{4 \phi^{3}}(\partial \phi)^{4} \square \phi}{10 \phi^{4}}(\partial \phi)^{4}(\partial \chi)^{2}+\frac{3}{\phi^{3}}(\partial \phi)^{4} F^{*} F+\frac{9 i}{5 \phi^{4}}(\partial \phi)^{4}\left(\psi_{, \nu} \sigma^{\nu} \bar{\psi}-\psi \sigma^{\nu} \bar{\psi}_{, \nu}\right) \\
F \text { auxiliary } \quad \text { Lorentz }- \text { covariant }
\end{array}
$$

Physical Conclusions:

Putting everything together, for

$$
\mathcal{L}^{\mathrm{SUSY}}=c_{2} \mathcal{L}_{2}^{\mathrm{SUSY}}+c_{3} \mathcal{L}_{3}^{\mathrm{SUSY}}+c_{4} \mathcal{L}_{4}^{\text {SUSY }}
$$

we find (setting $\mathrm{c}=\mathrm{H}_{0}$)

$$
\begin{aligned}
& c_{2}-\frac{3}{2} c_{3} H_{0}^{2}+\frac{3}{2} c_{4} H_{0}^{4}=0 \quad \Rightarrow \quad \text { ghost condensate solution } \\
& c_{2}-3 c_{3} H_{0}^{2}+\frac{9}{2} c_{4} H_{0}^{4}>0 \quad \Rightarrow \text { stable boson fluctuations } \\
& c_{2}+\frac{3}{2} c_{3} H_{0}^{2}+\frac{3}{2} c_{4} H_{0}^{4}<0 \quad \Rightarrow \text { NEC violation } \\
& c_{2}-\frac{3}{2} c_{3} H_{0}^{2}+\frac{18}{5} c_{4} H_{0}^{4}>0 \quad \Rightarrow \text { correct sign fermion fluctuations }
\end{aligned}
$$

Can be simultaneously satisfied as long as

$$
c_{2}<\frac{3}{2} c_{3} H_{0}^{2}<0
$$

\Rightarrow supersymmetric conformal Galileon theory that a) admits
Lorentz-violating ghost condensate vacuum, b) is ghost free with no gradient instability and c) violates the NEC!

