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Heterotic M-Theory:

d=5

⇒ ⇒

Wrapped N=1 supersymmetric 5-brane collision

⇒N=1 supersymmetric “Ekpyrotic” cosmology

But- how does one violate the NEC?

Non-supersymmetric “New Ekpyrotic” cosmology:

d=4 Effective field theory with two real scalars φ , χ

NEC violated by “ghost condensate” in field φ

But- how do we restore the N=1 supersymmetry!



Review of Bosonic Ghost Condensation:

Supersymmetric Ghost Condensate 

Single real scalar field- φ

Flat space- ηµν

Higher-derivative Lagrangian

persymmetric extensions that contain non-covariant kinetic terms for the fermionic

fields.

2 Supersymmetric Ghost Condensate

2.1 A Review of Ghost Condensation

The simplest form of a “ghost condensate” [48] arises within the context of a single

real scalar field φ in four dimensions. Assuming space-time is flat and non-dynamical,

the evolution of φ is governed by a higher-derivative Lagrangian of the form

L = P (X) , (1)

where P (X) is an arbitrary function that is analytic around zero in

X ≡ − 1

2m4
(∂φ)2 =

1

2m4
(φ̇2 − φ,iφ,i) . (2)

The mass scale m is introduced to render X dimensionless. To simplify notation, we

set m = 1 in most of the paper. For purely time-dependent solutions, the associated

equation of motion is given by

d

dt

(

P,X φ̇
)

= 0 . (3)

Clearly, φ = const. is a solution. However, (3) also allows for solutions with arbitrary

constant X, that is,

φ = c t , (4)

where c is a constant. Although in this paper space-time is taken to be non-dynamical,

we note that in a cosmological context the equation of motion on a Friedmann-Robertson-

Walker background becomes
d

dt

(

a3P,X φ̇
)

= 0 , (5)

where a(t) is the scale factor of the universe. For a generic choice of P (X), this implies

that φ̇ must redshift as the universe expands. However, there is one key exception: if

P (X) has an extremum at some X = c2/2, then φ = c t is a solution to (5) indepen-

dent of the behavior of a(t). Moreover, this solution is an attractor on an expanding

background — small departures away from the extremum are driven to zero by Hubble

friction. This solution, φ = c t, spontaneously breaks Lorentz invariance and is called

a ghost condensate.

Returning to a flat background and expanding in fluctuations

φ = c t + δφ(t, $x) (6)

4

Set m=1.  For the equation of motion isφ = φ(t)

d

dt

(
P,X φ̇

)
= 0

with solution 
φ = ct

In cosmological FRW context with a = a(t)⇒
P,X = 0

L = P (X) ,



Ghost Condensate Solution:

φ = ct with P,X = 0

Expanding in fluctuations

persymmetric extensions that contain non-covariant kinetic terms for the fermionic

fields.
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,  to quadratic order the 

Lagrangian becomesaround a ghost condensate, to quadratic order in δφ the Lagrangian becomes

Lquad = XP,XX · (δφ̇)2 − 0 · δφ,iδφ,i . (7)

As a result of Lorentz-breaking, the coefficients in front of the time and spatial deriva-

tive terms are unequal. We see that the condition for the absence of a ghost is

XP,XX > 0 , (8)

which is automatically satisfied close to a local minimum of P (X). (For a general X =

const. solution, the ghost-free condition is XP,XX + P,X/2 > 0 [82].) We, henceforth,

assume this is the case. However, the vanishing of the second term in (7) is troubling,

since it clearly signals that the ghost condensate is on the verge of a gradient instability.

Can this potential instability be removed? Happily, the answer is affirmative, although

it requires introducing higher-derivative terms, such as [48]

−(!φ)2

M2
, (9)

into the Lagrangian that are not of the P (X) type. Such corrections are expected from

an effective field theory point of view. Because this term involves two derivatives per

field, the background φ = c t clearly remains a solution. However, (9) does affect the

gradient term of the fluctuations, giving rise to the dispersion relation ω2 ∼ k4/M2.

For large enough mass M , this higher-derivative term can be consistently treated as a

small correction. Be this as it may, the question of temporal ghosts and/or gradient

instabilities in ghost condensate theories is an important one, and will become even

more important in the supersymmetric context.

Before proceeding, we introduce the following simplification. Sufficiently close to the

ghost condensate point, P (X) is approximately quadratic. Without loss of generality,

one can rescale the field φ so that the minimum lies at X = 1/2 (corresponding to

c = 1) and write the prototypical ghost condensate action as

L = −X + X2 = +
1

2
(∂φ)2 +

1

4
(∂φ)4 . (10)

The quadratic Lagrangian (7) now becomes

Lquad = (δφ̇)2 − 0 · δφ,iδφ,i . (11)

We will use Lagrangian (10), which contains all of the essential physics, to supersym-

metrize ghost condensate theories.
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a) Temporal gradient:  No ghost ⇒ take

P,XX > 0

⇒ ghost condensate local minimum of P(X).

b) Spatial gradient:  Vanishes         ⇒ on verge of instability! Add 

higher-derivative terms such as
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spontaneously breaks
Lorentz invariance



Ghost condensate still a solution, but improves the dispersion 

relation to
ω2 ∼ k4

M2

Prototypical Condensate Action: 

Near the condensate P(X) is approximately quadratic. ⇒
Without loss of generality can take
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1

Supersymmetric Ghost Condensation:

Extend to an N=1 chiral supermultiplet

φ −→ (A,ψα, F )



where
A =

1√
2
(φ + iχ)

is a two-component Weyl spinor and F is a complex

auxiliary field.  These can be written in as a chiral superfield

ψα2.2 Supersymmetric Ghost Condensate

In [81], we presented an N = 1 supersymmetric extension of the bosonic ghost con-

densate theory in (10). To do this, consider a chiral superfield

Φ = A + iθσµθ̄A,µ +
1

4
θθθ̄θ̄!A + θθF +

√
2θψ − i√

2
θθψ,µσµθ̄ , (12)

with the complex scalar A(x), the auxiliary field F (x) and the spinor ψα(x) being

functions of the ordinary space-time coordinates xµ. Spinor indices which we do not

write out explicitly are understood to be summed according to the convention ψθ =

ψαθα and ψ̄θ̄ = ψ̄α̇θ̄ᾱ. The complex scalar is chosen so that

A =
1√
2
(φ + iχ) , (13)

where φ is the real field of the bosonic condensate theory. The imaginary component

χ is a new real scalar degree of freedom, introduced into the condensate theory by

supersymmetry. That is, φ is taken to be the lowest component of the N = 1 chiral

supermultiplet (φ,χ,ψ, F ).

It was shown in [81] that the supersymmetric extension of the prototypical ghost

condensate Lagrangian (10) is given by

LSUSY =
(

−ΦΦ† +
1

16
DΦDΦD̄Φ†D̄Φ†

)
∣

∣

∣

∣

θθθ̄θ̄
, (14)

where |θθθ̄θ̄ indicates taking the θθθ̄θ̄-component of a superfield. (Here and throughout

the paper, derivatives are understood as acting only on the nearest superfield, unless

noted otherwise. For example, DΦDΦD̄Φ†D̄Φ† = (DΦ)(DΦ)(D̄Φ†)(D̄Φ†). Similarly

for space-time derivatives acting on component fields.) In terms of component fields,

(14) becomes

LSUSY =
1

2
(∂φ)2 +

1

4
(∂φ)4 +

1

2
(∂χ)2 − 1

2
(∂φ)2(∂χ)2 + (∂φ · ∂χ)2

− i

2
(ψ,µσµψ̄ − ψσµψ̄,µ) − i

4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ)

− φµφ,ν
i

2
(ψ,νσµψ̄ψσµψ̄,ν) + . . . (15)

where we display terms to quadratic order only in χ, ψ and set F = 0. Note that for

χ = ψ = 0, this expression exactly reduces to Lagrangian (10). It is in this sense that

LSUSY is the supersymmetric extension of the prototype bosonic condensate theory.

Since χ always appears at least to quadratic order, it can consistently be set to zero.

Thus the equations of motion can be solved by the ghost condensate

φ = c t , χ = 0 . (16)
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anticommuting spinor coordinate
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No derivatives on F ⇒ remains auxiliary field.

Ghost Condensate Solution:

φ = ct, χ = 0 and ψα = 0

Setting c=1 and expanding in fluctuations

The classical fermion solution is, of course, zero. That is, the Lorentz-violating ghost

condensate continues to exist as a vacuum of the supersymmetrized theory.

Setting c = 1 and expanding in fluctuations

φ = t + δφ(t, #x) , χ = δχ(t, #x) , ψ = δψ(t, #x) (17)

around this vacuum, we find to quadratic order that

LSUSY
quad = ( ˙δφ)2 − 0 · δφ,iδφ,i

+ 0 · ( ˙δχ)2 + δχ,iδχ,i

+
i

4

(

δψ,0σ
0δψ̄ − δψσ0δψ̄,0

)

− i

4

(

δψ,iσ
iδψ̄ − δψσiδψ̄,i

)

. (18)

The first line reproduces the standard result (11) for the single φ field ghost condensate,

as it must. That is, the time derivative term is ghost-free but, at the minimum of P (X),

the spatial gradient term for δφ vanishes. As discussed above, higher-derivative terms

of the form (9) cure the potential gradient instability in the bosonic theory and stabilize

the dispersion relation. Can one find a supersymmetric generalization of these terms?

In [81] we showed that this can indeed be done. The simplest such example is

− 1

211
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}{D, D̄}(Φ + Φ†)
)2

∣

∣

∣

∣

θθθ̄θ̄, quad
= −(!δφ)2 , (19)

where we have evaluated this up to quadratic order in fluctuations around a ghost

condensate background. To this order, (19) does not contain χ, ψ or the auxiliary field

F at all.

Now consider the second line in LSUSY
quad . This is the kinetic term for the scalar

fluctuation δχ and, hence, is new to the supersymmetric theory. Note that this suffers

from two serious problems. The first is that the temporal derivative term vanishes

and, hence, this field is marginally a ghost. Secondly, the spatial gradient term has

the wrong sign. Fortunately, it was shown in [81] that supersymmetric terms can be

added to (14) that solve both problems. These are, for example,
[

8

162
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ − Φ†){D, D̄}(Φ† − Φ)
)

− 4

163
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ + Φ†){D, D̄}(Φ − Φ†)
)2

]
∣

∣

∣

∣

θθθ̄θ̄, quad

= −2(∂φ)4(∂χ)2 − (∂φ)4(∂φ · ∂χ)2 . (20)

Adding these to Lagrangian (14), and expanding to quadratic order around the ghost

condensate, changes both the time and spatial gradients of χ in (18) to the Lorentz-

covariant expression

LSUSY
quad = . . . + (δχ̇)2 − δχ,iδχ,i + . . . (21)
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φThe     Fluctuations:
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Adding to LSUSY and expanding to quadratic order around the 
ghost condensate ⇒ the correct sign Lorentz-covariant expression  
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and, hence, this field is marginally a ghost. Secondly, the spatial gradient term has
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Adding these to Lagrangian (14), and expanding to quadratic order around the ghost

condensate, changes both the time and spatial gradients of χ in (18) to the Lorentz-

covariant expression

LSUSY
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7Useful to analyze in more detail.  Add the above to the 2nd term 

LSUSYin ⇒

This renders the χ fluctuations stable, without adversely affecting anything else. In

particular, since (20) vanishes when χ is set to zero, the sum of (14) and the superfield

expression in (20) remains a supersymmetric generalization of the P (X) bosonic theory.

It will be helpful in the next section if we analyze this result in more detail. First, note

that adding (20) to the second term in (14) gives
[
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+
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(∂φ)2(∂χ)2 + (∂φ · ∂χ)2

]

, (22)

where we have not shown irrelevant pure φ terms or terms involving fermions. When

evaluated around the ghost condensate vacuum (16) with c = 1, (22) reduces to

[

−2(∂χ)2 − (χ̇)2
]

+
[

1

2
(∂χ)2 + (χ̇)2

]

= −3

2
(∂χ)2 . (23)

That is, adding (20) to the second term of (14) exactly cancels the Lorentz-violating

term. In addition, the signs are such that the resulting Lorentz-covariant kinetic term

for χ is ghost free with correct sign spatial gradient. Second, adding this to the first

term in (14) produces the canonical normalization while leaving the correct sign un-

changed. That is,
[

1

2
(∂χ)2

]

+
[

−3

2
(∂χ)2

]

= −(∂χ)2 , (24)

which gives (21) precisely.

Finally, consider the kinetic term for the fermion fluctuation δψ. This is given in

the third line of (18) and, as with δχ, is new to the supersymmetric theory. We see

from (18) that, although the magnitudes of the coefficients of the two δψ terms are

equal, the time-derivative term is ghost-free while the spatial gradient term has the

wrong sign. Note that this is not the same kind of gradient instability as occurs for φ.

There, the coefficient of the spatial derivative term is zero or small and, hence, higher-

derivative terms can play a role in guaranteeing stability over an extended time period.

For ψ, on the other hand, the coefficient of the wrong-sign spatial gradient term is not

small. It follows that the inclusion of higher-derivative terms, such as those in (19), is

necessarily irrelevant. The situation for the fermion, therefore, is more akin to that of

the second scalar χ, whose deep wrong-sign spatial gradient had to be corrected by the

addition of a new second order term — the sum of the two kinetic spatial gradients

having the correct sign. However, within the context of the supersymmetric extension

of the pure P (X) theory, we are unable to find a fermionic analog of this mechanism.

That is, the fermion kinetic spatial gradient term has the wrong sign!
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Analogous to the     case.χ ⇒ Need to add appropriate
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Be that as it may, one can ask a different question:  byAs discussed in [81], it is unclear whether or not this is physically unacceptable.

This will be explored elsewhere [83]. In this paper, we ask a different question: by

modifying the bosonic theory so that it is no longer purely a P (X) theory, can one find

a supersymmetric extension that is free of both ghost-like and gradient-like instabilities

in all of its component fields? The answer, as we will see, is yes, and leads to another

interesting class of higher-derivative Lagrangians — the conformal Galileon theories.

3 Curing the Fermion Gradient Instability

To solve the gradient instability problem for the fermion, we proceed by analogy with

the χ scalar. That is, 1) we find a supersymmetric interaction which, when added to

the second term in (14), cancels the Lorentz-violating part of its fermion quadratic

terms — rendering the fermion kinetic term Lorentz-covariant with the correct sign —

and 2) we add this to the first term in (14) to canonically normalize the coefficient.

However, there is one important caveat. As stated above, our attempts to do this with

precisely the two terms in (14) failed. To solve this problem, it turns out that one must

make a mild modification of each of these terms — a modification that, however, does

not reduce to the pure P (X) theory, or even the generalized P (X,φ) theory discussed

in [81].

With this in mind, recall from (14) and (15) that

1

16
DΦDΦD̄Φ†D̄Φ†

∣

∣

∣

θθθ̄θ̄
=

1

4
(∂φ)4 − i

4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ)

− i

2
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) + . . . (25)

Here and henceforth in this section, we drop irrelevant terms containing χ and set

F = 0. Let us now modify this term to

[

1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]

∣

∣

∣

∣

∣

θθθ̄θ̄

=
1

4φ4
(∂φ)4 − i

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ)

− i

2φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) + . . . (26)

To the order we are working, the only effect of (Φ + Φ†)−4 is to multiply expression

(25) by an overall factor of φ−4. Furthermore, setting ψ = 0 reduces (26) to X2/φ4. In

other words, this modified term is a supersymmetric extension of the P (X,φ) theories

discussed in [81]. When evaluated on a ghost condensate background, the first fermionic

term in (26) remains Lorentz-covariant, while the last term explicitly breaks Lorentz

invariance.
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Supersymmetric Galileons 

Curing the Fermion Gradient Instability: 

To proceed, we must modify the original Lagrangian

2.2 Supersymmetric Ghost Condensate

In [81], we presented an N = 1 supersymmetric extension of the bosonic ghost con-

densate theory in (10). To do this, consider a chiral superfield

Φ = A + iθσµθ̄A,µ +
1

4
θθθ̄θ̄!A + θθF +

√
2θψ − i√

2
θθψ,µσµθ̄ , (12)

with the complex scalar A(x), the auxiliary field F (x) and the spinor ψα(x) being

functions of the ordinary space-time coordinates xµ. Spinor indices which we do not

write out explicitly are understood to be summed according to the convention ψθ =

ψαθα and ψ̄θ̄ = ψ̄α̇θ̄ᾱ. The complex scalar is chosen so that

A =
1√
2
(φ + iχ) , (13)

where φ is the real field of the bosonic condensate theory. The imaginary component

χ is a new real scalar degree of freedom, introduced into the condensate theory by

supersymmetry. That is, φ is taken to be the lowest component of the N = 1 chiral

supermultiplet (φ,χ,ψ, F ).

It was shown in [81] that the supersymmetric extension of the prototypical ghost

condensate Lagrangian (10) is given by

LSUSY =
(

−ΦΦ† +
1

16
DΦDΦD̄Φ†D̄Φ†

)
∣

∣

∣

∣

θθθ̄θ̄
, (14)

where |θθθ̄θ̄ indicates taking the θθθ̄θ̄-component of a superfield. (Here and throughout

the paper, derivatives are understood as acting only on the nearest superfield, unless

noted otherwise. For example, DΦDΦD̄Φ†D̄Φ† = (DΦ)(DΦ)(D̄Φ†)(D̄Φ†). Similarly

for space-time derivatives acting on component fields.) In terms of component fields,

(14) becomes

LSUSY =
1

2
(∂φ)2 +

1

4
(∂φ)4 +

1

2
(∂χ)2 − 1

2
(∂φ)2(∂χ)2 + (∂φ · ∂χ)2

− i

2
(ψ,µσµψ̄ − ψσµψ̄,µ) − i

4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ)

− φµφ,ν
i

2
(ψ,νσµψ̄ψσµψ̄,ν) + . . . (15)

where we display terms to quadratic order only in χ, ψ and set F = 0. Note that for

χ = ψ = 0, this expression exactly reduces to Lagrangian (10). It is in this sense that

LSUSY is the supersymmetric extension of the prototype bosonic condensate theory.

Since χ always appears at least to quadratic order, it can consistently be set to zero.

Thus the equations of motion can be solved by the ghost condensate

φ = c t , χ = 0 . (16)
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− i

2
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) + . . . (25)

Here and henceforth in this section, we drop irrelevant terms containing χ and set

F = 0. Let us now modify this term to

[

1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]

∣

∣

∣

∣

∣
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(∂φ)4 − i
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2φ4
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,νσµψ̄ − ψσµψ̄,ν) + . . . (26)

To the order we are working, the only effect of (Φ + Φ†)−4 is to multiply expression

(25) by an overall factor of φ−4. Furthermore, setting ψ = 0 reduces (26) to X2/φ4. In

other words, this modified term is a supersymmetric extension of the P (X,φ) theories

discussed in [81]. When evaluated on a ghost condensate background, the first fermionic

term in (26) remains Lorentz-covariant, while the last term explicitly breaks Lorentz

invariance.
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Note that setting       
ψα = 0 ⇒ reduces to

X2

φ4

⇒ the modified term is the supersymmetric extension of a 

type bosonic Lagrangian.P (X, φ)

Lorentz− covariant

Lorentz− violating

Can we find a supersymmetric

interaction that will cancel the Lorentz-violating fermion term?

Consider
Can one find a supersymetric interaction that will exactly cancel this Lorentz-

violating fermion kinetic term? Consider
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

]
∣

∣

∣

∣

θθθ̄θ̄
= − 1

6φ3
!φ(∂φ)2

− i

6φ3
φ,µ(ψ,νσ

ν ψ̄,µ − ψ,µσν ψ̄,ν) +
i

12φ3
!φ(ψ,νσνψ̄ − ψσνψ̄,ν)

− i

12φ3
φ,µ(ψσµ

!ψ̄ − !ψσµψ̄) − i

4φ4
(∂φ)2(ψ,νσνψ̄ − ψσνψ̄,ν) , (27)

where we work to quadratic order in the ψ fluctuations. (Useful intermediate steps in

evaluating the above expression can be found in Appendix A). An important technical

fact is that, while the first four terms are contained in the component expansion of

(DΦDΦD̄2Φ†+h.c.) |θθθ̄θ̄, the last term arises due to a contribution from the prefactor.

This did not occur in (26) which, to the order that concerns us, was simply multiplied

by a factor of φ−4. Here, however, the prefactor is significant and must be included to

solve the fermion gradient instability problem. Integrating the second and fourth terms

by parts, and dropping all interactions that vanish on a ghost condensate background,

we find that (27) dramatically simplifies to
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

]
∣

∣

∣

∣

θθθ̄θ̄
= − 1

6φ3
!φ(∂φ)2

+
i

2φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) .(28)

Note that the fermion term is simply −1 times the Lorentz-violating last term of (26) —

a fact requiring, amongst other things, the Φ+Φ† prefactors in both (26) and (28). Also,

when setting the fermion to zero (28) reduces to −!φ(∂φ)2/6φ3, which is manifestly

not of the P (X,φ) form. Instead, we recognize this as the cubic term of Galileon

theories (more precisely, conformal Galileon theories, as we will see shortly). The fact

that (28) goes beyond the P (X,φ) form is consistent with our earlier conclusion that

the fermionic instability could not be removed within the context of supersymmetric

ghost condensates!

Adding (26) and (28) together, the Lorentz-violating fermion term exactly cancels

and one obtains the Lorentz-covariant fermionic Lagrangian
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

= − 1

6φ3
!φ(∂φ)2 +

[

1

4φ4
(∂φ)4 − i

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ)

]

+ . . . (29)

Integrating twice by parts, the first term can be expressed as

− 1

6φ3
!φ(∂φ)2 = − 1

6φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)2 − 1

18φ2
(!φ)2 . (30)

10

⇐ 1
(Φ + Φ†)3



Integrating by parts and dropping terms which vanish on

ghost condensate background ⇒

Can one find a supersymetric interaction that will exactly cancel this Lorentz-

violating fermion kinetic term? Consider
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

]
∣

∣

∣

∣

θθθ̄θ̄
= − 1

6φ3
!φ(∂φ)2

− i

6φ3
φ,µ(ψ,νσ

ν ψ̄,µ − ψ,µσν ψ̄,ν) +
i

12φ3
!φ(ψ,νσνψ̄ − ψσνψ̄,ν)

− i

12φ3
φ,µ(ψσµ

!ψ̄ − !ψσµψ̄) − i

4φ4
(∂φ)2(ψ,νσνψ̄ − ψσνψ̄,ν) , (27)

where we work to quadratic order in the ψ fluctuations. (Useful intermediate steps in

evaluating the above expression can be found in Appendix A). An important technical

fact is that, while the first four terms are contained in the component expansion of

(DΦDΦD̄2Φ†+h.c.) |θθθ̄θ̄, the last term arises due to a contribution from the prefactor.

This did not occur in (26) which, to the order that concerns us, was simply multiplied

by a factor of φ−4. Here, however, the prefactor is significant and must be included to

solve the fermion gradient instability problem. Integrating the second and fourth terms

by parts, and dropping all interactions that vanish on a ghost condensate background,

we find that (27) dramatically simplifies to
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

]
∣

∣

∣

∣

θθθ̄θ̄
= − 1

6φ3
!φ(∂φ)2

+
i

2φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) .(28)

Note that the fermion term is simply −1 times the Lorentz-violating last term of (26) —
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Note that the Lorentz-violating fermion kinetic term has cancelled.

Integrating by parts⇒
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violating fermion kinetic term? Consider
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

]
∣

∣

∣

∣

θθθ̄θ̄
= − 1

6φ3
!φ(∂φ)2

− i

6φ3
φ,µ(ψ,νσ

ν ψ̄,µ − ψ,µσν ψ̄,ν) +
i

12φ3
!φ(ψ,νσνψ̄ − ψσνψ̄,ν)

− i

12φ3
φ,µ(ψσµ

!ψ̄ − !ψσµψ̄) − i

4φ4
(∂φ)2(ψ,νσνψ̄ − ψσνψ̄,ν) , (27)

where we work to quadratic order in the ψ fluctuations. (Useful intermediate steps in

evaluating the above expression can be found in Appendix A). An important technical

fact is that, while the first four terms are contained in the component expansion of

(DΦDΦD̄2Φ†+h.c.) |θθθ̄θ̄, the last term arises due to a contribution from the prefactor.

This did not occur in (26) which, to the order that concerns us, was simply multiplied

by a factor of φ−4. Here, however, the prefactor is significant and must be included to

solve the fermion gradient instability problem. Integrating the second and fourth terms

by parts, and dropping all interactions that vanish on a ghost condensate background,

we find that (27) dramatically simplifies to
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

]
∣

∣

∣

∣

θθθ̄θ̄
= − 1

6φ3
!φ(∂φ)2

+
i

2φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) .(28)
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a fact requiring, amongst other things, the Φ+Φ† prefactors in both (26) and (28). Also,

when setting the fermion to zero (28) reduces to −!φ(∂φ)2/6φ3, which is manifestly

not of the P (X,φ) form. Instead, we recognize this as the cubic term of Galileon

theories (more precisely, conformal Galileon theories, as we will see shortly). The fact

that (28) goes beyond the P (X,φ) form is consistent with our earlier conclusion that

the fermionic instability could not be removed within the context of supersymmetric

ghost condensates!

Adding (26) and (28) together, the Lorentz-violating fermion term exactly cancels

and one obtains the Lorentz-covariant fermionic Lagrangian
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

= − 1

6φ3
!φ(∂φ)2 +
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1

4φ4
(∂φ)4 − i

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ)

]
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Integrating twice by parts, the first term can be expressed as

− 1

6φ3
!φ(∂φ)2 = − 1

6φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)2 − 1

18φ2
(!φ)2 . (30)
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It follows that
It follows that

[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

12φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)2 − 1

18φ2
(!φ)2 − i

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .(31)

Three fundamental conclusions can be drawn from (31): 1) the fermion kinetic term

is Lorentz-covariant and, for any purely time-dependent background, of the correct

sign — that is, ghost-free with correct-sign spatial gradient; 2) the first term is simply

X2/3φ4 and is manifestly of the P (X,φ) type; 3) the remaining φ terms are of a

different differential form and not of the P (X,φ) type. Thus, by moving away from

purely P (X,φ) theory we have solved the problem of the fermion gradient instability.

As with χ, one must now add this equation to the first term in Lagrangian (14).

Since canceling the Lorentz-violating fermion kinetic term required a modification of

the higher-derivative operators, we must also appropriately modify the first term in

(14). Clearly, this requires multiplying the θθθ̄θ̄-component of −ΦΦ† by 1/φ4. Al-

though naively one might think this would be accomplished by the expression −4ΦΦ†/(Φ+

Φ†)4, the correct result is more subtle, as discussed in [84]. Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (32)

the appropriate modification is given by

−K(Φ,Φ†)
∣

∣

∣

θθθ̄θ̄
=

1

2φ4
(∂φ)2 − i

2φ4
(ψ,µσµψ̄ − ψσµψ̄,µ) , (33)

where we suppress irrelevant χ and F contributions. The first term is just −X/φ4 and

hence of the P (Xφ) form. Although not strictly necessary, we choose to add (31) to

(33) in such a way that the X dependent contribution for φ takes the canonical ghost

condensate form (10). This will be the case if one takes the complete Lagrangian to

be (33)+3×(31):
[

− K(Φ,Φ†) − 1

8(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
3

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

2φ4
(∂φ)2 +

1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)2 − 1

6φ2
(!φ)2

− i

2φ4

(

1 +
3

2
(∂φ)2

)

(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .

=
1

φ4
(−X + X2) +

1

6φ2

(

(∂µ∂νφ)2 − (!φ)2
)

+
i

4φ4

(

ψ,µσµψ̄ − ψσµψ̄,µ

)

+ . . . (34)

The first bracketed term is of the P (X,φ) type, whereas the second group of scalar

terms is not. Be that as it may, the ghost condensate φ = c t with c = 1 is a vacuum

11

. . .
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X2/3φ4 and is manifestly of the P (X,φ) type; 3) the remaining φ terms are of a

different differential form and not of the P (X,φ) type. Thus, by moving away from

purely P (X,φ) theory we have solved the problem of the fermion gradient instability.

As with χ, one must now add this equation to the first term in Lagrangian (14).

Since canceling the Lorentz-violating fermion kinetic term required a modification of

the higher-derivative operators, we must also appropriately modify the first term in

(14). Clearly, this requires multiplying the θθθ̄θ̄-component of −ΦΦ† by 1/φ4. Al-

though naively one might think this would be accomplished by the expression −4ΦΦ†/(Φ+

Φ†)4, the correct result is more subtle, as discussed in [84]. Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (32)

the appropriate modification is given by

−K(Φ,Φ†)
∣

∣

∣

θθθ̄θ̄
=

1

2φ4
(∂φ)2 − i

2φ4
(ψ,µσµψ̄ − ψσµψ̄,µ) , (33)

where we suppress irrelevant χ and F contributions. The first term is just −X/φ4 and

hence of the P (Xφ) form. Although not strictly necessary, we choose to add (31) to

(33) in such a way that the X dependent contribution for φ takes the canonical ghost

condensate form (10). This will be the case if one takes the complete Lagrangian to

be (33)+3×(31):
[

− K(Φ,Φ†) − 1

8(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
3

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

2φ4
(∂φ)2 +

1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)2 − 1

6φ2
(!φ)2

− i

2φ4

(

1 +
3

2
(∂φ)2

)

(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .

=
1

φ4
(−X + X2) +

1

6φ2

(

(∂µ∂νφ)2 − (!φ)2
)

+
i

4φ4

(

ψ,µσµψ̄ − ψσµψ̄,µ

)

+ . . . (34)

The first bracketed term is of the P (X,φ) type, whereas the second group of scalar

terms is not. Be that as it may, the ghost condensate φ = c t with c = 1 is a vacuum

11

It follows that
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

12φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)2 − 1

18φ2
(!φ)2 − i

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .(31)

Three fundamental conclusions can be drawn from (31): 1) the fermion kinetic term

is Lorentz-covariant and, for any purely time-dependent background, of the correct

sign — that is, ghost-free with correct-sign spatial gradient; 2) the first term is simply

X2/3φ4 and is manifestly of the P (X,φ) type; 3) the remaining φ terms are of a

different differential form and not of the P (X,φ) type. Thus, by moving away from

purely P (X,φ) theory we have solved the problem of the fermion gradient instability.

As with χ, one must now add this equation to the first term in Lagrangian (14).

Since canceling the Lorentz-violating fermion kinetic term required a modification of

the higher-derivative operators, we must also appropriately modify the first term in

(14). Clearly, this requires multiplying the θθθ̄θ̄-component of −ΦΦ† by 1/φ4. Al-

though naively one might think this would be accomplished by the expression −4ΦΦ†/(Φ+

Φ†)4, the correct result is more subtle, as discussed in [84]. Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (32)

the appropriate modification is given by

−K(Φ,Φ†)
∣

∣

∣

θθθ̄θ̄
=

1

2φ4
(∂φ)2 − i

2φ4
(ψ,µσµψ̄ − ψσµψ̄,µ) , (33)

where we suppress irrelevant χ and F contributions. The first term is just −X/φ4 and

hence of the P (Xφ) form. Although not strictly necessary, we choose to add (31) to

(33) in such a way that the X dependent contribution for φ takes the canonical ghost

condensate form (10). This will be the case if one takes the complete Lagrangian to

be (33)+3×(31):
[

− K(Φ,Φ†) − 1

8(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
3

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

2φ4
(∂φ)2 +

1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)2 − 1

6φ2
(!φ)2

− i

2φ4

(

1 +
3

2
(∂φ)2

)

(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .

=
1

φ4
(−X + X2) +

1

6φ2

(

(∂µ∂νφ)2 − (!φ)2
)

+
i

4φ4

(

ψ,µσµψ̄ − ψσµψ̄,µ

)

+ . . . (34)

The first bracketed term is of the P (X,φ) type, whereas the second group of scalar

terms is not. Be that as it may, the ghost condensate φ = c t with c = 1 is a vacuum
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It follows that
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

12φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)2 − 1

18φ2
(!φ)2 − i

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .(31)

Three fundamental conclusions can be drawn from (31): 1) the fermion kinetic term

is Lorentz-covariant and, for any purely time-dependent background, of the correct

sign — that is, ghost-free with correct-sign spatial gradient; 2) the first term is simply

X2/3φ4 and is manifestly of the P (X,φ) type; 3) the remaining φ terms are of a

different differential form and not of the P (X,φ) type. Thus, by moving away from

purely P (X,φ) theory we have solved the problem of the fermion gradient instability.

As with χ, one must now add this equation to the first term in Lagrangian (14).

Since canceling the Lorentz-violating fermion kinetic term required a modification of

the higher-derivative operators, we must also appropriately modify the first term in

(14). Clearly, this requires multiplying the θθθ̄θ̄-component of −ΦΦ† by 1/φ4. Al-

though naively one might think this would be accomplished by the expression −4ΦΦ†/(Φ+

Φ†)4, the correct result is more subtle, as discussed in [84]. Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (32)

the appropriate modification is given by

−K(Φ,Φ†)
∣

∣

∣

θθθ̄θ̄
=

1

2φ4
(∂φ)2 − i

2φ4
(ψ,µσµψ̄ − ψσµψ̄,µ) , (33)

where we suppress irrelevant χ and F contributions. The first term is just −X/φ4 and

hence of the P (Xφ) form. Although not strictly necessary, we choose to add (31) to

(33) in such a way that the X dependent contribution for φ takes the canonical ghost

condensate form (10). This will be the case if one takes the complete Lagrangian to

be (33)+3×(31):
[

− K(Φ,Φ†) − 1

8(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
3

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

2φ4
(∂φ)2 +

1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)2 − 1

6φ2
(!φ)2

− i

2φ4

(

1 +
3

2
(∂φ)2

)

(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .

=
1

φ4
(−X + X2) +

1

6φ2

(

(∂µ∂νφ)2 − (!φ)2
)

+
i

4φ4

(

ψ,µσµψ̄ − ψσµψ̄,µ

)

+ . . . (34)

The first bracketed term is of the P (X,φ) type, whereas the second group of scalar

terms is not. Be that as it may, the ghost condensate φ = c t with c = 1 is a vacuum

11

“

”

Must now add this to an appropriate “
1
φ4

” modification of the

quadratic term −ΦΦ† .  Defining

It follows that
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

12φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)2 − 1

18φ2
(!φ)2 − i

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .(31)

Three fundamental conclusions can be drawn from (31): 1) the fermion kinetic term

is Lorentz-covariant and, for any purely time-dependent background, of the correct

sign — that is, ghost-free with correct-sign spatial gradient; 2) the first term is simply

X2/3φ4 and is manifestly of the P (X,φ) type; 3) the remaining φ terms are of a

different differential form and not of the P (X,φ) type. Thus, by moving away from

purely P (X,φ) theory we have solved the problem of the fermion gradient instability.

As with χ, one must now add this equation to the first term in Lagrangian (14).

Since canceling the Lorentz-violating fermion kinetic term required a modification of

the higher-derivative operators, we must also appropriately modify the first term in

(14). Clearly, this requires multiplying the θθθ̄θ̄-component of −ΦΦ† by 1/φ4. Al-

though naively one might think this would be accomplished by the expression −4ΦΦ†/(Φ+

Φ†)4, the correct result is more subtle, as discussed in [84]. Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (32)

the appropriate modification is given by

−K(Φ,Φ†)
∣

∣

∣

θθθ̄θ̄
=

1

2φ4
(∂φ)2 − i

2φ4
(ψ,µσµψ̄ − ψσµψ̄,µ) , (33)

where we suppress irrelevant χ and F contributions. The first term is just −X/φ4 and

hence of the P (Xφ) form. Although not strictly necessary, we choose to add (31) to

(33) in such a way that the X dependent contribution for φ takes the canonical ghost

condensate form (10). This will be the case if one takes the complete Lagrangian to

be (33)+3×(31):
[

− K(Φ,Φ†) − 1

8(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
3

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

2φ4
(∂φ)2 +

1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)2 − 1

6φ2
(!φ)2

− i

2φ4

(

1 +
3

2
(∂φ)2

)

(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .

=
1

φ4
(−X + X2) +

1

6φ2

(

(∂µ∂νφ)2 − (!φ)2
)

+
i

4φ4

(

ψ,µσµψ̄ − ψσµψ̄,µ

)

+ . . . (34)

The first bracketed term is of the P (X,φ) type, whereas the second group of scalar

terms is not. Be that as it may, the ghost condensate φ = c t with c = 1 is a vacuum

11



the correct modification is

It follows that
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

12φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)2 − 1

18φ2
(!φ)2 − i

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .(31)

Three fundamental conclusions can be drawn from (31): 1) the fermion kinetic term

is Lorentz-covariant and, for any purely time-dependent background, of the correct

sign — that is, ghost-free with correct-sign spatial gradient; 2) the first term is simply

X2/3φ4 and is manifestly of the P (X,φ) type; 3) the remaining φ terms are of a

different differential form and not of the P (X,φ) type. Thus, by moving away from

purely P (X,φ) theory we have solved the problem of the fermion gradient instability.

As with χ, one must now add this equation to the first term in Lagrangian (14).

Since canceling the Lorentz-violating fermion kinetic term required a modification of

the higher-derivative operators, we must also appropriately modify the first term in

(14). Clearly, this requires multiplying the θθθ̄θ̄-component of −ΦΦ† by 1/φ4. Al-

though naively one might think this would be accomplished by the expression −4ΦΦ†/(Φ+

Φ†)4, the correct result is more subtle, as discussed in [84]. Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (32)

the appropriate modification is given by

−K(Φ,Φ†)
∣

∣

∣

θθθ̄θ̄
=

1

2φ4
(∂φ)2 − i

2φ4
(ψ,µσµψ̄ − ψσµψ̄,µ) , (33)

where we suppress irrelevant χ and F contributions. The first term is just −X/φ4 and

hence of the P (Xφ) form. Although not strictly necessary, we choose to add (31) to

(33) in such a way that the X dependent contribution for φ takes the canonical ghost

condensate form (10). This will be the case if one takes the complete Lagrangian to

be (33)+3×(31):
[

− K(Φ,Φ†) − 1

8(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
3

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

2φ4
(∂φ)2 +

1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)2 − 1

6φ2
(!φ)2

− i

2φ4

(

1 +
3

2
(∂φ)2

)

(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .

=
1

φ4
(−X + X2) +

1

6φ2

(

(∂µ∂νφ)2 − (!φ)2
)

+
i

4φ4

(

ψ,µσµψ̄ − ψσµψ̄,µ

)

+ . . . (34)

The first bracketed term is of the P (X,φ) type, whereas the second group of scalar

terms is not. Be that as it may, the ghost condensate φ = c t with c = 1 is a vacuum
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where we suppress irrelevant    and    contributions.     χ F

Note that setting       

⇒ the modified term is the supersymmetric extension of a 

type bosonic Lagrangian.P (X, φ)

Lorentz− covariant

ψα = 0 ⇒ reduces to − X

φ4

Putting everything together, choose

It follows that
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

12φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)2 − 1

18φ2
(!φ)2 − i

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .(31)

Three fundamental conclusions can be drawn from (31): 1) the fermion kinetic term

is Lorentz-covariant and, for any purely time-dependent background, of the correct

sign — that is, ghost-free with correct-sign spatial gradient; 2) the first term is simply

X2/3φ4 and is manifestly of the P (X,φ) type; 3) the remaining φ terms are of a

different differential form and not of the P (X,φ) type. Thus, by moving away from

purely P (X,φ) theory we have solved the problem of the fermion gradient instability.

As with χ, one must now add this equation to the first term in Lagrangian (14).

Since canceling the Lorentz-violating fermion kinetic term required a modification of

the higher-derivative operators, we must also appropriately modify the first term in

(14). Clearly, this requires multiplying the θθθ̄θ̄-component of −ΦΦ† by 1/φ4. Al-

though naively one might think this would be accomplished by the expression −4ΦΦ†/(Φ+

Φ†)4, the correct result is more subtle, as discussed in [84]. Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (32)

the appropriate modification is given by

−K(Φ,Φ†)
∣

∣

∣

θθθ̄θ̄
=

1

2φ4
(∂φ)2 − i

2φ4
(ψ,µσµψ̄ − ψσµψ̄,µ) , (33)

where we suppress irrelevant χ and F contributions. The first term is just −X/φ4 and

hence of the P (Xφ) form. Although not strictly necessary, we choose to add (31) to

(33) in such a way that the X dependent contribution for φ takes the canonical ghost

condensate form (10). This will be the case if one takes the complete Lagrangian to

be (33)+3×(31):
[

− K(Φ,Φ†) − 1

8(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
3

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

2φ4
(∂φ)2 +

1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)2 − 1

6φ2
(!φ)2

− i

2φ4

(

1 +
3

2
(∂φ)2

)

(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .

=
1

φ4
(−X + X2) +

1

6φ2

(

(∂µ∂νφ)2 − (!φ)2
)

+
i

4φ4

(

ψ,µσµψ̄ − ψσµψ̄,µ

)

+ . . . (34)

The first bracketed term is of the P (X,φ) type, whereas the second group of scalar

terms is not. Be that as it may, the ghost condensate φ = c t with c = 1 is a vacuum
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It follows that
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

12φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)2 − 1

18φ2
(!φ)2 − i

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .(31)

Three fundamental conclusions can be drawn from (31): 1) the fermion kinetic term

is Lorentz-covariant and, for any purely time-dependent background, of the correct

sign — that is, ghost-free with correct-sign spatial gradient; 2) the first term is simply

X2/3φ4 and is manifestly of the P (X,φ) type; 3) the remaining φ terms are of a

different differential form and not of the P (X,φ) type. Thus, by moving away from

purely P (X,φ) theory we have solved the problem of the fermion gradient instability.

As with χ, one must now add this equation to the first term in Lagrangian (14).

Since canceling the Lorentz-violating fermion kinetic term required a modification of

the higher-derivative operators, we must also appropriately modify the first term in

(14). Clearly, this requires multiplying the θθθ̄θ̄-component of −ΦΦ† by 1/φ4. Al-

though naively one might think this would be accomplished by the expression −4ΦΦ†/(Φ+

Φ†)4, the correct result is more subtle, as discussed in [84]. Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (32)

the appropriate modification is given by

−K(Φ,Φ†)
∣

∣

∣

θθθ̄θ̄
=

1

2φ4
(∂φ)2 − i

2φ4
(ψ,µσµψ̄ − ψσµψ̄,µ) , (33)

where we suppress irrelevant χ and F contributions. The first term is just −X/φ4 and

hence of the P (Xφ) form. Although not strictly necessary, we choose to add (31) to

(33) in such a way that the X dependent contribution for φ takes the canonical ghost

condensate form (10). This will be the case if one takes the complete Lagrangian to

be (33)+3×(31):
[

− K(Φ,Φ†) − 1

8(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
3

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

2φ4
(∂φ)2 +

1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)2 − 1

6φ2
(!φ)2

− i

2φ4

(

1 +
3

2
(∂φ)2

)

(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .

=
1

φ4
(−X + X2) +

1

6φ2

(

(∂µ∂νφ)2 − (!φ)2
)

+
i

4φ4

(

ψ,µσµψ̄ − ψσµψ̄,µ

)

+ . . . (34)

The first bracketed term is of the P (X,φ) type, whereas the second group of scalar

terms is not. Be that as it may, the ghost condensate φ = c t with c = 1 is a vacuum
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LSUSY to be
3× (above)

prototype

P (X, φ) P (X, φ)



Note that although no longer a pure 

P (X, φ)

theory, it still admits

a “ghost condensate” soluton

φ = ct , χ = 0 where c = 1

The fermion coefficient is evaluated there.

Final Conclusion: The price one pays to obtain a ghost free,  

spatially stable, Lorentz-covariant fermion kinetic term is that
the bosonic    Lagrangian is no longer pure                 φ

What theory is it?

!

Answer:

Conformal Galileons

P (X, φ)

Scalar Conformal Galileons:

Consider real scalar field π



The unique set of Lagrangians symmetric under the infinitesimal 

dilation and special conformal transformations

δvπ = vµxµ , (36)

where c and vµ are constant. The first transformation in (36) is just a standard shift

symmetry, whereas the second is called a Galilean symmetry. The latter protects the

cubic interaction from being renormalized [50, 51]. Remarkably, despite its higher-

derivative form, (35) leads to an equation of motion that is second-order in derivatives.

In [52], Lagrangian (35) was generalized to include all possible interactions that

are invariant under the shift and Galilean symmetries, and which lead to second-order

equations of motion. In addition to the linear, quadratic and cubic terms in π shown

in (35), it was found that quartic and quintic interactions are also allowed. The most

general “Galileon” theory is found to be a linear combination of the Lagrangians [52]

LGal, 2 = −1

2
(∂π)2

LGal, 3 = −1

2
(∂π)2!π

LGal, 4 = (∂π)2
[

−1

2
(!π)2 +

1

2
π,µνπ,µν

]

LGal, 5 = (∂π)2
[

−1

2
(!π)3 − π,µνπ,νρπ

,ρ
µ +

3

2
!ππ,µνπ,µν

]

, (37)

where we have set the associated mass scales of each term to unity to simplify notation.

As with the cubic term, these interactions are protected by non-renormalization the-

orems. The construction stops with LGal, 5 — no higher-order interactions can satisfy

the simultaneous requirements of shift/Galilean invariance and second-order equations.

The symmetries in (36) can be promoted to a subgroup of the conformal group,
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In the limit of small π, these reduce to (36). The unique Lagrangians invariant under
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The class of theories obtained by taking general linear combinations of these terms

are called conformal Galileon theories. To compare Galileons to P (X,φ) theories, it is

useful to change variables to
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where the second versions of L3 and L5 follow from integration by parts.

Note that although the bosonic Galileon Lagrangians L2 and L3 were introduced for
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useful to change variables to

φ ≡ e−π . (40)

The above Lagrangians then become
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2φ4
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4φ4
(∂φ)4 − 1
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1
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(!φ)2
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4
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5φ3
(∂φ)2φ,µφ,νφ,µν − 3

20φ4
(∂φ)6

L5 = (∂φ)2
[

1

2φ
(!φ)3 +

1

φ
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,ρ
µ
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2φ
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4φ2
∂µ(∂φ)2∂µ(∂φ)2 +

3

φ2
!φφ,µνφ,µφ,ν

+
6

7φ3
(∂φ)2φ,µνφ,µφ,ν − 6

7φ3
(∂φ)4!φ − 3

56φ4
(∂φ)8

]

= (∂φ)2
[

1

2φ
(!φ)3 +

1

φ
φ,µνφ,νρφ

,ρ
µ

− 3

2φ
!φφ,µνφ,µν − 3

4φ2
(∂φ)2(!φ)2 +

3

4φ2
(∂φ)2φ,µνφ,µν

+
9

14φ3
(∂φ)4!φ − 9

14φ3
(∂φ)2φ,µφ,νφ,µν − 3

56φ4
(∂φ)8

]

, (41)

where the second versions of L3 and L5 follow from integration by parts.

Note that although the bosonic Galileon Lagrangians L2 and L3 were introduced for

entirely different reasons, they are precisely of the form — derived in detail in Sec. 3 —

required by a quadratic and cubic supersymmetric theory to have a ghost condensate

vacuum with Lorentz-covariant and canonical sign fermion kinetic energy. Specifically,

the purely φ-dependent part of (33) and 3 × (31) are

1

2φ4
(∂φ)2 = −L2 (42)

and
1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)2 − 1

6φ2
(!φ)2 = −L3 , (43)
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It follows that
[ −1

24(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
1

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

12φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)2 − 1

18φ2
(!φ)2 − i

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .(31)

Three fundamental conclusions can be drawn from (31): 1) the fermion kinetic term

is Lorentz-covariant and, for any purely time-dependent background, of the correct

sign — that is, ghost-free with correct-sign spatial gradient; 2) the first term is simply

X2/3φ4 and is manifestly of the P (X,φ) type; 3) the remaining φ terms are of a

different differential form and not of the P (X,φ) type. Thus, by moving away from

purely P (X,φ) theory we have solved the problem of the fermion gradient instability.

As with χ, one must now add this equation to the first term in Lagrangian (14).

Since canceling the Lorentz-violating fermion kinetic term required a modification of

the higher-derivative operators, we must also appropriately modify the first term in

(14). Clearly, this requires multiplying the θθθ̄θ̄-component of −ΦΦ† by 1/φ4. Al-

though naively one might think this would be accomplished by the expression −4ΦΦ†/(Φ+

Φ†)4, the correct result is more subtle, as discussed in [84]. Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (32)

the appropriate modification is given by

−K(Φ,Φ†)
∣

∣

∣

θθθ̄θ̄
=

1

2φ4
(∂φ)2 − i

2φ4
(ψ,µσµψ̄ − ψσµψ̄,µ) , (33)

where we suppress irrelevant χ and F contributions. The first term is just −X/φ4 and

hence of the P (Xφ) form. Although not strictly necessary, we choose to add (31) to

(33) in such a way that the X dependent contribution for φ takes the canonical ghost
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be (33)+3×(31):
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− K(Φ,Φ†) − 1

8(Φ + Φ†)3

(

DΦDΦD̄2Φ† + h.c.
)

+
3

4(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

]
∣

∣

∣

∣

θθθ̄θ̄

=
1

2φ4
(∂φ)2 +

1

4φ4
(∂φ)4 +

1

6φ2
(∂µ∂νφ)2 − 1

6φ2
(!φ)2

− i

2φ4

(

1 +
3

2
(∂φ)2

)

(ψ,µσµψ̄ − ψσµψ̄,µ) + . . .

=
1

φ4
(−X + X2) +

1

6φ2

(

(∂µ∂νφ)2 − (!φ)2
)

+
i

4φ4

(

ψ,µσµψ̄ − ψσµψ̄,µ

)

+ . . . (34)

The first bracketed term is of the P (X,φ) type, whereas the second group of scalar

terms is not. Be that as it may, the ghost condensate φ = c t with c = 1 is a vacuum

11

Aside: Note that if we add

+∆)(

(1 + ∆)

+8iψ,µσµσ̄νσλψ̄,λA,ν − 16iψ,µσνψ̄,νA
,µ + 8iψσν ψ̄,ν!A

+8iψσµ
!ψ̄A,µ + 4ψ!ψF ∗ − 4∂ψ · ∂ψF ∗ + 4ψ,µσµσ̄νψ,νF

∗

+4ψσµσ̄νψ,νF
∗
,µ − 4ψ,µσν σ̄µψF ∗

,ν − 2ψψ!F ∗
)

. (106)

We also make frequent use of

(Φ + Φ†)k = (A + A∗)k + k
√

2(A + A∗)k−1(θψ + θ̄ψ̄) + kθθ(A + A∗)k−1F

+kθ̄θ̄(A + A∗)k−1F ∗ + kiθσµθ̄(A + A∗)k−1(A,µ − A∗
,µ) , (107)

where we have dropped the top component as well as terms quadratic and higher in

fields other than φ.

Appendix B: Non Lorentz-Covariant Fermion Ki-

netic Terms

In Sec. 3, we showed that the exact linear combination of (28) + (26) not only gives the

conformal third-order scalar Galileon Lagrangian, but also results in a Lorentz-invariant

fermion kinetic term. In this Appendix, we generalize this analysis by allowing for a

more general linear combination. The fermion kinetic term now breaks Lorentz invari-

ance, and the resulting generalized Galileon theory is only invariant under dilations but

not special conformal transformations.

Instead of (31), consider the more general expression

(28) + (1 + ∆) × (26) =
1

12φ4
(∂φ)4 +

1

18φ2
(∂µ∂νφ)2 − 1

18φ2
(!φ)2 +

∆

4φ4
(∂φ)4

− i(1 + ∆)

4φ4
(∂φ)2(ψ,µσµψ̄ − ψσµψ̄,µ) − i∆

2φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) + . . .

(108)

where ∆ is a constant. It follows that 3 × (31), the higher-derivative term entering

expression (34), is now replaced by

L∆ − 3i(1 + ∆)

4φ4
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2φ4
φ,µφ,ν(ψ

,νσµψ̄ − ψσµψ̄,ν) + . . . (109)

where

L∆ ≡ −L3 +
3∆

4φ4
(∂φ)4 , (110)

and L3 is the third-order conformal Galileon Lagrangian in (41).

For ∆ = 0, the last term in (109) vanishes, and the fermion kinetic term is Lorentz-

covariant with the correct sign on the ghost condensate background. Furthermore,
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Dilatation Galileons



Supersymmetric Extension of     :L4

Not unique. One choice is

=
16

(A + A∗)2
(∂A)2(∂A∗)2(∂A · ∂F )(∂A∗ · ∂F ∗)

=
1

φ2
(∂φ)4(∂φ · ∂F )(∂φ · ∂F ∗) . (95)

At quadratic order, these do not involve χ or ψ. Therefore, they can be added with

suitable coefficients to LSUSY
4 to cancel the unwanted kinetic terms for F , again without

changing anything else. Thus, one can ensure that the auxiliary field remains truly

auxiliary.

Finally, consider the fermionic kinetic terms in (90). The first is covariant, and

unproblematic. The second one is Lorentz-violating and, hence, undesirable. This

term can be eliminated by choosing b = 6/5. With this choice, and adding in the terms

just discussed, we find that a healthy supersymmetric extension of the fourth-order

conformal Galileon Lagrangian is given by

L̂SUSY
4 =

(

1

64(Φ + Φ†)2
{D, D̄}(DΦDΦ){D, D̄}(D̄Φ†D̄Φ†)

− 1

128(Φ + Φ†)2

[

{D, D̄}(Φ + Φ†){D, D̄}(DΦDΦ)D̄2Φ† + h.c.
]

− 1

5 × 64(Φ + Φ†)3
DΦDΦD̄Φ†D̄Φ†{D, D̄}{D, D̄}(Φ + Φ†)

+
6

5 × 64(Φ + Φ†)3
(DΦDΦD̄2Φ† + h.c.){D, D̄}Φ{D, D̄}Φ†

− 9

28 × 5(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ + Φ†){D, D̄}(Φ − Φ†)
)2

+
1

28(Φ + Φ†)2
DΦDΦD̄Φ†D̄Φ†{D, D̄}D2Φ{D, D̄}D̄2Φ†

− 1

29(Φ + Φ†)2
DΦDΦD̄Φ†D̄Φ†

∣

∣

∣{D, D̄}Φ{D, D̄}D2Φ
∣

∣

∣

2
)

∣

∣

∣

∣

θθθ̄θ̄
. (96)

In components, up to quadratic order in fields other than φ on a constant X back-

ground, this reduces to

L̂SUSY
4, quad, X=const = − 1

4φ2
∂µ(∂φ)2∂µ(∂φ)2 +

1

φ2
!φφ,µφ,νφ,µν − 1

4φ3
(∂φ)4!φ

+
9

10φ4
(∂φ)4(∂χ)2 +

3

φ3
(∂φ)4F ∗F +

9i

5φ4
(∂φ)4(ψ,νσνψ̄ − ψσν ψ̄,ν) .

(97)

It is encouraging to see that healthy supersymmetric extensions of the Galileon La-

grangians exist, as demonstrated above. We would like to emphasize once more that,

as should be clear already from the discussion around (78), the supersymmetric ex-

tension of L4 given above is not unique. Hence it would be interesting to see, should

a derivation of a supersymmetric Galileon theory be found in a more fundamental

setting, precisely which form of the Lagrangian would arise.

27

=
16

(A + A∗)2
(∂A)2(∂A∗)2(∂A · ∂F )(∂A∗ · ∂F ∗)

=
1

φ2
(∂φ)4(∂φ · ∂F )(∂φ · ∂F ∗) . (95)

At quadratic order, these do not involve χ or ψ. Therefore, they can be added with

suitable coefficients to LSUSY
4 to cancel the unwanted kinetic terms for F , again without

changing anything else. Thus, one can ensure that the auxiliary field remains truly

auxiliary.

Finally, consider the fermionic kinetic terms in (90). The first is covariant, and

unproblematic. The second one is Lorentz-violating and, hence, undesirable. This

term can be eliminated by choosing b = 6/5. With this choice, and adding in the terms

just discussed, we find that a healthy supersymmetric extension of the fourth-order

conformal Galileon Lagrangian is given by

L̂SUSY
4 =

(

1

64(Φ + Φ†)2
{D, D̄}(DΦDΦ){D, D̄}(D̄Φ†D̄Φ†)

− 1

128(Φ + Φ†)2

[

{D, D̄}(Φ + Φ†){D, D̄}(DΦDΦ)D̄2Φ† + h.c.
]

− 1

5 × 64(Φ + Φ†)3
DΦDΦD̄Φ†D̄Φ†{D, D̄}{D, D̄}(Φ + Φ†)

+
6

5 × 64(Φ + Φ†)3
(DΦDΦD̄2Φ† + h.c.){D, D̄}Φ{D, D̄}Φ†

− 9

28 × 5(Φ + Φ†)4
DΦDΦD̄Φ†D̄Φ†

(

{D, D̄}(Φ + Φ†){D, D̄}(Φ − Φ†)
)2

+
1

28(Φ + Φ†)2
DΦDΦD̄Φ†D̄Φ†{D, D̄}D2Φ{D, D̄}D̄2Φ†

− 1

29(Φ + Φ†)2
DΦDΦD̄Φ†D̄Φ†

∣

∣

∣{D, D̄}Φ{D, D̄}D2Φ
∣

∣

∣

2
)

∣

∣

∣

∣

θθθ̄θ̄
. (96)

In components, up to quadratic order in fields other than φ on a constant X back-

ground, this reduces to

L̂SUSY
4, quad, X=const = − 1

4φ2
∂µ(∂φ)2∂µ(∂φ)2 +

1

φ2
!φφ,µφ,νφ,µν − 1

4φ3
(∂φ)4!φ

+
9

10φ4
(∂φ)4(∂χ)2 +

3

φ3
(∂φ)4F ∗F +

9i

5φ4
(∂φ)4(ψ,νσνψ̄ − ψσν ψ̄,ν) .

(97)

It is encouraging to see that healthy supersymmetric extensions of the Galileon La-

grangians exist, as demonstrated above. We would like to emphasize once more that,

as should be clear already from the discussion around (78), the supersymmetric ex-

tension of L4 given above is not unique. Hence it would be interesting to see, should

a derivation of a supersymmetric Galileon theory be found in a more fundamental

setting, precisely which form of the Lagrangian would arise.
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7 Discussion and Outlook

In this paper, we have shown how to construct supersymmetric extensions of the con-

formal Galileon theories. In doing so, we have uncovered a deep connection between

Galileon and ghost condensate theories. That is, conformal Galileons can be seen as

equivalent to ghost condensate models — in terms of the temporal gradients alone,

the two theories are identical up to an overall factor of φ−4 — but with improved be-

havior of the spatial gradients. This connection clarifies the role of both theories, and

significantly simplifies the analysis of time-dependent solutions of the Galileon theories.

In our analysis, we have encountered two important subtleties, one related to super-

symmetry and the other inherent already in the bosonic Galileons. For the quadratic

and cubic Galileon Lagrangians, the supersymmetric extensions are highly constrained

and, around a ghost-condensate/self-accelerating-de-Sitter background, lead to covari-

ant fluctuations for all fields. In contrast, for the quartic (and quintic) conformal

Galileon Lagrangian there are many inequivalent ways to construct supersymmetric

extensions. For some of these options, non-covariant fluctuations in some fields can

arise, as well as kinetic terms for the “auxiliary” field. We have discussed these possi-

bilities, and have provided an illustrative example of a completely healthy supersym-

metric version of the fourth-order conformal Galileons, for which all fluctuations are

covariant, and where the auxiliary field remains truly auxiliary.

A second subtlety we encountered, and which is inherent in higher-derivative theo-

ries, is that Lagrangians related using integration by parts generically lead to different

stress-energy tensors and thus, for example, different conditions for violating the NEC.

Keeping this subtlety in mind, let us now put all our results together and see if we can

truly have a stable, NEC-violating solution of our supersymmetric conformal Galileon

theory. For the Lagrangian

LSUSY = c2LSUSY
2 + c3LSUSY

3 + c4LSUSY
4 , (98)

with LSUSY
2 given by (72), LSUSY

3 by (75) and LSUSY
4 by (96), the conditions for hav-

ing a) a ghost-condensate/self-accelerating-de-Sitter solution, b) stability, c) NEC-

violation and d) canonical and correct-sign fermionic fluctuations are
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2
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⇒ ghost condensate solution

⇒ NEC violation

⇒ correct sign fermion fluctuations

⇒ stable boson fluctuations

Can be simultaneously satisfied as long asrespectively. These can be satisfied simultaneously provided that

c2 <
3

2
c3H

2
0 < 0, (103)

with the value of c4H4
0 determined by (99). Hence, we have an example of a supersym-

metric conformal Galileon theory that has a background solution which is both stable

and can violate the NEC at the same time! We note that this is merely a proof of

principle, and that using a supersymmetric L5, or other choices for supersymmetrizing

L4, will lead to a variety of such theories. For these, the conditions for violating the

NEC and having canonical fermionic fluctuations will have to be re-evaluated on a

case-by-case basis, but it seems likely to us that healthy supersymmetric models might

also exist for which all the conditions mentioned above can be satisfied with c2 > 0. In

that case, even the ordinary zero vacuum would be stable.

We anticipate a number of applications for our results:

• Since the (non-supersymmetric) conformal Galileon theories can be derived as

the Lagrangians describing the fluctuations of a brane in a higher-dimensional

space-time, there does not seem to exist a fundamental obstacle to deriving the

supersymmetric Galileons in a supergravity context. It will then be interesting to

see precisely which version of the supersymmetric Galileons comes out naturally.

Moreover, such a treatment would require one to extend the present work to

local supersymmetry and the coupling to gravity, which will be of importance for

cosmological applications. This derivation will appear elsewhere [100].

• As we discussed in detail in the paper, two Galileon actions, related using integra-

tion by parts and dropping the surface terms, are physically inequivalent in that

they lead to the same time-dependent backgrounds, but to different pressures.

Hence, for two such theories, the conditions for violating the NEC are different.

It may be that one theory allows for stable violations of the NEC, while the other

does not. It will be interesting to investigate this situation further in a cosmo-

logical context. Indeed, it means that in approaching a regime where the NEC is

violated, such as a cosmic bounce, spatial gradients must necessarily make their

presence felt, and either allow or disallow entering into the NEC-violating regime.

This should be the case regardless of how small the spatial gradients are initially!

It will be of interest to see how this works out in a concrete model.

Supersymmetric Galileons provide a fascinating theoretical laboratory in which to

study the connections between higher derivatives, supersymmetry and violations of the

NEC. This is at present largely unchartered territory, but, in this paper, we hope to

have provided the basic tools necessary for mapping it out.
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H0

⇒ supersymmetric conformal Galileon theory that a) admits
Lorentz-violating ghost condensate vacuum, b) is ghost free
with no gradient instability and c) violates the NEC!


