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Plan of the talk 

•  Introducing conventional and non-
conventional Superconductors 

•  Basic ingredients for a holographic 
Superconductor 

•  AdS3/CMT2 in the probe limit 

•  Phase transitions in non-rotating and 
rotating BTZ Black Hole backgrounds 

•  Summary and Concluding Remarks 
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Conventional and non-
conventional 
Superconductors 
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Brief history of Superconductivity 

1911: Conventional Superconductors (e--ph int.); (B)BCS theory (1957). 
Magnetism plays a negative role. 1986: HTSC (exotic SCs - cuprates). 
Superconductivity is provided by magnetic properties of samples. 2008: 
Fe-based (ferrates LaFeAs(O,F)) SCs. Magnetism is important 1977:           
       Heavy Fermions. �
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Superconductivity for experimenters 

 
Matthias’ rules of looking for new SCs 

 
•  High symmetry is good, cubic is best. 

Sample must have d-electrons (not just s, p 
nor f). Peaks in DOS are good; certain e- 

concentrations are favored.  
•  Stay away from oxygen, magnetism and 

insulators! 

•  Stay away from theorists! 
 

Rules are good for conventional SCs, but 
aren’t good for High-T SCs. 
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Superconductivity for theorists 

Conventional superconductors are described by BCSB 
(Bardeen-Cooper-Schrieffer-Bogoliubov) theory. 

 

Main ingredients of BCSB are: 

•  (second order) phase transition (described by the Landau-
Ginsburg phenomenological theory) 

•  the electron Cooper pairs condensate formation 

•  forming an energy gap  

 

Roughly speaking, the main equation of BCSB theory is the 
gap equation. 
The effective coupling in BCSB is the electron-phonon 
coupling               a weak coupling constant theory.  

 

HTSCs must be formulated as theories in the strong coupling 
constant regime.  

                                  How to formulate? – Try the AdS/CFT 
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Basic ingredients for a 
holographic 
Superconductor 
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AdS/CFT on a nutshell 

The main principle of the AdS/CFT correspondence 
(Maldacena’98; Gubser, Klebanov, Polyakov’98; Witten’98) 

 

Gauge theory on the AdSd+1 boundary and at a strong 
coupling is dual to the bulk gravity with matter at a weak 
coupling 
 

The Correspondence Dictionary 

 

•  Fields in AdS                local CFT operators   

•  Spin              Spin  

•  Mass             Scaling dimension Δ  

•  Gauge fields in AdS             Boundary currents  

 

                                            for Scalar field 

                                            for Vector field 

∆(∆− d) = m2L2

∆(∆− d+ 2) = m2L2
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AdS/CFT on a nutshell 

How to define a local CFT operator? Try the asymptotic 
expansion of a bulk field near the boundary: 

 

 

Δ is the scaling dimension of the field;   Δ(Δ- …)=m2L2 
     is the source to the boundary operator  

     is the expectation value <   > 

 

For a massless vector field with just one temporal component 

 

 

z-dependent part has a fast falloff, hence it’s not a 
background field in the dual theory. Hence     fixes the 
electric charge density of the state. The finite part is a 
chemical potential for the electric charge density. Then d=2 
one has to use 
with rescaling the chemical potential  

Θ(z) = Az∆− (1 + . . . ) + Bz∆+ (1 + . . . )

A O

B O

A

At(z � 0) = Az(d−2)(1 + . . . ) + B(1 + . . . )

z� = 1 + � ln z + . . . , � = (d− 2)
µ � −µ/�
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Basic ingredients for a HolographicSuperConductor 

 
•  Take AdS bulk for gravity with matter, and its 

flat boundary for a gauge CFT 
•  Put a non-extremal (charged) Black Hole in the 

bulk 
•  Take at least Maxwell-scalar interacting fields in 

the bulk with a large enough charge 
•  Stay away from experimenters and don’t 

analyse data! 
 
Then, you’ll get the phase transition on the 
boundary at some Tc  and an energy gap. The 
charged scalar field will form a BH scalar hair and 
will condense at the boundary. This condensate 
simulates the electron Cooper pairs.  
(Hertog’06; Gubser’08;Hartnoll, Herzog, Horowitz’08) 
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AdS3/CMT2 in the probe 
limit 
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AdS3/CMT2 

Let’s focus on AdS3/CMT2 correspondence. It is interesting 
because  

•  the case includes main ingredients of holographic 
superconductors 

•  technically more simple 

•  less studied 

•  has a relation to real systems like superconducting 
nanowires  

•  has an interesting symmetry structure (pure 2d CFT with 
infinitely dimensional Conf. symmetry, entropy relation to 
the algebra central charge etc.) 

•  though gravity is not dynamical in the bulk, there are AdS 
Black Holes (Banados, Teitelboim, Zanelli’92; Clement’93) 

 

We are going to study this case analitically, i.e. without using 
(or rather using in minimal) numerical methods.  
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AdS3/CMT2 setup 

In the probe limit, without backreaction on the metric the 
system is described by the action 

 

 

 
in the neutral AdS BH background 

 

 

 

 

L is a length of AdS, the boundary is located at z=0, the BH 
horizon is at z=zH . This metric solves the Einstein equation 

 

 
and the BH temperature is 
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S = −
�

d3x
√
−g

�
1

4
FmnF

mn + (∂m − iAm)Ψ(∂m + iAm)Ψ∗ +m2ΨΨ∗
�

ds2 =
L2

z2

�
−f(z)dt2 + dx2 +

dz2

f(z)

�
, f(z) = 1− z2

z2
H

Rmn − 1

2
gmn

�
R+

2

L2

�
= 0

T =
1

2πzH



AdS3/CMT2 setup 

The equations of motion of fields in the bulk are 
 

 

 

 

 

 

 

We are going to solve EOM with the ansatz 
 

 

On account of the latter and of the BH metric, EOM becomes 
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1√
−g

Dm(
√
−gDmΨ)−m2Ψ = 0,

∂n(
√
−gFnm) +

√
−gi(ΨDmΨ∗ −Ψ∗DmΨ) = 0

DΨ ≡ (∂m − iAm)Ψ, DmΨ∗ = (DΨ)∗, Fmn = 2∂[mAn]

Ψ = ψ(z), A = φ(z)dt

ψ�� +

�
f �

f
− 1

z

�
ψ� +

�
φ2

f2
− m2L2

z2f

�
ψ = 0,

φ�� +
φ�

z
− L2

z2
2ψ2

f
φ = 0



AdS3/CMT2 setup 

So, we’ve got the following set of EOM 
 
 
 
 
 
 
It can be solved numerically  
(Ren’10; Liu, Pan, Wang’11),  
                                          but we will try it analitically  
(like in Gregory, Kanno, Soda’09; Herzog’10; Bellon, Moreno, 
Schaposnik’10; Chen, Wu’11; Ge’11; Siopsis, Therrien’10) 

 
BoundaryConditions should be specified to this end. At z=zH  we 
get 
 
and BCs at the AdS boundary are 
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ψ�� +

�
f �

f
− 1

z

�
ψ� +

�
φ2

f2
− m2L2

z2f

�
ψ = 0,

φ�� +
φ�

z
− L2

z2
2ψ2

f
φ = 0

φ(zH) = 0, ψ�(zH) = ψ(zH)/2zH

φ = µ ln z − ρ, ψ = ψ(2)z � �O�ψ = ψ(2)



Phase transitions in non-
rotating and rotating BTZ 
BH backgrounds 
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Phase transitions in BTZ backgrounds 

The idea on solving the EOM analytically is quite simple 
(Gregory, Kanno, Soda’09) 

 

•  take the fields series expansions                                                  

      

 

 

 

     near the horizon (Z=zH) and at the boundary (Z=0); 

•  take the BCs into account; 

•  evaluate a few first coefficients in the fields series 
expansions near the boundary and the horizon by use of 
the BCs and the EOM; 

•  sew the so obtained fields series expansions, and their 
first derivatives, at an intermediate point z; 

•  get the result. Fine! 
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φ(z) = φ(Z) + φ�(Z)(z − Z) +
1

2
φ��(Z)(z − Z)2 + . . . ,

ψ(z) = ψ(Z) + ψ�(Z)(z − Z) +
1

2
ψ��(Z)(z − Z)2 + . . .



Phase transitions in BTZ backgrounds 

Following the described procedure and setting the sew point 
at z=1/2zH , we get (AJN’11) 

 

 

 

for the critical temperature of the phase transition, and (L=1) 

 

 

 

The critical exponent and the temperature dependence of the 
scalar EV is typical for the second order phase transitions 
occurred in superconductors. The numerical coefficient is in a 
good agreement with that obtained in the numerical studies. 
There we get  

 

The discrepancy in Tc is typical for this type of analytical 
calculations, and may be slightly improved by choosing the 
appropriate sewing point. 

 

 

 

 

 
 

 

 

18 

Tc =
2

π
√
123

· µ ≈ 0.057 · µ

�O�ψ ≈ 12.7
�

TTc (1− T/Tc)
1/2 T�Tc−→ �O�ψ ≈ 12.7Tc (1− T/Tc)

1/2

�O�ψ ≈ 12.2Tc (1− T/Tc)
1/2 Tc/µ ≈ 0.136



Phase transitions in BTZ backgrounds 

Let’s try to extend the standard setup modifying fields in the 
bulk, or the background in which they propagate.  
 

A natural modification for AdS3 Maxwell field consists in 
adding the Chern-Simons topological term, and to make ED3 
massive, i.e. 

 

 

However, such a modification is non-trivial once new 
magnetic DOF appear in the ansatz for A  
 

 

and it’s OK in the probe limit, but it can’t be realized in the 
complete setup with the backreaction on the metric. The 
reason is all the magnetic BTZ-type solutions in EMS(CS) 
systems are horizonless 
(Clement’95; Hirschmann, Welch’95; Cataldo, Salgado’96; Moussa, 
Clement’96; Fernando, Mansouri’97;…) 
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S = S0(A,Ψ, ∂A,DΨ)+
θ

2

�
A ∧ dA

Ψ = ψ(z), A = φ(z)dt+B(z)dz



Phase transitions in BTZ backgrounds 

But inclusion of external magnetic field can be realized in 
another way, with taking into account 

•  the Barnett effect of magnetization of uncharged, but 
rotated body, and the London magnetic moment, which 
appears upon rotating a superconductor  

     (Barnett’15; London’50) 

•  the Lense-Thirring dragging force effect which guarantees 
the AdS boundary rotation in the background of rotating 
BTZ BH  (Lense, Thirring’18) 

 

Hence, we have to put our MS interacting system in the 
background of a rotating BTZ BH 
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ds2 =
L2

z2

�
−f(z)dt2 +

dz2

f(z)
+ L2

�
dϕ− Jz2

2L4
dt

�2
�

f(z) = 1− Mz2

L2
+
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Phase transitions in BTZ backgrounds 

Now EOM 
 

 

 

 

have to be solved with the following ansatz 

 

 

and in the background 
 

 

 

The system doesn’t look simple, so we need a simplification. 
The small angular momentum approximation, in which  

 

 

makes the problem more tractable. 
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Phase transitions in BTZ backgrounds 

One may wonder on legality of the approximation. But 
•  BH with large J are very unstable due to the super-radiance 

scattering effect  
     (Zeldovich’71; Bardeen, Press, Teukolsky’72; Starobinsky’73) 

•  the magnetic component of A in magnetic rotating BH 
solutions is related to the temporal component as 

 
 
The system of EOM comes in the limit to 
 
 
 
 
 
with the separation constant  
 
 
coming from the solution to the “angular” part of the scalar 
EOM 
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Phase transitions in BTZ backgrounds 

Doing the same machinery of analytical calculations as in the 
non-rotating case, we get the following T dependence of the 
CFT scalar operator EV 
 

 

 

Here      is the renormalized angular momentum (see AJN’11 
for details), and we are within the approximation 

 

 
What we expected to get when the BH becomes rotating? In 
the background of the rotating BTZ BH the “radial” part of the 
scalar equation is 

 
 

with some operator               and an effective potential                  
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Phase transitions in BTZ backgrounds 

When there are magnetic DOF in A the condensation becomes 
hard in compare to the pure electric case  

 

 

when             , and the effective mass decreases. In the 
electro-magnetic case, due to               , the effective mass 
gets decreased smaller, making the condensation hard. 

 

Though we have not magnetic DOF in the ansatz, external 
magnetic field is modeled by the rotation. Hence we expect 
the critical temperature of the phase transition will become 
lower in compare to the non-rotating case. 
 

To check it, let’s put the scalar operator EV on the plot. 
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V (Ψ) =
√
−g

�
m2 +Atg

ttAt +Aϕ̃g
ϕ̃ϕ̃Aϕ̃

�
Aϕ̃ = 0
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Phase transitions in BTZ backgrounds 
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Phase transitions in BTZ backgrounds 
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Plot for different (α, JR): (0.0,0.0) blue curve, (0.003,0.01) green, 
(0.003,0.15) red, (0.003,1.0) deep green 
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Summary and Concluding 
Remarks 
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Summary and Concluding Remarks 

•  We have filled the gap in applying the analytical methods 
to a 2D holographic superconductor and in the probe 
limit.  

•  We have found a good agreement between the boundary 
scalar operator EV in analytical and numerical approaches, 
but the value of the critical temperature, estimated 
analytically, is about twice less than that reproduced in the 
numerical calculations. This discrepancy is typical within 
the approach we followed, as it comes from Table 1 in 
Chen&Wu arXiv:1103.5130[hep-th]. It can be slightly improved 
by the appropriate choice of the sewing point, however 
the coefficient in the scalar CFT operator will be changed. 

•  We have observed that in dependence on the choice of 
free parameters of the model (α, JR) one may encounters 
as “normal” lowering of the critical temperature due to the 
BH rotating, as well as “abnormal” Tc increasing. It would 
be interesting to reproduce this effect in numerical 
simulations of the complete problem with backreaction, 
and out of the small angular momentum approximation. 
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