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Introduction

In the Universe, matter has manly two geometric structures, homogeneous,
[Weinberg,1972] and hierarchical, [Okun, 1982] .
The homogeneous structures are naturally described by real numbers with
an infinite number of digits in the fractional part and usual archimedean
metrics. The hierarchical structures are described with p-adic numbers with
an infinite number of digits in the integer part and non-archimedean
metrics, [Koblitz, 1977].

A discrete, finite, regularized, version of the homogenous structures are
homogeneous lattices with constant steps and distance rising as arithmetic
progression. The discrete version of the hierarchical structures is
hierarchical lattice-tree with scale rising in geometric progression.

There is an opinion that present day theoretical physics needs (almost) all
mathematics, and the progress of modern mathematics is stimulated by
fundamental problems of theoretical physics.
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The Hamiltonian mechanics (HM) is in the fundamentals of mathematical
description of the physical theories, [Faddeev,Takhtajan]. But HM is in a
sense blind; e.g., it does not makes a difference between two opposites: the
ergodic Hamiltonian systems (with just one integral of motion) [Sinai,1996]
and (super)integrable Hamiltonian systems (with maximal number of the
integrals of motion).

Nabu mechanics (NM) [Nambu, 1973] is a proper generalization of the HM,
which makes the difference between dynamical systems with different
numbers of integrals of motion explicit.
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Hamiltonization of the general dynamical systems

Let us consider a general dynamical system described by the following system of the ordinary
differential equations [Arnold,1969]

ẋn = fn(x), 1 ≤ n ≤ N, (1)

and ẋn stands for the total derivative with respect to the parameter t.
When the number of the degrees of freedom is even, 1 ≤ n,m ≤ 2M , and

fn(x) = εnm
∂H0

∂xm
, 1 ≤ n,m ≤ 2M, (2)

the system (1) is Hamiltonian one and can be put in the form

ẋn = {xn,H0}0, (3)

where the Poisson bracket is defined as

{A,B}0 = εnm
∂A

∂xn

∂B

∂xm
= A

←

∂

∂xn
εnm

→

∂

∂xm
B, (4)

and summation rule under repeated indices has been used.
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Let us consider the following Lagrangian

L = (ẋn − fn(x))ψn (5)

and the corresponding equations of motion

ẋn = fn(x),

ψ̇n = −∂fm
∂xn

ψm. (6)

The system (6) extends the general system (1) by linear equation for the variables ψ. The
extended system can be put in the Hamiltonian form
[Makhaldiani,Voskresenskaya,1997]

ẋn = {xn,H1}1,
ψ̇n = {ψn, H1}1, (7)

where first level (order) Hamiltonian is

H1 = fn(x)ψn (8)

and (first level) bracket is defined as

{A,B}1 = A(

←

∂

∂xn

→

∂

∂ψn
−
←

∂

∂ψn

→

∂

∂xn
)B. (9)

Note that when the Grassmann grading [Berezin,1987] of the conjugated variables xn and ψn

{xn, ψm}1 = δnm (10)

are different, the bracket (9) is known as Buttin bracket[Buttin,1996].
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In the Faddeev-Jackiw formalism [Faddeev,Jackiw,1988] for the Hamiltonian treatment of systems
defined by first-order Lagrangians, i.e. by a Lagrangian of the form

L = fn(x)ẋn −H(x), (11)

motion equations

fmnẋn =
∂H

∂xm
, (12)

for the regular structure function fmn, can be put in the explicit hamiltonian (Poisson; Dirac)
form

ẋn = f−1
nm

∂H

∂xm
= {xn, xm} ∂H

∂xm
= {xn, H}, (13)

where the fundamental Poisson (Dirac) bracket is

{xn, xm} = f−1
nm, fmn = ∂mfn − ∂nfm. (14)

In Dirack’s formalism of constrained systems [Dirac,1951], we have the following constraints and
brackets

ϕn = pn − fn(x) = 0, {ϕn, ϕm} = ∂nfm − ∂mfn = fn,m,
{A,B}D = {A,B} − {A,ϕn}f−1

n,m{ϕm, B},

ẋn = f−1
nm

∂H

∂xm
= {xn, H}D , {xn, xm}D = f−1

n,m. (15)

N.V.Makhaldiani ( Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Nambu-Poisson dynamics with some applications July 18 - 23, 2011. 6 / 175



The system (6) is an important example of the first order hamiltonian systems. Indeed, in the
new variables,

y1n = xn, y
2
n = ψn, (16)

lagrangian (5) takes the following first order form

L = (ẋn − vn(x))ψn ⇒ 1

2
(ẋnψn − ψ̇nxn)− vn(x)ψn =

1

2
yanε

abẏbn −H(y)

= fan(y)ẏ
a
n −H(y), fan =

1

2
ybnε

ba,H = y2nvn(y
1),

fabnm =
∂fbm
∂yan

− ∂fan
∂ybm

= εabδnm; (17)

corresponding motion equations are

ẏan = εabδnm
∂H

ybm
, (18)

the fundamental Poisson bracket is

{yan, ybm} = εabδnm. (19)

To the canonical quantization of this system corresponds

[ŷan, ŷ
b
m] = i~εabδnm, ŷ

1
n = y1n, ŷ

2
n = −i~ ∂

∂y1n
(20)

In this quantum theory, classical part, motion equations for y1n, remain classical
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Point vortex dynamics (PVD)

PVD can dy defined (see e.g. [Aref,1983, Meleshko,Konstantinov,1993] ) as the following first
order system

żn = i
N
∑

m6=n

γm

z∗n − z∗m
, zn = xn + iyn, 1 ≤ n ≤ N. (21)

Corresponding first order lagrangian, hamiltonian, momenta, Poisson brackets and commutators
are

L =
∑

n

i

2
γn(znż

∗
n − żnz

∗
n) −

∑

n6=m

γnγmln|zn − zm|

H =
∑

n6=m

γnγm ln |zn − zm|

=
1

2

∑

n6=m

γnγm(ln(zn − zm) + ln(pn − pm)),

pn =
∂L

∂żn
= − i

2
γnz
∗
n, p

∗
n =

∂L

∂ż∗n
=
i

2
γnzn,

{pn, zm} = δnm, {p∗n, z∗m} = δnm,

[pn, zm] = −i~δnm ⇒ [xn, ym] = −i ~

γn
δnm (22)

So, quantum vortex dynamics corresponds to the noncommutative space. It is natural to assume

γn =
~

a2
n, n = ±1,±2, ... (23)

and a is characteristic (fundamental) length.
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Finite dimensional lattice dynamical system

In this section we consider the following dynamical system [Baleanu,Makhaldiani,1998]

ẋn = γn

p
∑

m=1

(exn+m − exn−m),

1 ≤ n ≤ N, 1 ≤ p ≤ [(N − 1)/2], 3 ≤ N,
xn+N = xn, (24)

where γn are real numbers, and [a] means the integer part of a.
The system (24) for γn = 1, p = 1 and xn = lnvn, becomes Volterra system [Volterra,1931]

v̇n = vn(vn+1 − vn−1). (25)

It is also related to the Toda lattice system, [Toda,1981]

ẏn = eyn+1−yn + eyn−yn−1 .

Indeed, if

xn = yn − yn−1,

then

ẋn = exn+1 − exn−1 .

If γn = 1 and p ≥ 1, system (24) reduces to the Bogoiavlensky lattice system,
[Bogoyavlensky,1988]

v̇n = vn

p
∑

m=1

(vn+m − vn−m). (26)
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System of three vortexes

For N = 3, p = 1 and arbitrary γn, (24) is related to the system of three vortexes of
two-dimensional ideal hydrodynamics, [Aref,1983, Makhaldiani,1997,2]. The system of N
vortexes can be described by the following system of differential equations,
[Aref,1983, Meleshko,Konstantinov,1993]

żn = i
N
∑

m6=n

γm

z∗n − z∗m
, 1 ≤ n ≤ N, (27)

where zn = xn + iyn are complex coordinate of the centre of n-th vortex.
For N = 3, it is easy to verify that the quantities

x1 = ln|z2 − z3|2, (28)

x2 = ln|z3 − z1|2,
x3 = ln|z1 − z2|2

satisfy the following system

ẋ1 = γ1(e
x2 − ex3),

ẋ2 = γ2(e
x3 − ex1),

ẋ3 = γ3(e
x1 − ex2), (29)

after change of the time parameter as

dt =
e(x1+x2+x3)

4S
dτ = e(x1+x2+x3)/2Rdτ, (30)

where S is the area of the triangle with vertexes in the centres of the vortexes and R is the radius
of the circle with the vortexes on it.
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The system (29) has two integrals of motion

H1 =
3

∑

i=1

exi

γi
, (31)

H2 =
3

∑

i=1

xi

γi

and can be presented in the Nambu–Poisson form, [Makhaldiani,1997,2]

ẋi = ωijk
∂H1

∂xj

∂H2

∂xk
(32)

= {xi,H1,H2} = ωijk
exj

γj

1

γk
,

where

ωijk = ǫijkρ, (33)

ρ = γ1γ2γ3

and the Nambu–Poisson bracket of the functions A,B, C on the three-dimensional phase space is

{A,B, C} = ωijk
∂A

∂xi

∂B

∂xj

∂C

∂xk
. (34)
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The fundamental bracket is

{x1, x2, x3} = ωijk. (35)

Then we can again change the time parameter as

du = ρdτ (36)

and obtain Nambu mechanics, [Makhaldiani,1997,2]

ẋi = ǫijk
∂H1

∂xj

∂H2

∂xk
.

Note that this system is superintegrable; for N = 3 degrees of freedom, we have maximal number
of the integrals of motion N − 1 = 2.
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Now we define x3 from H2,

x3 = γ3(H2 − x1

γ1
− x2

γ2
), (37)

insert it into H1, find x2 as an implicit function of x1

ex2

γ2
+ e

γ3(H2−
x1
γ1

) e
−

γ3
γ2
x2

γ3
= H1 − ex1

γ1
, (38)

and integrate motion equation of x1

ẋ1 = γ1(e
x2 − ex3) ≡ n(x1),

∫ x1

x10

dx

n(x)
= τ − τ0. (39)

For

γ3

γ2
= ±1;±2;±3;−4, (40)

n(x) is a superposition of elementary functions.
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Four dimensional system

The next interesting case is N = 4 and p = 1,

ẋ1 = γ1(e
x2 − ex4),

ẋ2 = γ2(e
x3 − ex1),

ẋ3 = γ3(e
x4 − ex2),

ẋ4 = γ4(e
x1 − ex3). (41)

As in the N = 3, p = 1 case, for (41) we have two integrals of motion

H1 =
ex1

γ1
+
ex2

γ2
+
ex3

γ3
+
ex4

γ4
, (42)

H2 =
x1
γ1

+
x2
γ2

+
x3
γ3

+
x4
γ4
. (43)
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For the superintegrability of the system (41), we need one more integral of motion, H3. To find
that integral let us suppose Nambu’s form of the system (41)

ẋn = {xn, H1, H2, H3} = γ1γ2γ3γ4ǫnmkl
∂H1

∂xm

∂H2

∂xk

∂H3

∂xl
. (44)

We found from (44) a solution for H3

H3 = −1

2
(
x1

γ1
− x2

γ2
+
x3

γ3
− x4

γ4
). (45)

Now we have three integrals of motion and we can integrate the system (41). From (43) and
(45) we get

x4 = γ4(
H2 + 2H3

2
− x2

γ2
),

x3 = γ3(
H2 − 2H3

2
− x1

γ1
) (46)

and (42) gives us

ex1

γ1
+
ex2

γ2
+

e
−

γ3
γ1
x1

γ3e−γ3(H2/2−H3)
+

e
−

γ4
γ2
x2

γ4e−γ4(H2/2+H3)
= H1. (47)
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So x2 is an implicit function of x1,

x2 = n2(x1, H1,H2,H3), (48)

when

γ4

γ2
= ±1,±2,±3,−4, (49)

the function n2 reduces to the composition of the elementary functions.
Now we can solve the equation for x1,

ẋ1 = γ1(e
x2 − ex4 ) ≡ n1(x1), (50)

by one quadrature,

N(x1) =

∫ x1

x10

dx

n1(x)
= t− t0. (51)
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Note that, from the motion equations (41) or (46) it is easy to see that we have a separation of
the odd and even degrees of freedom,

x1

γ1
+
x3

γ3
= H13 =

H2

2
−H3,

x2

γ2
+
x4

γ4
= H24 =

H2

2
+H3. (52)

Now we can put the system in the form

ẋ1 = γ1(e
x2 − eγ4H24e

−
γ4
γ2
x2 ) ≡ f1(x2)

ẋ2 = γ2(e
γ3H13e

−
γ3
γ1
x1 − ex1 ) ≡ f2(x1) (53)

For numerical solution this system may be more convenient.
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General finite dimensional system

For the general case we have two integrals of motion for the system (24)

H1 =

N
∑

n=1

exn

γn
, (54)

H2 =
N
∑

n=1

xn

γn
. (55)

For even N, N = 2M , we know a third integral of motion

H3 =
1

2

2M
∑

n=1

(−1)nxn

γn
, (56)

In this case, we have a separation of even and odd degrees of freedom,

M
∑

n=1

x2n−1

γ2n−1
= H1m =

H2

2
−H3,

M
∑

n=1

x2n

γ2n
= H2m =

H2

2
+H3. (57)

When N ≥ 5, for integrability, we need extra integrals of motion.
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Simplectic reduction of three dimensional system
to two dimensional one and
quantization

NPD (32) reduces to two Hamiltonian-Poisson dynamics (HPD),

ẋn = {xn, H1,H2} = ωnmk
∂H1

∂xm

∂H2

∂xk

= {xn,H1}1 = ω1
nm

∂H1

∂xm

= {xn, H2}2 = ω2
nm

∂H2

∂xm
. (58)

Corresponding Poisson structures, ω1 and ω2 are degenerate, because they are 3× 3
antisymmetric tensors. They eigenvectors with vanishing eigenvalue are

(h1)n =
∂H2

∂xn
=

1

γn
, (h2)n =

∂H1

∂xn
=
exn

γn
,

ω1h1 = ω2h2 = 0. (59)
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If we define e.g. x3 from H2, on the restricted ”phase space” (x1, x2) with Hamiltonian
H(x1, x2) = H1(x1, x2, x3(x1, x2)), we find the following regular symplectic dynamics

ẋn = {xn,H} = γ1γ2εnm
∂H

∂xn
, n,m = 1, 2. (60)

Indeed, e.g.

ẋ1 = γ1γ2(
ex2

γ2
+
∂x3

∂x2

ex3

γ3
) = γ1(e

x2 − ex3). (61)

Motion equations take canonical Hamiltonian form

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, (62)

after the change of variables as x1 = γ1x, x2 = γ2p. We can quantize this system introducing
coordinate, momentum and Hamiltonian operators x̂, p̂, Ĥ,

x̂ = x, p̂ = −i~ ∂

∂x
, x̂p̂− p̂x̂ ≡ [x̂, p̂] = i~

Ĥ =
eγ1x̂

γ1
+
eγ2p̂

γ2
+
eγ3(H2−x̂−p̂)

γ3

=
eγ1x̂

γ1
+
eγ2p̂

γ2
+
eγ3H2−

i~
2
γ23

γ3
e−γ3x̂e−γ3p̂ (63)
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Simplectic reduction of four dimensional system
to two dimensional one and
quantization

It is easy to see that the motion equations on the restricted ”phase space” (x1, x2) can be put in
the regular simplectic form

xn = {xn, H} = γ1γ2εnm
∂H(x1, x2, x3(x1), x4(x2))

∂xn
, n,m = 1, 2. (64)

Motion equations take canonical Hamiltonian form

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, (65)

after the change of variables as x1 = γ1x, x2 = γ2p. We can quantize this system introducing
coordinate, momentum and Hamiltonian operators x̂, p̂, Ĥ,

Ĥ =
eγ1x̂

γ1
+
eγ2p̂

γ2
+
eγ3(H13−x̂)

γ3
+
eγ4(H24−p̂)

γ4
,

=
eγ1x̂

γ1
+
eγ3H13

γ3
e−γ3x̂ +

eγ2p̂

γ2
+
eγ4H24

γ4
e−γ4p̂

= K(p̂) + V (x). (66)
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Classical rotator dynamics

The classical rotator has two integrals of motion

H1 = H = H =
1

2
(
M2

1

I1
+
M2

2

I2
+
M2

3

I3
),

H2 =
1

2
M2 =

1

2
(M2

1 +M2
2 +M2

3 ). (67)

NP formulation of the dynamics is [Nambu, 1973],

ẋn = {xn,H1,H2} = εnmk
∂H1

∂xm

∂H2

∂xk
= (I−1

m − I−1
k )xmxk, xn ≡ Mn, n,m, k = 1, 2, 3. (68)
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Deformed Nuclei and quantum rotator in NP formulation

The low-energy collective rotations and vibrations of atomic nuclei can be described by deformed
quantum rotator model [Davidson,1965].The collective model of deformed nuclei is that of a
rotating, deformed, almost rigid body with Hamiltonian

H =
~
2

2
(
M2

1

I1
+
M2

2

I2
+
M2

3

I3
) (69)

inertia tensor I = (I1, I2, I3) in the principal axis system and body-fixed angular momentum
operators M = (M1,M2,M3) satisfy

[M1,M2] = −iM3, (70)

cyclically. Defining an angular momentum representation |l,m, k > diagonal in M and its
projections on laboratory and principal Z axes by

M2|l,m, k >= l(l + 1)|l, m, k >,
Mz |l,m, k >= m|l,m, k >,
M3|l,m, k >= k|l,m, k >, (71)

in units of ~, the state functions for an asymmetric top designated by |l,m > are

|l,m >=
l

∑

k=−l

ak|l,m, k >, ∆k = 2, (72)

the rigid rotator Hamiltonian only connects state components for which k is either even or odd.
That is, the state functions of the most general top can be initially classified into two broad
categories, one being a linear combination of functions for even k, the other for odd k.
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Infinite dimensional system

As an example of the infinite dimensional Nambu-Poisson dynamics, let me
conside the following extension of Schrödinger quantum mechanics
[Makhaldiani,2000]

iVt = ∆V − V 2

2
, (73)

iψt = −∆ψ + V ψ. (74)

An interesting solution to the equation for the potential (73) is

V =
4(4 − d)

r2
, (75)

where d is the dimension of the spase. In the case of d = 1, we have the
potential of conformal quantum mechanics.
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The variational formulation of the extended quantum theory, (73,74) is given by the following
Lagrangian

L = (iVt −∆V +
1

2
V 2)ψ. (76)

The momentum variables are

Pv =
∂L

∂Vt
= iψ,

Pψ = 0. (77)

As Hamiltonians of the Nambu-theoretic formulation, we take the following integrals of motion

H1 =

∫

ddx(∆V − 1

2
V 2)ψ,

H2 =

∫

ddx(Pv − iψ),

H3 =

∫

ddxPψ. (78)

We invent unifying vector notation, φ = (φ1, φ2, φ3, φ4) = (ψ, Pψ , V, Pv). Then it may be
verified that the equations of the extended quantum theory can be put in the following
Nambu-theoretic form

φt(x) = {φ(x), H1, H2, H3}
= i

∫

δ(φ(x), H1,H2,H3)

δ(φ1(y), φ2(y), φ3(y), φ4(y))
dy, (79)
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where the bracket is defined as

{A1, A2, A3, A4} = iεijkl

∫

δA1

δφi(y)

δA2

δφj (y)

δA3

δφk(y)

δA4

δφl(y)
dy

= i

∫

δ(A1, A2, A3, A4)

δ(φ1(y), φ2(y), φ3(y), φ4(y))
dy

= idet(
δAk

δφl
). (80)
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Nambu-Poisson formulation of the hydrodynamics

The motion equations of an ideal (incompressible liquid) hydrodynamics (the Euler equations)

Vt + (V∇)V +∇P = 0,
∇V = 0, (81)

are hamiltonian equations [Arnold,1969].
The hamiltonian structure can be introduced in terms of

Ω = ∇× V, (82)

with motion equation

Ωt = ∇× [V,Ω]
= {Ω, H} (83)

where the square bracket denote vector product; the hamiltonian H is the energy of the system,

H =
1

2

∫

d3xV 2 (84)

and the Poisson bracket for any two functional F and G is defined as

{F,G} =

∫

d3x(Ω, [∇× δF

δΩ
,∇× δG

δΩ
]). (85)
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Statement. The Poisson bracket is a reduction of the corresponding Nambu bracket,

{F,G} =

∫

d3x(
δΓ

δV
, [
δF

δV
,
δG

δV
])

=

∫

d3xεkmn
δΓ

δVk

δF

δVm

δG

δVn
= {Γ, F,G}, (86)

where

Γ =
1

2

∫

d3x(V,Ω), (87)

is the integral of motion, which characterizes the liquid flow topology [Moffat,1969].
Now we put the hydrodynamic equation in the Nambu form [Makhaldiani,1997]

Ωt = {Γ,Ω,H} = {Ω,H1,H2}, (88)

where,

H1 = −Γ, H2 = H. (89)
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Integrable bi-Hamiltonian systems

The bi-Hamiltonian formulation of the integrable systems is based on the following expressions of
a dynamical system

vt = {v(x), H1}1 = f1
δH1

δv

= {v(x), H2}2 = f2
δH2

δv
= F (v, vx, vxx, ...), (90)

in the case, e.g., of the Korteweg - de Vries(KdV) equation,

{v(x), v(y)}1 = f1δ(x− y), f1 = ∂, H1 =
1

2

∫

dx(vvxx + 3v3);

{v(x), v(y)}2 = f2δ(x− y), f2 = ∂3 + 2∂v + 2v∂, H2 =
1

2

∫

dxv2;

F = vxxx + 6vvx (91)
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Geodesic motion of the point particles and integrals of motion

Geodesic motion of the particles maybe described by the following action functional

S =

2
∫

1

L(|ẋ|)ds, (92)

where
|ẋ|2 = gabẋ

aẋb (93)

and gab is metric tensor. The corresponding Euler-Lagrange equation

d

dt
(
∂L

∂ẋa
)− ∂L

∂xa
= 0 (94)

gives the extremal trajectories of the variation of the action (92)

δS =

2
∫

1

ds(
∂L

∂xa
− d

ds
(
∂L

∂ẋa
))δxa + (

∂L

∂ẋa
δxa)21, (95)

with fixed ends, δxa(1) = δxa(2) = 0, and have the form

ẍa + Γabcẋ
bẋc = 0, (96)

where

ẋa =
dxa

ds
(97)

is the proper time derivative,
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ds2 = gabdx
adxb, (98)

gives the geodesic interval and

Γabc =
1

2
gad(gdb,c + gdc,b − gbc,d) (99)

is the Chistoffel’s symbols.
Usually considered forms of the Lagrangian are L = |ẋ| or 1

2
|ẋ|2. The first one gives the

reparametrization invariant action, the second one is easy for Hamiltonian formulation
[DeWitt, 1965]. In the following we restrict ourselves by the last form of the Lagrangian

L =
1

2
gabẋ

aẋb. (100)

Corresponding Hamiltonian
H = paẋ

a − L (101)

is

H =
1

2
gabpapb, (102)

where the momentum is

pa =
∂L

∂ẋa
= gabẋ

b (103)

and gab is the inverse metric tensor,
gacgcb = δab . (104)
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The Hamilton’s equations of motion are

ẋa = {xa,H}0 = gabpb,

ṗa = {pa, H}0 = −1

2

∂gbc

∂xa
pbpc, (105)

where the Poisson bracket is

{A,B}0 =
∂A

∂xa
∂B

∂pa
− ∂A

∂pa

∂B

∂xa
= A(

←

∂ xa
→

∂ pa −
←

∂ pa
→

∂ xa)B (106)

= A
←

∂ zn εnm
→

∂ zm B, (107)

and with the unifying variables zn

zn = xn, zn+N = pn, 1 ≤ n ≤ N (108)

the Hamilton’s equations of motion (105) takes the form (1).
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Integrals of motion H fulfil the following equations

d

ds
H(x, ẋ) = (ẋa

∂

∂xa
+ ẍa

∂

∂ẋa
)H

= (ẋa
∂

∂xa
− Γabcẋ

bẋc
∂

∂ẋa
)H

= ẋa∇aH = 0,
d

ds
H(x, p) = (gabpb

∂

∂xa
− 1

2

∂gbc

∂xa
pbpc

∂

∂pa
)H

= pb∇bH = 0, (109)

where

d

ds
= ẋa∇a = pb∇b,

∇a =
∂

∂xa
− Γbacẋ

c ∂

∂ẋb
,

∇b = gba∇a = gba
∂

∂xa
− 1

2

∂gbc

∂xa
pc

∂

∂pa
. (110)
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For the linear in ẋ integrals
H1 = Ka(x)ẋ

a = Kapa (111)

we have

Ḣ1 = ẋa∇aH1 =
∂Kb

∂xa
ẋaẋb −KcΓ

c
abẋ

aẋb

= (Ka,b −KcΓ
c
ab)ẋ

aẋb

= Ka;bẋ
aẋb =

1

2
(Ka;b +Kb;a)ẋ

aẋb

= K(a;b)ẋ
aẋb = 0. (112)

So, from the expression (112), we see one-to-one correspondence between the expression of the
first order integrals of the motion (111) and the nontrivial solutions of the following equation for
the so-called Killing vector Ka

K(a;b) = 0. (113)
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For quadratic in ẋ integrals
H2 = Kab(x)ẋ

aẋb (114)

we have

Ḣ2 = (Kab,c −KdbΓ
d
ac −KadΓ

d
bc)ẋ

aẋbẋc

= Kab;cẋ
aẋbẋc =

1

3
(Kab;c +Kbc;a +Kca;b)ẋ

aẋbẋc

= K(ab;c)ẋ
aẋbẋc = 0. (115)

So, we have one-to-one correspondence between the existence of the second order integrals of
motion (114) and the nontrivial solutions of the following equation for the tensor Kab

K(ab;c) = 0. (116)
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Now we prove the following:
Theorem 1. A necessary and sufficient condition that the following polynomials

Hn = Ka1a2...an (x)ẋ
a1 ẋa2 ...ẋan = Ka1a2...an (x)pa1pa2 ...pan (117)

are integrals of the geodesic motion, (96, 105) is that the symmetric tensors Ka1a2...an , fulfil the
equation

K(a1a2...an;a) = 0. (118)

In fact,

Ḣn = ẋa∇aHn = K(a1a2...an;a)ẋ
a1 ẋa2 ...ẋan ẋa = 0,

= pa∇aHn = K(a1a2...an;a)pa1pa2 ...panpa = 0, (119)

which proves the theorem, see [Sommers, 1973].
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The symmetric tensors, which fulfil the equation (118), are known as Killing tensors.
Note that, as the metric tensor is covariantly constant, gab;c = 0, there is always the second order
Killing tensor

Kab = gab (120)

and the corresponding integral of motion, Hamiltonian, H0,

2H0 = gabẋ
aẋb. (121)
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Let us define an interesting algebra on Killing tensors.
Theorem 2. The following symmetrized product of the Killing tensors Kn and Km

K(a1a2...anKan+1an+2...an+m) = Ka1a2...an+m , (122)

is (reducible) Killing tensor.
In fact, let us multiply the corresponding integrals of motion

HnHm = K(a1a2...anKan+1an+2...an+m)pa1pa2 ...pan+m =
= K(a1a2...anKan+1an+2...an+m)ẋ

a1 ẋa2 ...ẋan+m = Hn+m, (123)

which, using the Theorem 1, proves this theorem.
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We have the following bracket algebra of the integrals of motion

{Hn,Hm}0 = Hn+m−1. (124)

This algebra gives another method of the construction of the Killing tensors. As an example let
us calculate the bracket for the integrals H1 = Kapa and H2 = Kabpapb

{H1,H2}0 = Ka{pa,Kbc}pbpc +Kbc{Ka, pbpc}pa
= (KabKc,a+K

acKb,a−Kbc,aK
a)pbpc

= K̃abpapb. (125)

Let us consider another, tensor, generalization of the scalar integral of motion (111)

Ha1a2...am−1
= Aa1a2...am(x)ẋam ,

Ha1a2...am−1 = Aa1a2...am(x)pam , (126)

where the tensors Aa1a2...am(x) and Aa1a2...am(x) are skew-symmetric.
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We have the following:
Theorem 31. A necessary and sufficient condition that the tensors (126) are (covariantly)
constant (parallel) along any geodesic xa(s) is that the covariant derivative of the
skew-symmetric tensor Aa1a2...am(x) is also skew-symmetric

Aa1a2...am;am+1
+Aa1a2...am+1;am = 0. (127)

In fact, as xa(s) is geodesic, we have

Dẋa

Ds
= ẍa + Γabcẋ

bẋc = 0,

Dpa

Ds
= ṗa +

1

2

∂gbc

∂xa
pbpc = gab

Dẋb

Ds
= 0 (128)

and

D

Ds
(Aa1a2...am(x)ẋam) = Aa1a2...am;am+1

ẋam ẋam+1

=
1

2
(Aa1a2...am;am+1

+Aa1a2...am+1;am)ẋam ẋam+1 = 0,

D

Ds
(Aa1a2...am(x)pam) = Aa1a2...am;am+1pampam+1

=
1

2
(Aa1a2...am;am+1 +Aa1a2...am+1;am)pampam+1

= 0, (129)

which proves the theorem.

1This theorem is slight modification of the corresponding theorem from [Yano, 1952]
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From the tensor integrals (126) we can construct the second rank Killing tensor.
Theorem 4. The following (symmetric) product of the tensors An and Bn gives a second rank
Killing tensors

Aa1a2...an(aBa1a2...an
b) = Kab. (130)

In fact, if we multiply the integrals

An = Aa1a2...an = Aa1a2...anapa,
Bn = Ba1a2...an = Ba1a2...an

bpb, (131)

we obtain again integral

AnBn = Aa1a2...an(aBa1a2...an
b)papb

= Kabpapb = H2, (132)

and using the Theorem 1, we prove the theorem 4.
So, if we have a nontrivial solution of the equations (127) , we can construct second integral of
motion H2

H2 = Kabpapb, (133)

and with original Hamiltonian (102)

H1 = 2H = gabpapb, (134)

we will have bi-Hamiltonian system.
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Than, we can apply the general method of the integration of the bi-Hamiltonian systems
[Magri, 1978],[Okubo,Das,1988]. Also we can construct the Nambu-Poisson formulation
[Baleanu,Makhaldiani,1998] of this system

ẋn = {xn, H1, H2}
= ωnmk(x)

∂H1

∂xm

∂H2

∂xk
, (135)

where the Nambu-Poisson structure tensor ωnmk we identify by comparision of the system (135)
with the original system (105).
Note, that the skew-symmetric tensors, Aa1a2...an , which have the property, that its covariant
derivative is also skew-symmetric, were considered by Bochner [Bochner, 1948] (see [Yano, 1952])
and/but in literature are known as the Killing-Yano tensors [Gibbons, Rietdijk, van Holten, 1993].
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Modified Bochner-Killing-Yano (MBKY) structures

Now we return to our extended system (6) and formulate conditions for the integrals of motion
H(x, ψ)

H = H0(x) +H1 + ...+HN , (136)

where
Hn = Ak1k2...kn (x)ψk1ψk2 ...ψkN , 1 ≤ n ≤ N, (137)

we are assuming Grassmann valued ψn and the tensor Ak1k2...kn is skew-symmetric. For
integrals (136) we have

Ḣ = {
N
∑

n=0

Hn,H1} =
N
∑

n=0

{Hn,H1} =
N
∑

n=0

Ḣn = 0. (138)

Now we see, that each term in the sum (136) must be conserved separately.
In particular for Hamiltonian systems (2), zeroth, H0 and first level H1, (8), Hamiltonians are
integrals of motion. For n = 0

Ḣ0 = H0,kfk = 0, (139)

which reduce to the condition (109), in the case of the geodesic motion of the particle (105) and
defines corresponding modifications of the polynomial integrals of motion (117).
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For 1 ≤ n ≤ N we have

Ḣn = Ȧk1k2...knψk1ψk2 ...ψkN + Ak1k2...kn ψ̇k1ψk2 ...ψkN + ...+ Ak1k2...knψk1ψk2 ...ψ̇kN
= (Ak1k2...kn,kfk − Akk2...knfk1,k − ...− Ak1...kn−1kfkn,k)ψk1ψk2 ...ψkN = 0, (140)

and there is one-to-one correspondence between the existence of the integrals (137) and the
existence of the nontrivial solutions of the following equations

D

Dt
Ak1k2...kn = {Ȧk1k2...kn − fk1,kAkk2...kn − ...− fkn,kAk1...kn−1k}

= {Ak1k2...kn,kfk −Akk2...knfk1,k − ...− Ak1...kn−1kfkn,k} = 0, (141)

where under the bracket operation, {Bk1,...,kN } = {B} we understand complete
anti-symmetrization with respect to the free indexes.
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For n = 1 the system (141) gives

Ak1,kfk −Akfk1,k = 0 (142)

and this equation has at list one solution, Ak = fk. If we have two (or more) independent first
order integrals

H
(1)
1 = A1

kΨk; H
(2)
1 = A2

kΨk, ... (143)

we can construct corresponding reducible second (or higher)order MBKY tensor(s)

H2 = H
(1)
1 H

(2)
1 = A1

kA
2
lΨkΨl = AklΨkΨl;

HM = H
(1)
1 ...H

(M)
M = Ak1...kMΨk1 ...ΨkM ,

Ak1...kM = {A(1)
k1
...A

(M)
kM

}, 2 ≤ M ≤ N (144)

The system (141) defines a Generalization of the Bochner-Killing-Yano structures (118, 127), of
the geodesic motion of the point particle, for the case of the general (24) (and extended (6))
dynamical systems. Having AM , 2 ≤M ≤ N independent MBKY structures, we can construct
corresponding second order Killing tensors and Nambu-Poisson dynamics. In the superintegrable
case, we have maximal number of the motion integrals, N-1.
The structures defined by the system (141) we will call the Modified Bochner-Killing-Yano
structures or MBKY structures for short, [Makhaldiani,1999].
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Extended geodesic motion of the point particles and Grassmann valued
integrals of motion

Let us take the following Lagrangian

L = (ẋa − gabpb)φa − (ṗa +
1

2

∂gbc

∂xa
pbpc)ψ

a

= (ẋa − gabpb)φa + (ψ̇a − 1

2

∂gab

∂xc
ψcpb)pa +

d

ds
(ψapa)

= L1 +
d

ds
(ψapa). (145)

New momentum variables are

∂L1

∂ẋa
= φa,

∂L1

∂ψ̇a
= pa, (146)

(fundamental) brackets are

{xa, φb}1 = δab ,

{ψa, pb}1 = δba,

{A,B}1 = A(
←

∂ xa
→

∂ φa +
←

∂ ψa
→

∂ pa −
←

∂ φa

→

∂ xa −
←

∂ pa
→

∂ ψa)B

= A
←

∂ Zn εnm
→

∂ Zm B. (147)
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The Hamiltonian is

H1 = gabφapb +
1

2

∂gbc

∂xa
ψapbpc, (148)

the equations of motion are

ẋa = gabpb,

ṗa = −1

2

∂gbc

∂xa
pbpc,

φ̇a = −∂g
bc

∂xa
pbφc −

1

2

∂2gbc

∂xa∂xe
pbpcψ

e,

ψ̇a =
∂gab

∂xc
pbψ

c + gabφb. (149)

Note that the extended system (149) and Hamiltonian (148) can be obtained from the system
(105) and Hamiltonian (102) by the following simple shift of the variables

xa ⇒ xa + θψa,
pa ⇒ pa + θφa, (150)

where θ- Grassmann parameter, θ2 = 0.
In fact,

H0 =
1

2
gabpapb ⇒

1

2
gabpapb + θ(

1

2
gab,c papbψ

c + gabφapb)

= H0 + θH1. (151)
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The Lagrangian L1 (145) can be obtained by the shift (150) from the following first order
Lagrangian

L = −1

2
gabpapb + ẋapa, (152)

which is equivalent to the Lagrangian (100).
In fact, under the shift (150) we have

L = −1

2
gabpapb + ẋapa

⇒ −1

2
(gab + gab, cθψc)(pa + θφa)(pb + θφb) + (ẋa + θψ̇a)(pa + θφa)

= L0 + θL1. (153)

Let us define (extending the zeroth level bracket (106)) the Grassmann even bracket
[Berezin,1987]

{xa, pb}0 = δab ,
{ψa, φb}0 = δab ,

{A,B}0 =
∂A

∂xa
∂B

∂pa
+

∂A

∂ψa
∂B

∂φa
− ∂A

∂pa

∂B

∂xa
− ∂A

∂φa

∂B

∂ψa

= A(
←

∂ xa
→

∂ pa +
←

∂ ψa
→

∂ φa −
←

∂ pa
→

∂ xa −
←

∂ φa

→

∂ ψa)B

= A
←

∂ Zn εnm
→

∂ Zm B. (154)
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An interesting problem is to construct an even Hamiltonian.
General form H(x, ψ, p, φ) of the integrals of motion of the extended system (149) fulfils the
following equation

Ḣ = (ẋa
∂

∂xa
+ ψ̇a

∂

∂ψa
+ ṗa

∂

∂pa
+ φ̇a

∂

∂φa
)

= (pb∇b + φb∇b1 + ψc∇2c)H = 0, (155)

where

∇b = gba
∂

∂xa
− 1

2

∂gbc

∂xa
pc

∂

∂pa
,

∇b1 = gba
∂

∂ψa
− ∂gbc

∂xa
pc

∂

∂φa
,

∇2c =
∂gab

∂xc
pb

∂

∂ψa
− 1

2

∂2gbe

∂xc∂xa
pbpe

∂

∂φa
. (156)
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Superdynamics of the spinning particles

Spacetime forms of various degrees generate symmetries in particle and string supersymmetric
worldvolume actions. In string theory, invariance of the worldsheet action requires that these
forms are parallel with respect to a suitable connection leading to special holonomy manifolds.
The conditions for the invariance of the action of supersymmetric particle under symmetries
generated by spacetime forms are somewhat different. To describe these symmetries, let X a
superfield which is a map from the worldline supermanifold m(1|1), with coordinates (t, θ), into
the spacetime M. The transformation generated by a spacetime (1 + 1)-form f is

δXn = alf
n
k1,k2,...,kl

DXk1DXk2 ...DXkl , (157)

where the index is raised using the spacetime metric g and al is an infinitesimal parameter; D is
the worldline superspace derivative D2 = i∂t. Requiring that the worldline action written in
superfields,

I = − i

2

∫

dtdθgnmDX
n∂tX

m, (158)

to be invariant under (157), one finds that the covariant derivative of the form f coincides with
the exterior derivative [Gibbons, Rietdijk, van Holten, 1993],

∇f = (l + 2)−1df,
∇n1

fn2...nl+2
= ∇[n1

fn1,n2...nl+2]
(159)
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Higher spin particle models

The canonical quantization of locally-supersymmetric O(N)-extended spinning particle models

A =

∫

dt(pµẋµ +
i

2
ψnµψ̇

µ
n − eH − iχnQn − i

2
anmJnm),

H =
1

2
pµp

µ, Qn = pµψ
µ
n, Jnm = ψnµψ

µ
m, (160)

yields equations of motions for spin-N
2

fields (wave functions) in terms of the corresponding
linearized curvatures.
Note that we can obtain this extended hamiltonian structure from scalar particle hamiltonian by
the following shift

pµ → pµ +
i

e
χnψnµ ⇒ eH = e

1

2
pµp

µ → eH + iχnQn +
i

2
anmJnm,

anm =
i

e
χnχm, n = 1, 2, ...,N. (161)
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Quantum field theory and Fractal calculus -
Universal language of fundamental physics

In QFT existence of a given theory means, that we can control its behavior
at some scales (short or large distances) by renormalization theory
[Collins, 1984].
If the theory exists, than we want to solve it, which means to determine
what happens on other (large or short) scales. This is the problem (and
content) of Renormdynamics.
The result of the Renormdynamics, the solution of its discrete or continual
motion equations, is the effective QFT on a given scale (different from the
initial one).
We can invent scale variable λ and consider QFT on D + 1+ 1 dimensional
space-time-scale. For the scale variable λ ∈ (0, 1] it is natural to consider
q-discretization, 0 < q < 1, λn = qn, n = 0, 1, 2, ... and p - adic,
nonarchimedian metric, with q−1 = p - prime integer number.
The field variable ϕ(x, t, λ) is complex function of the real, x, t, and p -
adic, λ, variables. The solution of the UV renormdynamic problem means,
to find evolution from finite to small scales with respect to the scale time
τ = lnλ/λ0 ∈ (0,−∞). Solution of the IR renormdynamic problem means
to find evolution from finite to the large scales, τ = lnλ/λ0 ∈ (0,∞).
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This evolution is determined by Renormdynamic motion equations with
respect to the scale-time.
As a concrete model, we take a relativistic scalar field model with
lagrangian (see e.g. [Makhaldiani, 1980])

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − g

n
ϕn, µ = 0, 1, ...,D − 1 (162)

The mass dimension of the coupling constant is

[g] = dg = D − n
D − 2

2
= D + n− nD

2
. (163)

In the case

n =
2D

D − 2
= 2 +

4

D − 2
= 2 + ǫ(D)

D =
2n

n− 2
= 2 +

4

n− 2
= 2 + ǫ(n) (164)

the coupling constant g is dimensionless, and the model is renormalizable.
We take the euklidean form of the QFT which unifies quantum and
statistical physics problems. In the case of the QFT, we can return (in)to
minkowsky space by transformation: pD = ip0, xD = −ix0.
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The main objects of the theory are Green functions - correlation functions - correlators,

Gm(x1, x2, ..., xm) =< ϕ(x1)ϕ(x2)...ϕ(xm) >

= Z−1
0

∫

dϕ(x)ϕ(x1)ϕ(x2)...ϕ(xm)e−S(ϕ) (165)

where dϕ is an invariant measure,

d(ϕ + a) = dϕ. (166)

For gaussian actions,

S = S2 =
1

2

∫

dxdyφ(x)A(x, y)φ(y) = ϕ ·A · ϕ (167)

the QFT is solvable,

Gm(x1, ..., xm) =
δm

δJ(x1)...J(xm)
lnZJ |J=0,

ZJ =

∫

dϕe−S2+J·ϕ = exp(
1

2

∫

dxdyJ(x)A−1(x, y)J(y))

= exp(
1

2
J · A−1 · J) (168)

Nontrivial problem is to calculate correlators for non gaussian QFT.
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Effective action

Generating functional for connected correlators is

F (J) = lnZJ ,
δF (J)

δJ(x)
=

1

ZJ

δZJ

δJ(x)
≡< ϕ(x) >J≡ φ(x)− (169)

is observable value of the field, generated by source J. We have

δ

δJ
(F (J)− J · φ)|φ=const = 0, (170)

so

J · φ− F (J) = Sq(φ) = S(φ) +R(φ)

=
∑

n≥1

1

n!

∫

dx1dx2...dxnΓn(x1, x2, ..., xn)φ(x1)φ(x2)...φ(xn),

δSq

δφ(x)
= J(x);

δ2Sq

δφ(x1)δφ(x2)
=
δJ(x2)

δφ(x1)
=
δJ(x1)

δφ(x2)
= Γ2(x1, x2) (171)

R(φ) - is quantum corrections to the classical action.
The connected part of the two point correlator - propagator, is

< ϕ(x1)ϕ(x2) >c=< ϕ(x1)ϕ(x2) > − < ϕ(x1) >< ϕ(x2) >

=
1

Z(J)

δ2Z(J)

δJ(x1)δJ(x2)
− 1

Z(J)

δZ(J)

δJ(x1)

1

Z(J)

δZ(J)

δJ(x2)
= Γ2(x1, x2) (172)
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p-adic convergence of perturbative series

Perturbative series have the following qualitative form

f(g) = f0 + f1g + ...+ fng
n + ..., fn = n!P (n)

f(x) =
∑

n≥0

P (n)n!xn = P (δ)Γ(1 + δ)
1

1 − x
, δ = x

d

dx
(173)

In usual sense these series are divergent, but with proper nomalization of
the expansion parametre g, the coefficients of the series are rational
numbers and if experimental dates indicates for some rational value for g,
e.g. in QED

g =
e2

4π
=

1

137.0...
(174)

then we can take corresponding prime number and consider p-adic
convergence of the series. In the case of QED, we have

f(g) =
∑

fnp
−n, fn = n!P (n), p = 137,

|f |p ≤
∑

|fn|ppn (175)
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In the Youkava theory of strong interections (see e.g. [Bogoliubov,1959]),
we take g = 13,

f(g) =
∑

fnp
n, fn = n!P (n), p = 13,

|f |p ≤
∑

|fn|pp−n <
1

1− p−1
(176)

So, the series is convergent. If the limit is rational number, we consider it
as an observable value of the corresponding physical quantity. Note also,
that the inverse coupling expansions, e.g. in lattice(gauge) theories,

f(β) =
∑

rnβ
n, (177)

are also p-adically convergent for β = pk. We can take the following
scenery. We fix coupling constants and masses, e.g in QED or QCD, in low
order perturbative expansions. Than put the models on lattice and
calculate observable quantities as inverse coupling expansions, e.g.

f(α) =
∑

rnα
−n,

αQED(0) = 1/137; αQCD(mZ) = 0.11... = 1/32 (178)
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Real, p - adic and q - uantum fractal calculus

Every (good) school boy/girl knows what is

dn

dxn
= ∂n = (∂)n, (179)

but what is its following extension

dα

dxα
= ∂α , α ∈ ℜ ? (180)
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Euler, ... Liouville, ... Holmgren, ...

Let us consider the integer derivatives of the monomials

dn

dxn
xm = m(m − 1)...(m− (n− 1))xm−n, n ≤ m,

=
Γ(m+ 1)

Γ(m + 1− n)
xm−n. (181)

L.Euler (1707 - 1783) invented the following definition of the fractal derivatives,

dα

dxα
xβ =

Γ(β + 1)

Γ(β + 1− α)
xβ−α. (182)

J.Liouville (1809-1882) takes exponents as a base functions,

dα

dxα
eax = aαeax. (183)
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The following Cauchy formula

In0,xf =

∫ x

0
dxn

∫ xn−1

0
dxn−2...

∫ x2

0
dx1f(x1) =

1

Γ(n)

∫ x

0
dy(x− y)n−1f(y) (184)

permits analytic extension from integer n to complex α,

Iα0,xf =
1

Γ(α)

∫ x

0
dy(x− y)α−1f(y) (185)

J.H. Holmgren invented (in 1863) the following integral transformation,

D−αc,x f =
1

Γ(α)

x
∫

c

|x− t|α−1f(t)dt. (186)
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It is easy to show that

D−αc,x x
m =

Γ(m+ 1)

Γ(m + 1 + α)
(xm+α − cm+α),

D−αc,x e
ax = a−α(eax − eac), (187)

so, c = 0, when m+ α ≥ 0, in Holmgren’s definition of the fractal calculus, corresponds to the
Euler’s definition, and c = −∞, when a > 0, corresponds to the Liouville’s definition. Holmgren’s
definition of the fractal calculus reduce to the Euler’s definition for finite c, and to the Liouvill’s
definition for c = ∞,

D−αc,x f = D−α0,x f −D−α0,c f,

D−α∞,xf = D−α−∞,xf −D−α−∞,∞f. (188)
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We considered the following modification of the c = 0 case [Makhaldiani,2003],

D−α0,x f =
|x|α
Γ(α)

1
∫

0

|1− t|α−1f(xt)dt, =
|x|α
Γ(α)

B(α, ∂x)f(x)

= |x|α Γ(∂x)

Γ(α+ ∂x)
f(x), f(xt) = tx

d
dx f(x). (189)

As an example, consider Euler B-function,

B(α, β) =

∫ 1

0
dx|1− x|α−1|x|β−1 = Γ(α)Γ(β)D−α01 D1−β

0x 1 =
Γ(α)Γ(β)

Γ(α + β)
(190)

We can define also FC as

Dαf = (D−α)−1f =
Γ(∂x+ α)

Γ(∂x)
(|x|−αf), ∂x = δ + 1, δ = x∂ (191)

For the Liouville’s case,

Dα−∞,xf = (D−∞,x)
αf = (∂x)

αf, (192)

∂−αx f =
1

Γ(α)

∫ ∞

0
dttα−1e−t∂xf(x) =

1

Γ(α)

∫ ∞

0
dttα−1f(x− t)

=
1

Γ(α)

∫ x

−∞

dt(x− t)α−1f(t) = D−α−∞,xf. (193)
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The integrals can be calculated as

D−nf = (D−1)nf, (194)

where

D−1f = x
Γ(∂x)

Γ(1 + ∂x)
f = x

1

∂x
f = x(∂x)−1f = (∂)−1f =

∫ x

0
dtf(t). (195)

Let us consider Weierstrass C.T.W. (1815 - 1897) fractal function

f(t) =
∑

n≥0

anei(b
nt+ϕn), a < 1, ab > 1. (196)

For fractals we have no integer derivatives,

f(1)(t) = i
∑

(ab)nei(b
nt+ϕn) = ∞, (197)

but the fractal derivative,

f(α)(t) =
∑

(abα)nei(b
nt+πα/2+ϕn), (198)

when abα = a′ < 1, is another fractal (196).

N.V.Makhaldiani ( Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Nambu-Poisson dynamics with some applications July 18 - 23, 2011. 63 / 175



p - adic fractal calculus

p-adic analog of the fractal calculus (186) ,

D−αx f =
1

Γp(α)

∫

Qp

|x− t|α−1
p f(t)dt, (199)

where f(x) is a complex function of the p-adic variable x, with p-adic Γ–function

Γp(α) =

∫

Qp

dt|t|α−1
p χ(t) =

1− pα−1

1− p−α
, (200)

was considered by V.S. Vladimirov [Vladimirov,1988].
The following modification of p-adic FC is given in [Makhaldiani,2003]

D−αx f =
|x|αp
Γp(α)

∫

Qp

|1− t|α−1
p f(xt)dt

= |x|αp
Γp(∂|x|)

Γp(α+ ∂|x|)
f(x). (201)
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Fractal qalculus

The basic object of q-calculus [Gasper,Rahman,1990] is q-derivative

Dqf(x) =
f(x) − f(qx)

(1 − q)x
=

1− qx∂

(1− q)x
f(x), (202)

where either 0 < q < 1 or 1 < q <∞. In the limit q → 1, Dq → ∂x.
Now we define the fractal q-calculus,

Dαq f(x) = (Dq)
αf(x)

= ((1 − q)x)−α(f(x) +
∑

n≥1

(−1)n
α(α− 1)...(α− n+ 1)

n!
f(qnx)). (203)

For the case α = −1, we obtain the integral

D−1
q f(x) = (1− q)x(1− qx∂)−1f(x) = (1− q)x

∑

n≥0

f(qnx). (204)

In the case of 1 < q < ∞, we can give a good analytic sense to these expressions for prime
numbers q = p = 2, 3, 5, ..., 29, ...,137, ... This is an algebra-analytic quantization of the
q-calculus and corresponding physical models. Note also, that p-adic calculus is the natural tool
for the physical models defined on the fractal( space)s like Bete lattice ( or Brua-Tits trees, in
mathematical literature).
Note also symmetric a definition of the calculus

Dqsf(x) =
f(q−1x)− f(qx)

(q−1 − q)x
f(x). (205)
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Fractal finite - difference calculus

Usual finite difference calculus is based on the following (left) derivative operator

D−f(x) =
f(x)− f(x− h)

h
= (

1− e−h∂

h
)f(x). (206)

We define corresponding fractal calculus as

Dα−f(x) = (D−)
αf(x). (207)

In the case of α = −1, we have usual finite difference sum as regularization of the Riemann
integral

D−1
− f(x) = h(f(x) + f(x − h) + f(x − 2h) + ...). (208)

(I believe that) the fractal calculus (and geometry) are the proper language for the quantume
(field) theories, and discrete versions of the fractal calculus are proper regularizations of the
fractal calculus and field theories.
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Hypergeometric functions

A hypergeometric series, in the most general sense, is a power series in which the ratio of
successive coefficients indexed by n is a rational function of n,

f(x) =
∑

n≥0

anx
n, an+1 = R(n)an, R(n) =

P (α, n)

Q(β, n)
(209)

so

P (α, δ)f(x) = Q(β, δ)(f(x) − f(0))/x,
f(x)− f(0) = xR(δ)f(x), f(x) = (1 − xR(δ))−1f(0), δ = x∂x (210)

Hypergeometric functions have many particular special functions as special cases, including many
elementary functions, the Bessel functions, the incomplete gamma function, the error function,
the elliptic integrals and the classical orthogonal polynomials, because the hypergeometric
functions are solutions to the hypergeometric differential equation, which is a fairly general
second-order ordinary differential equation.
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In a generalization given by Eduard Heine in the late nineteenth century, the ratio of successive
terms, instead of being a rational function of n, are considered to be a rational function of qn

f(x) =
∑

n≥0

anx
n, an+1 = R(qn)an, R(n) =

P (α, qn)

Q(β, qn)
,

P (α, qδ)f(x) = Q(β, qδ)(f(x) − f(0))/x,
f(x)− f(0) = xR(qδ)f(x), f(x) = (1 − xR(qδ))−1f(0), δ = x∂x (211)

Another generalization, the elliptic hypergeometric series, are those series where the ratio of
terms is an elliptic function (a doubly periodic meromorphic function) of n.
There are a number of new definitions of hypergeometric series, by Aomoto, Gelfand and others;
and applications for example to the combinatorics of arranging a number of hyperplanes in
complex N-space.
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Hypergeometric field theory (HFT)

Formal solutions for the the hypergeometric functions (210,211), we put in the fieldtheoretic form,

f(x) = G(x)f(0),

G(x) =< ψ(x)φ(0) >=
δ2 lnZ

δJ(x)δI(0)
= (1− xR)−1,

Z =

∫

dψdφe−S+Iφ+Jψ = eI(1−xR)−1J ,

S =

∫

ψ(1 − xR)φ =

∫

ψ(Q − xP )ϕ, φ = Qϕ. (212)

When we invent interaction terms, we obtain nontrivial HFT. In terms of the fundamental fields,
ψ,ϕ, we have local field model.
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Lauricella Hypergeometric functions (LFs)

For LFs (see, e.g. [Miller,1977]), we find the following formulas [Makhaldiani,2011]

FA(a; b1, ..., bn; c1, ..., cn; z1, ..., zn) =
(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c1)δ1 ...(cn)δn
ez1+...+zn

=
(a)δ1+...+δn

(a1)δ1 ...(an)δn
F (a1, b1; c1; z1)...F (an, bn; cn; zn)

= T−1(a)Fn = Σm≥0
(a)m1+...+mn(b1)m1

...(bn)mn

(c1)m1
...(cn)mn

zm1

1

m1!
...
zmn
n

mn!
, |z1|+ ...+ |zn| < 1;

FB(a1, ..., an; b1, ..., bn; c; z1, ..., zn) =
(a1)δ1 ...(an)δn (b1)δ1 ...(bn)δn

(c)δ1+...+δn
ez1+...+zn

=
(c1)δ1 ...(cn)δn
(c)δ1+...+δn

F (a1, b1; c1; z1)...F (an, bn; cn; zn) = T (c)Fn

= Σm≥0
(a1)m1

...(an)mn (b1)m1
...(bn)mn

(c)m1+...+mn

zm1

1

m1!
...
zmn
n

mn!
, |z1| < 1, ..., |zn| < 1; (213)
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FC(a; b; c1, ..., cn; z1, ..., zn) =
(a)δ1+...+δn(b)δ1+...+δn

(c1)δ1 ...(cn)δn
ez1+...+zn

=
(a)δ1+...+δn(b)δ1+...+δn

(a1)δ1 ...(an)δn (b1)δ1 ...(bn)δn
F (a1, b1; c1; z1)...F (an, bn; cn; zn)

= T−1(a)T−1(b)Fn = T−1(b)FA

= Σm≥0
(a)m1+...+mn (b)m1+...+mn

(c1)m1
...(cn)mn

zm1
1

m1!
...
zmn
n

mn!
, |z1|1/2 + ...+ |zn|1/2 < 1;

FD(a; b1, ..., bn; c; z1, ..., zn) =
(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c)δ1+...δn
ez1+...+zn

=
(a)δ1+...+δn(c1)δ1 ...(cn)δn
(a1)δ1 ...(an)δn (c)δ1+...δn

F (a1, b1; c1; z1)...F (an, bn; cn; zn)

= T−1(a)T (c)Fn = T (c)FA = T−1(a)FB

= Σm≥0
(a)m1+...+mn (b1)m1

...(bn)mn

(c1)m1
...(cn)mn

zm1

1

m1!
...
zmn
n

mn!
, |z1| < 1, ..., |zn| < 1. (214)
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Lomidze Bn function (LBn)

In the paper ([Lomidze, 1994]) the following formula were proposed

Bn(r0, r1, ..., rn) = det[xi−1
j

∫ 1

xj−1/xj

ui−1(1− u)rj−1
n
∏

k=0,k 6=j

(
xju− xk

xj − xk
)rk−1du]/det[xi−1

j

=
Γ(r0)Γ(r1)...Γ(rn)

Γ(ro + r1 + ...+ rn)
, 0 = x0 < x1 < x2 < ... < xn, n ≥ 1. (215)

Let us put the formula in the following factorized form

LBn(x, r) ≡ det[xi−1
j

∫ 1

xj−1/xj

duui+r0−2(1− u)rj−1
n
∏

k=1,k 6=j

(
xju− xk

xj − xk
)rk−1]

= detVn(x)Bn(r), Vn(x) = [xi−1
j ], Bn(r) =

Γ(r0)Γ(r1)...Γ(rn)

Γ(r0 + r1 + ...+ rn)
(216)

Now, it is enough to proof this formula for general values of xi and particular values of ri, e.g.,
ri = 1, and for general values of ri and particular values of xi, e.g. xi = pi, 1 ≤ i ≤ n. In the
case of ri = 1, right hand side of the formula is equal to the Vandermonde determinant divided
by n! The left hand side is the determinant of the matrix with elements
Aij = xi−1

j (1− (xj−1/xj)i)/i

When we calculate determinant of this matrix, from the row i, we factorize 1/i, 2 ≤ i ≤ n which
gives the 1/n! the rest matrix we calculate transforming the matrix to the form of the
Vandermonde matrix.
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This is the half way of the proof. Let us take the concrete values of xi = pi, 1 ≤ i ≤ n, where p
is positive integer and general complex values for ri, 0 ≤ i ≤ n, and calculate both sides of the
equality. For Vandermonde determinant we find for high values of p the following asymptotic

detV = pN , N =
n
∑

k=2

k(k − 1) =
n(n2 − 1)

3
(217)

The matrix elements are

Bij = xi−1
j

∫ 1

xj−1/xj

ui+r0−2(1− u)rj−1
n
∏

k=1,k 6=j

(
xju− xk

xj − xk
)rk−1du]

= xi−1
j (

∏

1≤k<j

(
xj

xj − xk
)rk−1

∏

j<k≤n

(
xk

xk − xj
)rk−1

∫ 1

xj−1/xj

ui+r0−2(1 − u)rj−1

·
∏

1≤k<j

(u− xk/xj)
rk−1

∏

j<k≤n

(1− xj/xku)
rk−1du

= p(i−1)j(

∫ 1

0
ui+r0−2+

∑j−1

k=1
(rk−1)(1− u)rj−1du

= p(i−1)jB(i+

j−1
∑

k=0

(rk − 1), rj) (218)
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For n = 2 we have

B11 =

∫ 1

0
ur0−1(1 − u)r1−1du =

Γ(r0)Γ(r1)

Γ(r0 + r1)
,

B22 = p2
∫ 1

0
ur0+r1−1(1− u)r2−1du =

Γ(r0 + r1)Γ(r2)

Γ(r0 + r1 + r2)
,

LB2/V2 = B11B22/p
2 =

Γ(r0)Γ(r1)Γ(r2)

Γ(r0 + r1 + r2)
(219)

For n = 3,

B11 =

∫ 1

0
ur0−1(1 − u)r1−1 =

Γ(r0)Γ(r1)

Γ(r0 + r1)
= B(r0, r1),

B22 = p2
∫ 1

0
ur0+r1−1(1− u)r2−1 = p2

Γ(r0 + r1)Γ(r2)

Γ(r0 + r1 + r2)
,

B33 = p6
∫ 1

0
ur0+r1+r2−1(1− u)r3−1 = p6

Γ(r0 + r1 + r2)Γ(r3)

Γ(r0 + r1 + r2 + r3)

LB3/V3 = B11B22B33/p
8 =

Γ(r0)Γ(r1)Γ(r2)Γ(r3)

Γ(r0 + r1 + r2 + r3)
(220)

Now it is obvious the last step of the proof [Makhaldiani,2011]

LBn(x, r) = detVn(x)B(r0, r1)...B(r0 + r1 + ...+ rn−1, rn)
= detVn(x)Bn(r)

Vn(x) = [xi−1
j ], Bn(r) =

Γ(r0)Γ(r1)..Γ(rn)

Γ(r0 + r1 + ...+ rn)
(221)
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Field theory applications of FC

Let us consider the following action

S =
1

2

∫

Qv

dxΦ(x)DαxΦ, v = 1, 2, 3, 5, ...,29, ...,137, ... (222)

Q1 is real number field, Qp, p - prime, are p-adic number fields. In the momentum representation

S =
1

2

∫

Qv

duΦ̃(−u)|u|αv Φ̃(u), Φ(x) =

∫

Qv

duχv(ux)Φ̃(u),

D−αχv(ux) = |u|−αv χv(ux). (223)

The statistical sum of the corresponding quantum theory is

Zv =

∫

dΦe
− 1

2

∫
ΦDαΦ

= det−1/2Dα = (
∏

u

|u|v)−α/2. (224)
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String theory applications

For (symmetrized, 4-tachyon) Veneziano amplitude we have (see, e.g. [Kaku,2000])

Bs(α, β) = B(α, β) + B(β, γ) +B(γ, α) =

∫ ∞

−∞

dx|1− x|α−1|x|β−1,

α+ β + γ = 1 (225)

For the p-adic Veneziano amplitude we take

Bp(α, β) =

∫

Qp

dx|1− x|α−1
p |x|β−1

p =
Γp(α)Γp(β)

Γp(α + β)
(226)

Now we obtain the N-tachyon amplitude using fractal calculus. We consider the dynamics of
particle given by multicomponent generalization of the action (222), Φ → xµ.
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For the closed trajectory of the particle passing through N points, we have

A(x1, x2, ..., xN ) =

∫

dt

∫

dt1...

∫

dtN δ(t − Σtn)

v(x1, t1; x2, t2)v(x2, t2;x3, t3)...v(xN , tN ; x1, t1)

=

∫

dx(t)Π(

∫

dtnδ(x
µ(tn)− xµn))exp(−S[x(t)])

=

∫

Π(dkµnχ(knxn))Ã(k), (227)

where

Ã(k) =

∫

dxV (k1)V (k2)...V (kN )exp(−S),

V (kn) =

∫

dtχ(−knx(t)) (228)

is vertex function.
Motion equation

Dαxµ − iΣkµnδ(t − tn) = 0, (229)

in the momentum representation

|u|αx̃µ(u)− iΣnk
µ
nχ(−utn) = 0 (230)

have the solution

x̃µ(u) = iΣkµn
χ(−utn)

|u|α , u 6= 0, (231)
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the constraint

Σnkn = 0, (232)

and the zero mod x̃µn(0), which is arbitrary. Integration in (227) with respect to this zero mod
gives the constraint (232). On the solution of the equation (229)

xµ(t) = iD−αt Σnk
µ
nδ(t − tn) =

i

Γ(α)
Σnk

µ
n|t− tn|α−1, (233)

the action (222) takes value

S = − 1

Γ(α)
Σn<mknkm|tn − tm|α−1,

Ã(k) =

∫

ΠNn=1dtnexp(−S) (234)

In the limit, α→ 1, for p-adic case we obtain

xµ(t) = −i p− 1

p lnp
Σnk

µ
nln|t− tn|,

S[x(t)] =
p− 1

p lnp
Σn<mknkm ln|tn − tm|,

Ã(k) =

∫

ΠNn=1dtnΠn<m|tn − tm|
p−1

p lnp
knkm . (235)
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Now in the limit p = q−1 → 1 we obtain the proper expressions of the real case

xµ(t) = −iΣnkµnln|t− tn|,
S[x(t)] = Σn<mknkm ln|tn − tm|,
Ã(k) =

∫

ΠNn=1dtnΠn<m|tn − tm|knkm . (236)

By fractal calculus and vector generalization of the model (222), fundamental string amplitudes
were obtained in [Makhaldiani,1988].
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Renormdynamics of QCD

The RD equations play an important role in our understanding of Quantum
Chromodynamics and the strong interactions. The beta function and the
quarks mass anomalous dimension are among the most prominent objects
for QCD RD equations. The calculation of the one-loop β-function in QCD
has lead to the discovery of asymptotic freedom in this model and to the
establishment of QCD as the theory of strong interactions
[Gross,Wilczek,1973, Politzer,1973, ’t Hooft,1972].
The MS-scheme [’t Hooft,1972] belongs to the class of massless schemes
where the β-function does not depend on masses of the theory and the first
two coefficients of the β-function are scheme-independent.
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The Lagrangian of QCD with massive quarks in the covariant gauge

L = −1

4
F aµνF

aµν + q̄n(iγD −mn)qn

− 1

2ξ
(∂A)2 + ∂µc̄a(∂µc

a + gfabcAbµc
c)

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν

(Dµ)kl = δkl∂µ − igtaklA
a
µ, (237)

Aaµ, a = 1, ..., N2
c − 1 are gluon; qn, n = 1, ..., nf are quark; ca are ghost

fields; ξ is gauge parameter; ta are generators of fundamental
representation and fabc are structure constants of the Lie algebra

[ta, tb] = ifabctc, (238)

we will consider an arbitrary compact semi-simple Lie group G. For QCD,
G = SU(Nc), Nc = 3.
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The RD equation for the coupling constant is

ȧ = β(a) = −β2a2 − β3a
3 − β4a

4 − β5a
5 +O(a6),

a = αs/π =
g2

4π2
,

∫ a

a0

da

β(a)
= t− t0 = ln

µ

µ0
, (239)

µ is the ’t Hooft unit of mass, the renormalization point in the MS-scheme.
To calculate the β-function we need to calculate the renormalization
constant Z of the coupling constant, ab = Za, where ab is the bare
(unrenormalized) charge.
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The expression of the β-function can be obtained in the following way

0 = d(abµ
2ε)/dt = µ2ε(εZa+

∂(Za)

∂a

da

dt
)

⇒ da

dt
= β(a, ε) =

−εZa
∂(Za)
∂a

= −εa+ β(a),

β(a) = a
d

da
(aZ1) (240)

where

β(a, ε) =
D − 4

2
a+ β(a) (241)

is D−dimensional β−function and Z1 is the residue of the first pole in ε
expansion

Z(a, ε) = 1 + Z1ε
−1 + ...+ Znε

−n + ... (242)

Since Z does not depend explicitly on µ, the β-function is the same in all
MS-like schemes, i.e. within the class of renormalization schemes which
differ by the shift of the parameter µ.
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For quark anomalous dimension, RD equation is

ḃ = γ(a) = −γ1a− γ2a
2 − γ3a

3 − γ4a
4 +O(a5),

b = lnmq,

b(t) = b0 +

∫ t

t0

dtγ(a(t)) = b0 +

∫ a

a0

daγ(a)/β(a). (243)

To calculate the quark mass anomalous dimension γ(g) we need to
calculate the renormalization constant Zm of the quark mass
mb = Zmm, mb is the bare (unrenormalized) quark mass. Than we find
the function γ(g) in the following way

0 = ṁb = Żmm+ Zmṁ = Zmm((lnZm)
· + (lnm)·)

⇒ γ(a) = −d lnZm
dt

= −d lnZm
da

da

dt
= −d lnZm

da
(−εa+ β(a)) = a

dZm1

da
, (244)

where RD equation in D−dimension is

ȧ = −εa+ β(a) = β1a+ β2a
2 + ... (245)
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and Zm1 is the coefficient of the first pole in the ε−expantion of the Zm in
MS-scheme

Zm(ε, g) = 1 +
Zm1(g)

ε
+
Zm2(g)

ε2
+ ... (246)

Since Zm does not depend explicitly on µ and m, the γm-function is the
same in all MS-like schemes, i.e. within the class of renormalization
schemes which differ by the shift of the parameter µ.
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Reparametrization and general method of solution of the RD equation

RD equation,

ȧ = β1a+ β2a
2 + ... (247)

can be reparametrized,

a(t) = f(A(t)) = A+ f2A
2 + ...+ fnA

n + ... =
∑

n≥1

fnA
n,

Ȧ = b1A+ b2A
2 + ... =

∑

n≥1

bnA
n, (248)

ȧ = Ȧf ′(A) = (b1A+ b2A
2 + ...)(1 + 2f2A+ ...+ nfnA

n−1 + ...)
= β1(A+ f2A

2 + ...+ fnA
n + ...) + β2(A

2 + 2f2A
3 + ...) + ...

+βn(A
n + nf2A

n+1 + ...) + ...
= β1A+ (β2 + β1f2)A

2 + (β3 + 2β2f2 + β1f3)A
3+

...+ (βn + (n− 1)βn−1f2 + ...+ β1fn)A
n + ...

=
∑

n,n1,n2≥1

Anbn1
n2fn2

δn,n1+n2−1

=
∑

n,m≥1;m1 ,...,mk≥0

Anβmf
m1

1 ...f
mk
k f(n,m,m1, ...,mk),

f(n,m,m1, ...,mk) =
m!

m1!...mk!
δn,m1+2m2+...+kmk

δm,m1+m2+...+mk
, (249)
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b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,
b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f22 − f3)β1,
b4 = β4 + 3f2β3 + f22β2 + 2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, ...
bn = βn + ...+ β1fn − 2f2bn−1 − ...− nfnb1, ... (250)

so, by reparametrization, beyond the critical dimension (β1 6= 0) we can change any coefficient
but β1.
We can fix any higher coefficient with zero value, if we take

f2 =
β2

β1
, f3 =

β3

2β1
+ f22 , ... , fn =

βn + ...

(n− 1)β1
, ... (251)

In this case we have exact classical dynamics in the (external) space-time and simple scale
dynamics,

g = (µ/µ0)
−2εg0 = e−2ετg0;

ϕ(τ, t, x) = e−(D−2)/2τϕ0(t, x),

ψ(τ, t, x) = e−(D−1)/2τψ0(t, x) (252)

We will consider in applications the case when only one of higher coefficient is nonzero.
In the critical dimension of space-time, β1 = 0, and we can change by reparametrization any
coefficient but β2 and β3.
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From the relations (250), in the critical dimenshion (β1 = 0), we find that,
we can define the minimal form of the RD equation

Ȧ = β2A
2 + β3A

3, (253)

e.g. b4 = 0 when

f3 =
β4
β2

+
β3
β2
f2 + f22 , (254)

f2 remains arbitrary and we can make choice f2 = 0. We can solve (253) as
implicit function,

uβ3/β2e−u = ceβ2t, u =
1

A
+
β3
β2

(255)

than, as in the noncritical case, explicit solution will be given by
reparametrization representation.
If we know somehow the coefficients βn, e.g. for first several exact and for
others asymptotic values (see e.g. [Kazakov,Shirkov,1980]) than we can
construct reparametrization function (248) and find the dynamics of the
running coupling constant. This is similar to the action-angular canonical
transformation of the analytic mechanics (see e.g. [Faddeev,Takhtajan]).
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Renormdynamic functions (RDF)

We will call RDF functions gn = fn(t), which are solutions of the RD motion equations

ġn = βn(g), 1 ≤ n ≤ N. (256)

In the simplest case of one coupling constant, the function g = f(t), is constant g = gc when
β(gc) = 0, or is invertible (monotone). Indeed,

ġ = f ′(t) = f ′(f−1(g)) = β(g). (257)

Each monotone interval ends by UV and IR fixed points and describes corresponding phase of the
system.
Based on real experiments and computer simulations, quantum gauge theory in four dimensions is
believed to have a mass gap. This is one of the most fundamental facts that makes the Universe
the way it is. In the lattice (gauge) theory approach to the renormdynamics (see, e.g.
[Makhaldiani,1986]), recently running coupling constant dynamics were calculated for SU(2)
Yang-Mills model [Bogolubsky et al,2009]. The result is in agreement with perturbative
calculations at small scales; at an intermediate scale the coupling constant reaches its
maximum(≃ 1.25); than decrease. So, at the maximum, we may have nontrivial zero of the
β−function, which corresponds to the conformal invariance of the gluodynamics at this point.
Beyond this point we have another phase, strong coupling phase with decreasing coupling
constant similar (identical?!) to the abelian (monopole?) theory.
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Note that, in the case of the two coupling constants,

ġ1 = β1(g1, g2),
ġ2 = β2(g1, g2), (258)

we can reformulate RD as

g1 ≡ g; g2 = f2(t) ≡ τ,
dg1

dg2
=
dg

dτ
≡ ġ = β(g, τ) =

β1(g, τ)

β2(g, τ)
(259)

and RDF must fulfil corresponding restrictions. E.g. if

g1 = f1(t) = g = f(τ) = f(f2(t)), g2 = f2(t) = τ (260)

So, if we approximate the form of the curve near maximum as

a(t) = ac − b|t− tc|n, (261)

for the β−function we obtain

ȧ = β(a, t) = sign(tc − t)bn(
ac − a

b
)
n−1

n . (262)

Of course this is not usual β−function, function of a only. It depends also on t. For t > tc we
have perturbative phase. For n > 1, β(ac, t) = 0. Explicit dependence on time variable in one
coupling case indicates on implicit two coupling case.
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So, at the critical point we may have low energy unification of the two abelian couplings,
weak-electromagnetic and strong-monopole couplings. According to the Dirac quantization rule,
for the electron-e and monopole-g charges we have

eg =
n

2
, n = ±1,±2, ... (263)

so, at the selfdual, critical, point, according to the computational results, we have prediction:

αe = αg =
n

8π
≃ 5

4
⇒ n ≃ 10π ≃ 31, (264)

this low energy unification prime number 31 is a twin of the grandunification point prime number
29, [Makhaldiani,2011]. If we take low energy value for the electromagnetic fine structure
constant, α = 1/137, we can predict corresponding value for magnetic ”fine structure” constant

αg =
g2

4π
= (

31

2
)2

137

(4π)2
≃ 208 = 16× 13; ≃ 209 = 11 × 19. (265)
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Stability of the states of dynamical systems

If we have a solution xn = x0n (a state) of the following system of motion equations (of the
corresponding dynamical system)

ẋn = fn(x), 1 ≤ n ≤ N, (266)

we can consider the question of stability of the solution, the existence of the solutions of the type
xn = x0n + gn, for small values of gn. If there are solutions with rising gn, of the corresponding
motion equations

ġn = βn(g),
βn(g) = fn(x0 + g)− fn(x0) = β1nmgm + β2nmkgmgk + ...,

βkn...m = f(n...m)(x0) (267)

we say that the solution x0n is not stable.
The linear approximation, we transform into diagonal form,

ġn = β1nmgm, hn = Anmgm,
ḣn = λnhn, λnδnm = (Aβ1A

−1)nm, (268)

if all of the λn are purely imaginary λn = iωn, we have stable solution (in the linear
approximation): small deviations remain small. If real parts of all λn are negative, we have
asymptotic stability: deviations decrease. If some λn are zero, we have undefined case. In regular
case, when the matrix β1 has inverse, by reparametrization trick we can construct the formal
solution of the nonlinear equation for gn, and try to investigate its convergence properties.
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Nambu - Poisson formulation of Renormdynamics

In the case of several integrals of motion, Hn, 1 ≤ n ≤ N, we can
formulate Renormdynamics as Nambu - Poisson dynamics (see e.g.
[Makhaldiani, 2007])

ϕ̇(x) = [ϕ(x),H1,H2, ...,HN ], (269)

where ϕ is an observable as a function of the coupling constants
xm, 1 ≤ m ≤M.
In the case of Standard model [Weinberg,1995], we have three coupling
constants, M = 3.
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Hamiltonian extension of the Renormdynamics

The renormdynamic motion equations

ġn = βn(g), 1 ≤ n ≤ N (270)

where gn, 1 ≤ n ≤ N, are coupling constants, can be presented as
nonlinear part of a hamiltonian system with linear part

Ψ̇n = −∂βm
∂gn

Ψm, (271)

hamiltonian and canonical Poisson bracket as

H =

N
∑

n=1

β(g)nΨn, {gn,Ψm} = δnm (272)

In this extended version, we can define optimal control theory approach
[Pontryagin, 1983] to the unified field theories. We can start from the
unified value of the coupling constant, e.g. α−1(M) = 29.0... at the scale
of unification M, put the aim to reach the SM scale with values of the
coupling constants measured in experiments, and find optimal threshold
corrections to the RD coefficients [Makhaldiani,2010].
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Renormdynamic equation for effective action

For connected vertex functions Γn, (171)

Γn(x1, x2, ..., xn; g,m, µ) = Zn/2(µ)Γ0n(x1, x2, ..., xn; g0, m0),

(D − n

2
γ)Γn(x; g,m, µ) = 0; (273)

For effective action Sq,

(D − 1

2
γ

∫

dxφ(x)
δ

δφ(x)
)Sq(φ) = 0,

(D − 1

2
γφ

∂

∂φ
)V (φ) = 0, V (φ) = Sq(φ(x))|φ(x)=φ=const, (274)

where V (φ) is effective potential. For the effective potential in the RD (conformal) fixed point,
γ(g) = γ(gc) ≡ γc we have the following wave equation and corresponding (auto model) solution

(∂t −
γc

2
∂z)V = 0,

V (φ, µ) = f(z + vt) = F (
φ

µv
), t = ln

µ

µ0
, z = ln

φ

φ0
, v =

γc

2
. (275)

N.V.Makhaldiani ( Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Nambu-Poisson dynamics with some applications July 18 - 23, 2011. 95 / 175



Finite temperature and density QCD

The fundamental quark and gluon degrees of freedom are the relevant ones
at high temperatures and/or densities. Since these degrees of freedom are
confined in the low temperature and density regime there must be a quark
and/or gluon (de)confinement phase transition.
It is difficult to describe the phase transition because there is not known a
local parameter which can be linked to confinement. We consider the
fractal dimension of the hadronic/quark-gluon space as order parameter of
(de)confinement phase transition. It has value less than 3 in the abelian,
hadronic, phase, and more than 3, in nonabelian, quark-gluon, phase.
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Renormdynamics of observable quantities in high energy physics

Let us consider l−particle semi-inclusive distribution

Fl(n, q) =
dlσn

d̄q1...d̄ql
=

1

n!

∫ n
∏

i=1

d̄q′iδ(p1 + p2 − Σli=1qi −Σni=1q
′
i)

·|Mn+l+2(p1, p2, q1, ..., ql, q
′
1, ..., q

′
n; g(µ),m(µ)), µ)|2 ,

d̄p ≡ d3p

E(p)
, E(p) =

√

p2 +m2. (276)
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Renormdynamics of observable quantities in high energy physics

From the renormdynamic equation

DMn+l+2 =
γ

2
(n+ l + 2)Mn+l+2, (277)

we obtain

DFl(n, q) = γ(n+ l + 2)Fl(n, q),
DFl(q) = γ(< n > +l + 2)Fl(q),

D < nk(q) >= γ(< nk+1(q) > − < nk(q) >< n(q) >),
DCk = γ < n(q) > (Ck+1 − Ck(1 + k(C2 − 1)))

Fl(q) ≡
dlσ

d̄q1...d̄ql
=

∑

n

dlσn

d̄q1...d̄ql
, < nk(q) >=

∑

n n
kdlσn/d̄q

l

∑

n d
lσn/d̄ql

Ck =
< nk(q) >

< n(q) >k
(278)
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Scaling relations for multi particle cross sections

From dimensional considerations, the following combination of cross
sections [Koba et al, 1972] must be universal function

< n >
σn
σ

= Ψ(
n

< n >
). (279)

Corresponding relation for the inclusive cross sections is
[Matveev et al, 1976].

< n(p) >
dσn
d̄p

/
dσ

d̄p
= Ψ(

n

< n(p) >
). (280)

Indeed, let us define n−dimension of observables [Makhaldiani, 1980]

[n] = 1, [σn] = −1, σ = Σnσn, [σ] = 0, [< n >] = 1. (281)

The following expression does not depend on any dimensional quantities
and must have a corresponding universal form

Pn =< n >
σn
σ

= Ψ(
n

< n >
). (282)

Let us find an explicit form of the universal functions using renormdynamic
equations.
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From the definition of the moments we have

Ck =

∫ ∞

0
dxxkΨ(x), (283)

so they are universal parameters,

DCk = 0 ⇒ Ck+1 = (1 + k(C2 − 1))Ck ⇒
Ck = (1 + (k − 1)(C2 − 1))...(1 + 2(C2 − 1))C2. (284)

Now we can invert momentum transform and find (see [Makhaldiani, 1980]
and appendix ) universal functions [Ernst, Schmit, 1976],
[Darbaidze et al, 1978].

Ψ(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1Cn =

cc

Γ(c)
zc−1e−cz,

C2 = 1 +
1

c
(285)

N.V.Makhaldiani ( Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Nambu-Poisson dynamics with some applications July 18 - 23, 2011. 100 / 175



1 2 3 4

0.2

0.4

0.6

0.8

Figure: KNO distribution (285), Ψ(z), with c = 2.8

The value of the parameter c can be measured from the dispersion low,

D =
√

< n2 > − < n >2 =
√

C2 − 1 < n >= A < n >,

A =
1√
c
≃ 0.6, c = 2.8;

(c = 3, A = 0.58) (286)

which is in accordance with n−dimension counting.
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1/ < n > correction to the scaling function

We can calculate also 1/ < n > correction to the scaling function (see
appendix)

< n >
σn
σ

= Ψ = Ψ0(
n

< n >
) +

1

< n >
Ψ1(

n

< n >
),

Ck = C0
k +

1

< n >
C1
k ,

C0
k =

∫ ∞

0
dxxkΨ0(x), C

1
k =

∫ ∞

0
dxxkΨ1(x),

Ψ1(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1C1

n =
C1
2c

2

2
(z − 2 +

c− 1

cz
)Ψ0 (287)
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Characteristic function for KNO

The characteristic function we define as

Φ(t) =

∫ ∞

0
dxetxΨ(x) = (1− t/c)−c, Re(t) < c (288)

For the moments of the distribution, we have

Φ(k)(0) = Ck = (−c)(−c − 1)...(−c − k + 1)(−1/c)k =
Γ(c+ k)

Γ(c)ck
(289)

Note that it is an infinitely divisible characteristic function, i.e.

Φ(t) = (Φn(t))
n, Φn(t) = (1− t/c)−c/n (290)

If we calculate observable(mean) value of x, we find

< x >= Φ′(0) = nΦ(0)n
′ = n < x >n,

< x >n=
< x >

n
(291)

N.V.Makhaldiani ( Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Nambu-Poisson dynamics with some applications July 18 - 23, 2011. 103 / 175



For the second moment and dispersion, we have

< x2 >= Φ(2)(0) = n < x2 >n +n(n− 1) < x >2
n,

D2 =< x2 > − < x >2= n(< x2 >n − < x >2
n) = nD2

n

D2
n =

D2

n
=

D2

< x >
< x >n (292)
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Physical distributions

In a sense, any Hamiltonian quantum (and classical) system can be
described by infinitely divisible distributions, because in the functional
integral formulation, we use the following step

U(t) = e−itH = (e−i
t
N
H)N (293)

In the case of our scalar field theory (162),

L(ϕ) =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − g

n
ϕn

= g
2

2−n (
1

2
∂µφ∂

µφ− m2

2
φ2 − 1

n
φn) (294)

so, to the constituent field φN corresponds higher value of the coupling
constant,

gN = gN
n−2
2 (295)

For weak nonlinearity, n = 2 + 2ε, d = 2/ε+ 2, gN = g(1 + ε lnN +O(ε2))
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Closed equation of renormdynamics for the generating function of the
observables

Let us consider a generating function of the topological crossections

F (h, g,m, µ) = Σn≥2h
nσn,

σn =
1

n!

dn

dhn
F |h=0,

σ = F |h=1, < n >=
d

dh
lnF |h=1, ... (296)

It is natural that for the generating function we have closed renormdynamic equation
[Makhaldiani, 1980]

(D− γ(
h∂

∂h
+ 2))F = 0,

F (h(µ), g(µ), m(µ), µ) = F (h(µ̄), g(µ̄), m(µ̄), µ̄) exp(2

∫ µ

µ̄

dρ

ρ
γ(g(ρ))),

h̄ = h̄(µ̄) = h(µ) exp(

∫ µ̄

µ

dρ

ρ
γ(g(ρ))),

m̄ = m̄(µ̄) = m(µ) exp(

∫ µ̄

µ

dρ

ρ
η(g(ρ))),

∫ ḡ

g

dg

β(g)
= ln

µ̄

µ
(297)
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Explicit form of Generating function in the case of KNO scaling

Let us find generating function in the case of KNO scaling. From the definition of Generating
function and using topological cross section from KNO, we find

F (h) =
∑

n

hn
σ

< n >
Ψ(

n

< n >
) =

σ

< n >

∑

Ψ(
n

< n >
)hn

=
σ

< n >
Ψ(

δ

< n >
)
h2

1− h
, δ ≡ h

d

dh
, qδf(h) = f(qh), (298)

Now we can find more concrete form of the generating function, with the explicit form of KNO
function,

(
δ

< n >
)c−1 exp(−c δ

< n >
)
h2

1− h
= (

δ

< n >
)c−1 q2h2

1− qh

=
1

< n >c−1

1

Γ(1 − c)

∫ ∞

0

dt

tc
q2h2e−2t

1− qhe−t
, (299)

so

F (h)KNO =
cc

Γ(c)

σ

< n >c
1

Γ(1− c)

∫ ∞

0

dt

tc
q2h2e−2t

1− qhe−t
,

q = exp(− c

< n >
) (300)
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Indeed, if we expend and than integrate under this formula, we hind

F (h) =
cc

Γ(c)

σ

< n >c

∑

n≥2

hnnc−1 exp(− c

< n >
n) (301)

which corresponds to the considered explicit form of the KNO function.
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Negative binomial distribution

Negative binomial distribution (NBD) is defined as

P (n) =
Γ(n+ r)

n!Γ(r)
pn(1− p)r,

∑

n≥0

P (n) = 1, (302)
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Figure: P (n), (302), r = 2.8, p = 0.3, < n >= 6
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NBD provides a very good parametrization for multiplicity distributions in
e+e− annihilation; in deep inelastic lepton scattering; in proton-proton
collisions; in proton-nucleus scattering.

Hadronic collisions at high energies (LHC) lead to charged multiplicity
distributions whose shapes are well fitted by a single NBD in fixed intervals
of central (pseudo)rapidity η [ALICE,2010].

It is interesting to understand how NBD fits such a different reactions?
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NBD and KNO scaling

Let us consider NBD for normed topological cross sections

σn

σ
= P (n) =

Γ(n+ k)

Γ(n+ 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k)

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(1 +

k

< n >
)−n(1 +

< n >

k
)−k

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

< n >

< n > +k
)n(

k

k+ < n >
)k ,

=
Γ(n+ k)

Γ(n+ 1)Γ(k)

( k
<n>

)k

(1 + k
<n>

)k+n
,

r = k > 0, p =
< n >

< n > +k
. (303)

The generating function for NBD is

F (h) = (1 +
< n >

k
(1− h))−k = (1 +

< n >

k
)−k(1− ah))−k ,

a = p =
< n >

< n > +k
. (304)

Indeed,
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(1− ah))−k =
1

Γ(k)

∫ ∞

0
dttk−1e−t(1−ah)

=
1

Γ(k)

∫ ∞

0
dttk−1e−t

∞
∑

0

(tah)n

n!

=
∞
∑

0

Γ(n+ k)an

Γ(k)n!
hn,

P (n) = (1 +
< n >

k
)−k

Γ(n+ k)

Γ(k)n!
(
< n >

< n > +k
)n

=
kkΓ(n+ k)

Γ(k)Γ(n+ 1)
(< n > +k)−(n+k) < n >n

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k) (305)
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Note that KNO characteristic function (288) coincides with the NBD generating function (304)
when t =< n > (h− 1), c = k.
The Bose-Einstein distribution is a special case of NBD with k = 1.

If k is negative, the NBD becomes a positive binomial distribution, narrower than Poisson
(corresponding to negative correlations).
For negative (integer) values of k = −N, we have Binomial GF

Fbd = (1 +
< n >

N
(h− 1))N = (a+ bh)N , a = 1− < n >

N
, b =

< n >

N
,

Pbd(n) = CnN (
< n >

N
)n(1 − < n >

N
)N−n (306)

(In a sense) we have a (quantum) spectrum for the parameter k, which contains any (positive)
real values and (with finite number of states) the negative integer values, (0 ≤ n ≤ N)
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Dispersion low for NBD

From the generating function we have

< n2 >= (
hd

dh
)2F (h)|h=1 =

k + 1

k
< n >2 + < n >, (307)

for dispersion we obtain

D =
√

< n2 > − < n >2 =
1√
k
< n > (1 +

k

< n >
)1/2

=
1√
k
< n > +

√
k

2
+ O(1/ < n >), (308)

so the dispersion low for KNO and NBD distributions are the same, with c = k, for high values of
the mean multiplicity.
The factorial moments of NBD,

Fm = (
d

dh
)mF (h)|h=1 =

< n(n− 1)...(n−m+ 1) >

< n >m
=

Γ(m + k)

Γ(m)km
, (309)

and usual normalized moments of KNO (289) coincides.
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Fractal factorial and cumulant moments

Using fractal calculus (see e.g. [Makhaldiani,2003]),

D−α0,x f =
|x|α
Γ(α)

1
∫

0

|1− t|α−1f(xt)dt, =
|x|α
Γ(α)

B(α, ∂x)f(x)

= |x|α Γ(∂x)

Γ(α+ ∂x)
f(x), f(xt) = tx

d
dx f(x). (310)

we can define factorial and cumulant moments for not only negative integer values of q, but for
any complex indexes,

F−q =< n >q D−q0,xGNBD(x)|x=0 =
kqΓ(k − q)

Γ(k)
,

K−q =< n >q D−q0,x lnGNBD(x)|x=0 = kq+1Γ(−q),

H−q =
Γ(k + 1)Γ(−q)

Γ(k − q)
(311)

N.V.Makhaldiani ( Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Nambu-Poisson dynamics with some applications July 18 - 23, 2011. 115 / 175



The KNO as asymptotic NBD

Let us show that NBD is a discrete distribution corresponding to the KNO scaling,

lim
<n>→∞

< n > Pn| n
<n>

=z = Ψ(z) (312)

Indeed, using the following asymptotic formula

Γ(x+ 1) = xxe−x
√
2πx(1 +

1

12x
+O(x−2)), (313)

we find

< n > Pn =< n >
(n+ k − 1)n+k−1e−(n+k−1)

Γ(k)nne−n
kk

nk
< n > zke−k

n+k
<n>

=
kk

Γ(k)
zk−1e−kz +O(1/ < n >) (314)

We can calculate also 1/ < n > correction term to the KNO from the NBD. The answer is

Ψ =
kk

Γ(k)
zk−1e−kz(1 +

k2

2
(z − 2 +

k − 1

kz
)

1

< n >
) (315)

This form coincides with the corrected KNO (287) for c = k and C1
2 = 1.
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We have seen that KNO characteristic function (288) and NBD GF (304)
have almost same form. This relation become in coincidence if

c = k, t = (h− 1)
< n >

k
(316)

Now the definition of the characteristic function (288) can be read as
∫ ∞

0
e−<n>z(1−h)Ψ(z)dz = (1 +

< n >

k
(1− h))−k (317)

which means that Poisson GF weighted by KNO distribution gives NBD GF.
Because of this, the NBD is the gamma-Poisson (mixture) distribution.
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NBD, Poisson and Gauss distributions

Fore high values of x2 = k the NBD distribution reduces to the Poisson
distribution

F (x1, x2, h) = (1 +
x1
x2

(1− h))−x2 ⇒ e−x1(1−h) = e−<n>eh<n>

=
∑

P (n)hn,

P (n) = e−<n>
< n >n

n!
(318)

For the Poisson distribution

d2F (h)

dh2
|h=1 =< n(n− 1) >=< n >2,

D2 =< n2 > − < n >2=< n > . (319)

In the case of NBD, we had the following dispersion low

D2 =
1

k
< n >2 + < n >, (320)

which coincides withe previous expression for high values of k.
Poisson GF belongs to the class of the infinitely divisible distributions,

F (h,< n >) = (F (h,< n > /k))k (321)
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For high values of < n >, the Poisson distribution reduces to the Gauss
distribution

P (n) = e−<n>
< n >n

n!
⇒ 1√

2π < n >
exp(−(n− < n >)2

2 < n >
) (322)

For high values of k in the integral relation (317), in the KNO function
dominates the value zc = 1 and both sides of the relation reduce to the
Poisson GF.
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Multiplicative properties of KNO and NBD and corresponding motion
equations

An useful property of the negative binomial distribution with parameters

< n >, k

is that it is (also) the distribution of a sum of k independent random
variables drawn from a Bose-Einstein distribution2 with mean < n > /k,

Pn =
1

< n > +1
(
< n >

< n > +1
)n

= (eβ~ω/2 − e−β~ω/2)e−β~ω(n+1/2), T =
~ω

ln <n>+1
<n>

∑

n≥0

Pn = 1,
∑

nPn =< n >=
1

eβ~ω−1
, T ≃ ~ω < n >, < n >≫ 1,

P (x) =
∑

n

xnPn = (1+ < n > (1− x))−1. (323)

2A Bose-Einstein, or geometrical, distribution is a thermal distribution for single state systems.
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This is easily seen from the generating function in (304), remembering that
the generating function of a sum of independent random variables is the
product of their generating functions.
Indeed, for

n = n1 + n2 + ...+ nk, (324)

with ni independent of each other, the probability distribution of n is

Pn =
∑

n1,...,nk

δ(n −
∑

ni)pn1 ...pnk ,

P (x) =
∑

n

xnPn = p(x)k (325)

This has a consequence that an incoherent superposition of N emitters that
have a negative binomial distribution with parameters k,< n > produces a
negative binomial distribution with parameters Nk,N < n >.
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So, for the GF of NBD we have (N=2)

F (k,< n >)F (k,< n >) = F (2k, 2 < n >) (326)

And more general formula (N=m) is

F (k,< n >)m = F (mk,m < n >) (327)

We can put this equation in the closed nonlocal form

QqF = F q, (328)

where

Qq = qD, D =
kd

dk
+
< n > d

d < n >
=
x1d

dx1
+
x2d

dx2
(329)

Note that temperature defined in (323) gives an estimation of the Glukvar
temperature when it radiates hadrons. If we take ~ω = 100MeV, to
T ≃ Tc ≃ 200MeV corresponds < n >≃ 1.5 If we take ~ω = 10MeV, to
T ≃ Tc ≃ 200MeV corresponds < n >≃ 20.
We see that universality of NBD in hadron-production is similar to the
universality of black body radiation.
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p-adic string theory

p-adic string amplitudes can be obtained as tree amplitudes of the field
theory with the following lagrangian and motion equation (see e.g.
[Brekke, Freund, 1993])

L =
1

2
ΦQpΦ− 1

p+ 1
Φp+1,

QpΦ = Φp, Qp = pD (330)

D = −1

2
△, △ = −∂2x0 + ∂2x1 + ...+ ∂2xn−1

, (331)

Φ - is real scalar field on D-dimensional space-time with coordinates
x = (x0, x1, ..., xD−1). We have trivial, Φ = 0 and Φ = 1, and following
nontrivial solutions of the equation (330)

Φ(x0, x1, ..., xD−1) = p
D

2(p−1) e
1−p−1

2 lnp
(x20−x21−x22−...−x2D−1) (332)
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The equation (330) permits factorization of its solutions
Φ(x) = Φ(x0)Φ(x1)...Φ(xD−1), every factor of which fulfils one
dimensional equation

pε∂
2
xΦ(x) = Φ(x)p, ε = ±1

2
(333)

The trivial solution of the equations are Φ = 0 and Φ = 1. For nontrivial
solution of (333), we have

pε∂
2
xΦ(x) = ea∂

2
Φ(x) =

1√
4πa

∫ ∞

−∞
dye−

1
4a
y2+y∂Φ(x)

=
1√
4πa

∫ ∞

−∞
dye−

1
4a
y2Φ(x+ y) = Φ(x)p, a = ε ln p (334)

If we (de quantize) put, p = q, and take (classical) limit, q → 1, the motion
equation reduce to

ε∂2xΦ = Φ lnΦ, (335)

with solution

Φ(x) = e
1
2 e

x2

4ε . (336)
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It is obvious that the anzac

Φ = Aebx
2
, (337)

can pass the equation (334). Indeed, the solution is

Φ(x) = p
1

2(p−1) e
1−p−1

4ε ln p
x2 ,

Φ(x0, x1, ..., xD−1) = p
D

2(p−1) e
1−p−1

2 lnp
(x20−x21−x22−...−x2D−1) (338)
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Corresponding class of the motion equations

Now, we can define the following class of motion equations

QqF = F q, (339)

where

Qq = qD, D = D1(x1) + ...+Dl(xl), (340)

Dk(x) is some (differential) operator depending on x. In the case of the
NBD GF,

Dk(x) =
xd

dx
. (341)

For this (Qlike) class of equations, we have factorization property

F = F (x1, ..., xl) = F1(x1)...Fl(xl),

qDk(x)Fk(x) = ckFk(x)
q, 1 ≤ k ≤ l, c1c2...cl = 1. (342)
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NBD motivated equations

For NBD distribution we have corresponding
multiplication(convolution)formulas

(P ⋆ P )n ≡
n
∑

m=0

Pm(k,< n >)Pn−m(k,< n >)

= Pn(2k, 2 < n >) = Q2Pn(k,< n >), ... (343)

So, we can say, that star-product on the distributions of NBD corresponds
ordinary product for GF.
It will be nice to have similar things for string field theory(SFT)
[Kaku,2000].
SFT motion equation is

QΦ = Φ ⋆ Φ (344)

For stringfield GF F we may have

QF = F 2. (345)
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By construction we know the solution of the nice equation (328) as GF of
NBD, F. We obtain corresponding differential equations, if we consider
q = 1 + ε, for small ε,

(D(D − 1)...(D −m+ 1)− (lnF )m)Ψ = 0,

(
Γ(D + 1)

Γ(D + 1−m)
− (lnF )m)Ψ = 0,

(Dm − Φm)Ψ = 0,m = 1, 2, 3, ...

Dm =
Γ(D + 1)

Γ(D + 1−m)
,Φ = lnF, (346)

with the solution Ψ = F = exp(Φ). In the case of the NBD and p-adic
string, we have correspondingly

D =
x1d

dx1
+
x2d

dx2
;

D = −1

2
△, △ = −∂2x0 + ∂2x1 + ...+ ∂2xn−1

. (347)

These equations have meaning not only for integer m.
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For high mean multiplicities we have corresponding equations for KNO

Q2Ψ(z) = Ψ ⋆Ψ ≡
∫ z

0
Ψ(t)Ψ(z − t)dt

= z

∫ 1

0
dttδ1(1− t)δ2Ψ(z1)Ψ(z2)|z1=z2=z

= z
Γ(δ1 + 1)Γ(δ2 + 1)

Γ(δ1 + δ2 + 2)
Ψ(z1)Ψ(z2)|z1=z2=z (348)

Due to the explicit form of the operator D, these equations and
corresponding solutions have the symmetry under the change of the
variables

k → ak, < n >→ b < n > . (349)

When

a =
< n >

k
, b =

k

< n >
, (350)

we obtain the symmetry with respect to the transformations
k ↔< n >, x1 ↔ x2.
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Zeros of the Riemann zeta function

The Riemann zeta function ζ(s) is defined for complex s = σ + it and
σ > 1 by the expansion

ζ(s) =
∑

n≥1

n−s, Res > 1. (351)

All complex zeros, s = α+ iβ, of ζ(σ + it) function lie in the critical stripe
0 < σ < 1, symmetrically with respect to the real axe and critical line
σ = 1/2. So it is enough to investigate zeros with α ≤ 1/2 and β > 0.
These zeros are of three type, with small, intermediate and big ordinates.
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Riemann hypothesis

The Riemann hypothesis [Titchmarsh,1986] states that the (non-trivial)
complex zeros of ζ(s) lie on the critical line σ = 1/2.
At the beginning of the XX century Polya and Hilbert made a conjecture
that the imaginary part of the Riemann zeros could be the oscillation
frequencies of a physical system (ζ - (mem)brane).
After the advent of Quantum Mechanics, the Polya-Hilbert conjecture was
formulated as the existence of a self-adjoint operator whose spectrum
contains the imaginary part of the Riemann zeros.
The Riemann hypothesis (RH) is a central problem in Pure Mathematics
due to its connection with Number theory and other branches of
Mathematics and Physics.
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The functional equation for zeta function

The functional equation is (see e.g. [Titchmarsh,1986])

ζ(1− s) =
2Γ(s)

(2π)s
cos(

πs

2
)ζ(s) (352)

From this equation we see the real (trivial) zeros of zeta function:

ζ(−2n) = 0, n = 1, 2, ... (353)

Also, at s=1, zeta has pole with reside 1.
From Field theory and statistical physics point of view, the functional
equation (352) is duality relation, with self dual (or critical) line in the
complex plane, at s = 1/2 + iβ,

ζ(
1

2
− iβ) =

2Γ(s)

(2π)s
cos(

πs

2
)ζ(

1

2
+ iβ), (354)

we see that complex zeros lie symmetrically with respect to the real axe.
On the critical line, (nontrivial) zeros of zeta corresponds to the infinite
value of the free energy,

F = −T ln ζ. (355)
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At the point with β = 14.134725... is located the first zero. In the interval
10 < β < 100, zeta has 29 zeros. The first few million zeros have been
computed and all lie on the critical line. It has been proved that
uncountably many zeros lie on critical line.
The first relation of zeta function with prime numbers is given by the
following formula,

ζ(s) =
∏

p

(1− p−s)−1, Res > 1. (356)

Another formula, which can be used on critical line, is

ζ(s) = (1− 21−s)−1
∑

n≥1

(−1)n+1n−s, Res > 0. (357)
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From Qlike to zeta equations

Let us consider the values q = n, n = 1, 2, 3, ... and take sum of the
corresponding equations (339), we find

ζ(−D)F =
F

1− F
(358)

In the case of the NBD we know the solutions of this equation.
Now we invent a Hamiltonian H with spectrum corresponding to the set of
nontrivial zeros of the zeta function, in correspondence with Riemann
hypothesis,

−Dn =
n

2
+ iHn, Hn = i(

n

2
+Dn),

Dn = x1∂1 + x2∂2 + ...+ xn∂n, H
+
n = Hn =

n
∑

m=1

H1(xm),

H1 = i(
1

2
+ x∂x) = −1

2
(xp̂+ p̂x), p̂ = −i∂x (359)

The Hamiltonian H = Hn is hermitian, its spectrum is real. The case
n = 1 corresponds to the Riemann hypothesis.
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The case n = 2, corresponds to NBD,

ζ(1 + iH2)F =
F

1− F
, ζ(1 + iH2)|F =

1

1− F
,

F (x1, x2;h) = (1 +
x1
x2

(1− h))−x2 (360)

Let us scale x2 → λx2 and take λ→ ∞ in (360), we obtain

ζ(
1

2
+ iH1(x))e

−(1−h)x =
1

e(1−h)x − 1
,

1

ζ(12 + iH(x))

1

eεx − 1
= e−εx,

H(x) = i(
1

2
+ x∂x) = −1

2
(xp̂+ p̂x), H+ = H, ε = 1− h. (361)
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Now we scale x→ xy, multiply the equation by ys−1 and integrate

1

ζ(12 + iH(x))

∫ ∞

0
dy

ys−1

eεxy − 1
=

∫ ∞

0
dye−εxyys−1 =

1

(εx)s
Γ(s),

1

ζ(12 + iH(x))

∫ ∞

0
dy

ys−1

eεxy − 1

=
1

ζ(12 + iH(x))
x−sε−sΓ(s)ζ(s), (362)

so

ζ(
1

2
+ iH(x))x−s = ζ(s)x−s ⇒ H(x)ψE = EψE ,

ψE = cx−s, s =
1

2
+ iE, (363)
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we have correct way and can return to the previous step (361) and take the
following transformation

1

eεxy − 1
=

1

2π

∫ ∞+ic

−∞+ic
dEx−iE−1/2ϕ(E, εy),

ϕ(E, εy) =

∫ ∞

0
dx

xiE− 1
2

eεxy − 1
=

Γ(12 + iE)

(εy)iE+1/2
ζ(

1

2
+ iE),

1

2π

∫ ∞+ic

−∞+ic
dEx−iE−1/2ϕ(E, εy)

1

ζ(1/2 + iE)
= e−εxy (364)
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If we take the following formula

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1dt

et − 1
, (365)

which says that ζ function is the Mellin transformation, we can find

Γ(1 + iH2)
F

1− F
=

∫ ∞

0

dt/t

et − 1
F 1/t, (366)

or

Γ(1 + iH2)Φ =

∫ ∞

0

dt/t

et − 1
(

Φ

1 + Φ
)1/t,

Φ =
F

1− F
=

1

(1 + x1
x2
(1− h))x2 − 1

(367)
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We can obtain also the following equation with argument of ζN on critical
axis

ζN (
1

2
+ iH1(x2))F (x1, x2, h) =

N
∑

n=1

1

(1 + x1
nx2

(1− h))nx2

=

N
∑

n=1

F (x1, nx2, h),

ζN (
1

2
+ iH1(x2))F (λx1, x2, h) =

N
∑

n=1

1

(1 + λx1
nx2

(1− h))nx2

=

N
∑

n=1

F (λx1, nx2, h) ≃ Ne−λ(1−h)x1 , N ≫ 1. (368)
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Let us calculate next therm in the 1/λ expansion in the (360)

F (x1, λx2, h) = (1 +
εx1
λx2

)−λx2 = e
−λx2 ln(1+ε x1λx2 )

= e−εx1e
(εx1)

2

2λx2
+O(λ−2)

= e−εx1(1 +
(εx1)

2

2λx2
+O(λ−2)),

(F−1 − 1)−1 = (e
λx2 ln(1+ε

x1
λx2

) − 1)−1

=
1

eεx1 − 1
(1 +

eεx1

eεx1 − 1

(εx1)
2

2λx2
+O(λ−2)) (369)

The zero order term, λ0 we already considered. The next, λ−1 order term
gives the following relations

ζ(−δ1 − δ2)
x21
x2
e−εx1 =

1

x2
ζ(1− δ1)x

2
1e

−εx1 =
x21e

εx1

x2(eεx1 − 1)2
,

ζ(1− δ)x2e−εx =
x2eεx

(eεx − 1)2
= x2e−εx +O(e−2εx)

ζ(1− δ)Ψ = EΨ +O(e−2εx),Ψ = x2e−εx, E = 1. (370)
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There have been a number of approaches to understanding the Riemann
hypothesis based on physics (for a comprehensive list see [Watkins])
According to the idea of Berry and Keating, [Berry,Keating,1997] the real
solutions En of

ζ(
1

2
+ iEn) = 0, (371)

are energy levels, eigenvalues of a quantum Hermitian operator (the
Riemann operator) associated with the one-dimensional classical hyperbolic
Hamiltonian

Hc = xp, (372)

where x and p are the conjugate coordinate and momentum.
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They suggest a quantization condition generating Riemann zeros. This
Hamiltonian breaks time-reversal invariance since
(x, p) → (x,−p) ⇒ H → −H. The classical Hamiltonian H = xp of linear
dilation, i.e. multiplication in x and contraction in p, gives the Hamiltonian
equations:

ẋ = x,
ṗ = −p, (373)

with the solution

x(t) = x0e
t,

p(t) = p0e
−t (374)

for any nonzero E = x0p0 = x(t)p(t) is hyperbola in phase space.
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The system is quantized by considering the dilation operator in the x space

H =
1

2
(xp+ px) = −i~(1

2
+ x∂x), (375)

which is the simplest formally Hermitian operator corresponding to the
classical Hamiltonian. The eigenvalue equation

HψE = EψE , (376)

is satisfied by the eigenfunctions

ψE(x) = cx−
1
2
+ i

~
E , (377)

where the complex constant c is arbitrary, since the solutions are not
square-integrable. To the normalization

∫ ∞

0
dxψE(x)

∗ψE′(x) = δ(E − E′), (378)

corresponds c = 1/
√
2π.
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We have seen that

ζ(
1

2
+ iH)e−εx =

1

eεx − 1
,

H = −i(1
2
+ x∂x) = x1/2px1/2, p = −i∂x, (379)

than

e−εx =
∫

dEx−1/2+iEϕ(E, ε), ϕ(E, ε) =
1

2π

∫ ∞

0
dxx−1/2−iEe−εx

=
ε−1/2+iE

2π
Γ(1/2 + iE);

ζ(
1

2
+ iE)ϕ(E, ε) =

1

2π

∫ ∞

0
dx
x−1/2−iE

eεx − 1

=
ε−1/2+iE

2π
Γ(1/2 + iE)ζ(

1

2
+ iE). (380)
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Some calculations with zeta function values

From the equation (361) we have

ζ(
1

2
+ iH1(x))e

−εx =
1

eεx − 1
, H1 = i(

1

2
+ x∂x),

ζ(−x∂x)(1− εx+
(εx)2

2
+ ...) =

1

εx
(1− (

εx

2
+

(εx)2

6
+ ...)+

+(
εx

2
+ ...)2 + ...), (381)

so

ζ(0) = −1

2
, ζ(−1) = − 1

12
, ... (382)

Note that, a little calculation shows that, the (εx)2 terms cancels on the
r.h.s, in accordance with ζ(−2) = 0.
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More curious question concerns with the term 1/εx on the r.h.s. To it
corresponds the term with actual infinitesimal coefficient on the l.h.s.

1

ζ(1)

1

εx
, (383)

in the spirit of the nonstandard analysis (see, e.g. [Davis,1977]), we can
imagine that such a terms always present but on the r.h.s we may not note
them.
For other values of zeta function we will use the following expansion

1

ex − 1
=

1

x+ x2

2 + x3

3! + ...
=

1

x
− 1

2
+

∑

k≥1

B2kx
2k−1

(2k)!
,

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, ... (384)

and obtain

ζ(1− 2n) = −B2n

2n
, n ≥ 1. (385)
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Multiparticle production stochastic dynamics

Let us imagine space-time development of the the multiparticle process and
try to describe it by some (phenomenological) dynamical equation. We
start to find the equation for the Poisson distribution and than naturally
extend them for the NBD case.
Let us define an integer valued variable n(t) as a number of events
(produced particles) at the time t, n(0) = 0. The probability of event
n(t), P (t, n), is defined from the following motion equation

Pt ≡
∂P (t, n)

∂t
= r(P (t, n− 1)− P (t, n)), n ≥ 1

Pt(t, 0)) = −rP (t, 0),
P (t, n) = 0, n < 0, (386)

so

P (t, 0) ≡ P0(t) = e−rt,
P (t, n) = Q(t, n)P0(t),
Qt(t, n) = rQ(t, n− 1), Q(t, 0) = 1. (387)
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To solve the equation for Q, we invent its generating function

F (t, h) =
∑

n≥0

hnQ(t, n), (388)

and solve corresponding equation

Ft = rhF, F (t, h) = erth =
∑

hn
(rt)n

n!
, Q(t, n) =

(rt)n

n!
, (389)

so

P (t, n) = e−rt
(rt)n

n!
(390)

is the Poisson distribution.
If we compare this distribution with (322), we identify < n >= rt, as if we
have a free particle motion with velocity r and the distance is the mean
multiplicity. This way we have a connection between n-dimension of the
multiplicity and the usual dimension of trajectory.
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As the equation gives right solution, its generalization may give more
general distribution, so we will generalize the equation (386). For this, we
put the equation in the closed form

Pt(t, n) = r(e−∂n − 1)P (t, n)

=
∑

k≥1

Dk∂
kP (t, n), Dk = (−1)k

r

k!
, (391)

where the Dk, k ≥ 1, are generalized diffusion coefficients.
For other values of the coefficients, we will have other distributions.
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Fractal dimension of the multiparticle production trajectories

For mean square deviation of the trajectory we have

< (x− x̄)2 >=< x2 > − < x >2≡ D(x)2 ∼ t2/df , (392)

where df is fractal dimension. For smooth classical trajectory of particles we have df = 1; for
free stochastic, Brownian, trajectory, all diffusion coefficients are zero but D2, we have df = 2. In
the case of Poisson process we have,

D(n)2 =< n2 > − < n >2∼ t, df = 2. (393)

In the case of the NBD and KNO distributions

D(n)2 ∼ t2, df = 1. (394)

As we have seen, rasing k, KNO reduce to the Poisson, so we have a dimensional (phase)
transition from the phase with dimension 1 to the phase with dimension 2. It is interesting, if
somehow this phase transition is connected to the other phase transitions in strong interaction
processes.
For the Poisson distribution GF is solution of the following equation,

Ḟ = −r(1− h)F, (395)
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For the NBD corresponding equation is

Ḟ =
−r(1− h)

1 + rt
k
(1− h)

F = −R(t)F, R(t) = r(1− h)

1 + rt
k
(1 − h)

. (396)

If we change the time variable as t = T df , we reduce the dispersion low from general fractal to
the NBD like case. Corresponding transformation for the evolution equation is

FT = −dfT df−1R(T dF )F, (397)

we ask that this equation coincides with NBD motion equation, and define rate function R(T )

dfT
df−1R(T dF ) =

r(1− h)

1 + rT
k
(1− h)

, (398)

now the following equation defines a production processes with fractal dimension dF

Ft = −R(t)F, R(t) = r(1− h)

dF t
dF −1

dF (1 + rt1/dF
k

(1 − h))

(399)
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Spherical model of the multiparticle production

Now we would like to consider a model of multiparticle production based on
the d-dimensional sphere, and (try to) motivate the values of the NBD
parameter k. The volum of the d-dimensional sphere with radius r, in units
of hadron size rh is

v(d, r) =
πd/2

Γ(d/2 + 1)
(
r

rh
)d (400)

Note that,

v(0, r) = 1, v(1, r) = 2
r

rh
,

v(−1, r) =
1

π

rh
r

(401)

If we identify this dimensionless quantity with corresponding coulomb
energy formula,

1

π
=
e2

4π
, (402)

we find e = ±2.
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For less then -1 even integer values of d, and r 6= 0, v = 0. For negative
odd integer d = −2n+ 1

v(−2n + 1, r) =
π−n+1/2

Γ(−n+ 3/2)
(
rh
r
)2n−1, n ≥ 1, (403)

v(−3, r) = − 1

2π2
(
rh
r
)3, v(−5, r) =

3

4π3
(
rh
r
)5 (404)

Note that,

v(2, r)v(3, r)v(−5, r) =
1

π
, v(1, r)v(2, r)v(−3, r) = − 1

π
(405)

We postulate that after collision,it appear intermediate state with almost
spherical form and constant energy density. Than the radius of the sphere
rise, dimension decrease, volume remains constant. At the last moment of
the expansion, when the crossection of the one dimensional sphere - string
become of order of hadron size, hadronic string divide in k independent
sectors which start to radiate hadrons with geometric (Boze-Einstein)
distribution, so all of the string final state radiate according to the NBD
distribution.
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So, from the volume of the hadronic string,

v = π(
r

rh
)2
l

rh
= πk, (406)

we find the NBD parameter k,

k =
πd/2−1

Γ(d/2 + 1)
(
r

rh
)d (407)

Knowing, from experimental date, the parameter k, we can restrict the
region of the values of the parameters d and r of the primordial sphere (PS),

r(d) = (
Γ(d/2 + 1)

πd/2−1
k)1/drh,

r(3) = (
3

4
k)1/3rh, r(2) = k1/2rh, r(1) =

π

2
krh (408)

If the value of r(d) will be a few rh, the matter in the PS will be in the
hadronic phase. If the value of r will be of order 10rh, we can speak about
deconfined, quark-gluon, Glukvar, phase. From the formula (408), we see,
that to have for the r, the value of order 10rh, in d = 3 dimension, we need
the value for k of order 1000, which is not realistic.
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So in our model, we need to consider the lower than one, fractal,
dimensions. It is consistent with the following intuitive picture. Confined
matter have point-like geometry, withe dimension zero. Primordial sphere
of Glukvar have nonzero fractal dimension, which is less than one,

k = 3, r(0.7395)/rh = 10.00,
k = 4, r(0.8384)/rh = 10.00 (409)

From the experimental data we find the parameter k of the NBD as a
function of energy, k = k(s). Then, by our spherical model, we construct
fractal dimension of the Glukvar as a function of k(s).
If we suppose that radius of the primordial sphere r is of order (or less) of
rh. Than we will have higher dimensional PS, e.g.

d r/rh k
3 1.3104 3.0002
4 1.1756 3.0003
6 1.1053 2.9994
8 1.1517 3.9990
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Extra dimension effects at high energy and large scale Universe

With extra dimensions gravitation interactions may become strong at the
LHC energies,

V (r) =
m1m2

m2+d

1

r1+d
(410)

If the extra dimensions are compactified with(in) size R, at r >> R,

V (r) ≃ m1m2

m2(mR)d
1

r
=
m1m2

M2
P l

1

r
, (411)

where (4-dimensional) Planck mass is given by

M2
P l = m2+dRd, (412)

so the scale of extra dimensions is given as

R =
1

m
(
MP l

m
)
2
d (413)
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If we take m = 1TeV, (GeV −1 = 0.2fm)

R(d) = 2 · 10−17 · ( MP l

1TeV
)
2
d · cm,

R(1) = 2 · 1015cm,
R(2) = 0.2 cm !
R(3) = 10−7cm !
R(4) = 2 · 10−9cm,
R(6) ∼ 10−11cm (414)

Note that lab measurements of GN (= 1/M2
P l,MP l = 1.2 · 1019GeV ) have

been made only on scales of about 1 cm to 1 m; 1 astronomical unit(AU)
(mean distance between Sun and Earth) is 1.5 · 1013cm; the scale of the
periodic structure of the Universe, L = 128Mps ≃ 4 · 1026cm. It is curious
which (small) value of the extra dimension corresponds to L?

d = 2
ln MPl

m

ln(mL)
= 0.74, m = 1TeV,

= 0.81, m = 100GeV,
= 0.07, m = 1017GeV. (415)
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Dynamical formulation of z - Scaling

Motion equations of physics (applied mathematics in general) connect
different observable quantities and reduce the number of independently
measurable quantities. More fundamental equation contains less number of
independent quantities. When (before) we solve the equations, we invent
dimensionless invariant variables, than one solution can describe all of the
class of phenomena.
In the z - Scaling (zS) approach to the inclusive multiparticle distributions
(MPD) (see, e.g. [Tokarev, Zborovsky, 2007a]), different inclusive
distributions depending on the variables x1, ...xn, are described by universal
function Ψ(z) of fractal variable z,

z = x−α1
1 ...x−αnn . (416)

It is interesting to find a dynamical system which generates this
distributions and describes corresponding MPD.
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We can find a good function if we know its derivative. Let us consider the
following RD like equation

z
d

dz
Ψ = V (Ψ),

∫ Ψ(z)

Ψ(z0)

dx

V (x)
= ln

z

z0
(417)

In x−representation,

ln z = −
n
∑

k=1

αk lnxk, δz = z
d

dz
= −

∑

k

δk
nhαk

,

n
∑

k=1

xk
nhαk

∂

∂xk
Ψ(x1, ..., xn) + V (Ψ) = 0, (418)

e.g.

z = δzz = −
n
∑

k=1

xk
nhαk

∂

∂xk
x−α1
1 ...x−αnn = z, nh = n. (419)

N.V.Makhaldiani ( Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Nambu-Poisson dynamics with some applications July 18 - 23, 2011. 159 / 175



In the case of NBD GF (328), we have

n = 2, x1 = k, x2 =< n >, α1 = α2 = 1, nh = 1,
Ψ = F, V (Ψ) = −Ψ lnΨ. (420)

In the case of the z−scaling, [Tokarev, Zborovsky, 2007a],

n = 4, x3 = ya, x4 = yb,
α1 = δ1, α2 = δ2, α3 = εa, α4 = εb, nh = 4, (421)

for infinite resolution, αn = 1, n = 1, 2, 3, 4. In z variable the equation for
Ψ has universal form. In the case of n = 2, α1 = α2 = 1, nh = 1, we find
that V (Ψ) = −Ψ lnΨ, so if this form is applicable also in the case of n=4,

z
d

dz
Ψ(z) = −Ψ lnΨ,

Ψ(z) = ec/z = (Ψ(z0)
z0)

1
z = Ψ(z0)

z0
z ,

c = z0 lnΨ(z0) < 0, z ∈ (0,∞), Ψ(z) ∈ (0, 1). (422)

Note that the fundamental equation is invariant with respect to the scale
transformation z → λz, but the solution is not, the scale transformation
transforms one solution into another solution. This is an example of the
spontaneous breaking of the (scale) symmetry by the states of the system.
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Formal motivation (foundation) of the RD motion equation for Ψ

As a dimensionless physical quantity Ψ(z) may depend only on the running
coupling constant g(τ), τ = ln z/z0

z
d

dz
Ψ = Ψ̇ =

dΨ

dg
β(g) = U(g) = U(f−1(Ψ)) = V (Ψ),

Ψ(τ) = f(g(τ)), g = f−1(Ψ(τ)) (423)
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Realistic solution for Ψ

According to the paper [Tokarev, Zborovsky, 2007a], for high values of
z, Ψ(z) ∼ z−β ; for small z, Ψ(z) ∼ const.
So, for high z,

z
d

dz
Ψ = V (Ψ(z)) = −βΨ(z); (424)

for smaller values of z, Ψ(z) rise and we expect nonlinear terms in V (Ψ),

V (Ψ) = −βΨ+ γΨ2. (425)

With this function, we can solve the equation for Ψ(see appendix) and find

Ψ(z) =
1

γ
β + czβ

. (426)

N.V.Makhaldiani ( Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Nambu-Poisson dynamics with some applications July 18 - 23, 2011. 162 / 175



Reparametrization of the RD equation

RD equation of the z-Scaling,

z
d

dz
Ψ(z) = V (Ψ), V (Ψ) = V1Ψ+ V2Ψ

2 + ...+ VnΨ
n + ... (427)

can be reparametrized,

Ψ(z) = f(ψ(z)) = ψ(z) + f2ψ
2 + ...+ fnψ

n + ...

z
d

dz
ψ(z) = v(z) = v1ψ(z) + v2ψ

2 + ...+ vnψ
n + ...

(v1ψ(z) + v2ψ
2 + ...+ vnψ

n + ...)(1 + 2f2ψ + ...+ nfnψ
n−1 + ...)

= V1(ψ + f2ψ
2 + ...+ fnψ

n + ...)
+V2(ψ

2 + 2f2ψ
3 + ...) + ...+ Vn(ψ

n + nf2ψ
n+1 + ...) + ...

= V1ψ + (V2 + V1f2)ψ
2 + (V3 + 2V2f2 + V1f3)ψ

3+
...+ (Vn + (n− 1)Vn−1f2 + ...+ V1fn)ψ

n + ...
v1 = V1,
v2 = V2 − f2V1,
v3 = V3 + 2V2f2 + V1f3 − 2f2v2 − 3f3v1 = V3 + 2(f22 − f3)V1, ...
vn = Vn + (n− 1)Vn−1f2 + ...+ V1fn − 2f2vn−1 − ...− nfnv1,(428)

so, by reparametrization, we can change any coefficient of potential V but
V1.
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We can fix any higher coefficient with zero value, if we take

f2 =
V2
V1
, f3 =

V3
2V1

+ f22 =
V3
2V1

+ (
V2
V1

2

), ...

fn =
Vn + (n− 1)Vn−1f2 + ...+ 2V2fn−1

(n− 1)V1
, ... (429)

We will consider the case when only one of higher coefficient is nonzero and
give explicit form of the solution Ψ.
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More general solution for Ψ

Let us consider more general potential V

z
d

dz
Ψ = V (Ψ) = −βΨ(z) + γΨ(z)1+n (430)

Corresponding solution for Ψ is

Ψ(z) =
1

(γβ + cznβ)
1
n

(431)
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More general solution contains three parameters and may better describe
the data of inclusive distributions.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure: z-scaling distribution (431), Ψ(z, 9, 9, 1, 1)

In the case of n = 1 we reproduce the previous solution.
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Another ”natural” case is n = 1/β,

Ψ(z) =
1

(γβ + cz)β
(432)

In this case, we can absorb (interpret) the combined parameter by shift and
scaling

z → 1

c
(z − γ

β
) (433)

Another interesting point of view is to predict the value of β

β =
1

n
= 0.5; 0.33; 0.25; 0.2; ..., n = 2, 3, 4, 5, ... (434)

For experimentally suggested value β ≃ 9, n = 0.11
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In the case of n = −ε, β = γ = 1/ε, c = εk, we will have

V (Ψ) = −Ψ lnΨ, Ψ(z) = e
k
z (435)

This form of Ψ−function interpolates between asymptotic values of Ψ and
predicts its behavior in the intermediate region.
The three parameter function is restricted by the normalization condition

∫ ∞

0
Ψ(z)dz = 1,

B(
β − 1

βn
,
1

βn
) = (

β

γ
)
β−1
βn

βn

cβn
, (436)

so remains only two free parameter. When βn = 1, we have

c = (β − 1)(
β

γ
)β−1 (437)

If βn = 1 and β = γ, than c = β − 1.
In general

cβn = (
β

γ
)
β−1
βn

βn

B(β−1
βn ,

1
βn)

(438)
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Scaling properties of scaling functions and they equations

RD equation of the z-scaling (430), after substitution,

Ψ(z) = (ϕ(z))
1
n , (439)

reduce to the n = 1 case with scaled parameters,

ϕ̇ = −βnϕ+ γnϕ2, (440)

this substitution could be motivated also by the structure of the solution
(431),

Ψ(z, β, γ, n, c) = Ψ(z, βn, γn, 1, c)
1
n = Ψ(z, β, γ, βn, c)β . (441)

General RD equation takes form

ϕ̇ = nv1ϕ+ nv2ϕ
1+ 1

n + nv3ϕ
1+ 2

n + ...+ nvnϕ
2 + nvn+1ϕ

2+ 1
n + ... (442)
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Space-time dimension inside hadrons and nuclei

The dimension of the space(-time) is the model dependent concept. E.g.
for the fundamental bosonic string model (in flat space-time) the dimension
is 26; for superstring model the dimension is 10 [Kaku,2000].
Let us imagine that we have some action-functional formulation with the
fundamental motion equation

z
d

dz
Ψ = V (Ψ(z)) = V (Ψ) = −βΨ+ γΨ1+n. (443)

Than, the corresponding Lagrangian contains the following mass and
interaction parts

−β
2
Ψ2 +

γ

2 + n
Ψ2+n (444)

The action gives renormalizable (effective quantum field theory) model
when

d+ 2 =
2N

N − 2
=

2(2 + n)

n
= 2 +

4

n
= 2 + 4β, (445)

so, measuring the parameter β inside hadronic and nuclear matters, we find
corresponding (fractal) dimension.
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Another action formulation of the Fundamental equation

From fundamental equation we obtain

(z
d

dz
)2Ψ ≡ Ψ̈ = V ′(Ψ)V (Ψ) =

1

2
(V 2)′

= β2Ψ− βγ(n+ 2)Ψn+1 + γ2(n + 1)Ψ2n+1 (446)

Corresponding action Lagrangian is

L =
1

2
Ψ̇2 + U(Ψ), U =

1

2
V 2 =

1

2
Ψ2(β − γΨn)2

=
β2

2
Ψ2 − βγΨ2+n +

γ2

2
Ψ2+2n (447)

This potential, −U, has two maximums, when V = 0, and minimum, when
V ′ = 0, at Ψ = 0 and Ψ = (β/γ)1/n, and Ψ = (β/(n + 1)γ)1/n,
correspondingly.
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We define time-space-scale field Ψ(t, x, η), where η = ln z− is scale
coordinate variable, with corresponding action functional

A =

∫

dtddxdη(
1

2
gab∂aΨ∂bΨ+ U(Ψ)) (448)

The renormalization constraint for this action is

N = 2 + 2n =
2(2 + d)

2 + d− 2
= 2 +

4

d
, dn = 2, d = 2/n = 2β. (449)

So we have two models for spase-time dimension, (445) and (449),

d1 = 4β; d2 = 2β (450)

The coordinate η characterise (multiparticle production) physical process at
the (external) space-time point (x,t). The dimension of the space-time
inside hadrons and nuclei, where multiparticle production takes place is

d+ 1 = 1 + 2β (451)

Note that this formula reminds the dimension of the spin s state,
ds = 2s+ 1. If we take β(= s) = 0; 1/2; 1; 3/2; 2; ... We will have
d+ 1 = 1; 2; 3; 4; 5; ...
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Note that as we invent Ψ as a real field, we ought to take another
normalization

∫

ddx|Ψ|2 = 1 (452)

for the solutions of the motion equation. This case extra values of the
parameter β is possible, β > d/2.

N.V.Makhaldiani ( Joint Institute for Nuclear Research Dubna, Moscow Region, Russia e-mail address: mnv@jinr.ru )Nambu-Poisson dynamics with some applications July 18 - 23, 2011. 173 / 175



Measurement of the space-time dimension inside hadrons

We can take a renormdynamic scheme were Ψ(g) is running coupling
constant. The variable z is a formation length and has dimension -1, RD
equation for Ψ in ϕ3

D model is

z
d

dz
Ψ =

6−D

2
Ψ + γΨ2 (453)

β =
D − 6

2
(454)

For high values of z, β = 9, so D = 24. This value of D corresponds to the
physical (transverse) degrees of freedom of the relativistic string, to the
dimension of the external space in which this relativistic string lives. This is
also the number of the quark - lepton matter degrees of freedom, 3 · 6 + 6.
So, in these high energy reactions we measured the dimension of the
space-time and matter and find the values predicted by relativistic string
and SM. For lower energies, in this model, D monotonically decrees until
D = 6, than the model (may) change form on the ϕ4

D, β = D − 4. So we
have two scenarios of behavior. In one of them the dimension of the
space-time inside hadrons has value 6 and higher. In another the dimension
is 4 and higher.
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Perturbative QCD indicates that we have a fixed point of RD in dimension
slightly higher than 4, and ordinary to hadron phase transition corresponds
to the dimensional phase transition from slightly lower than 4, in QED, to
slightly higher than 4 dimension in QCD. In general scalar field model ϕnD,

β = −dg =
nD

2
− n−D. (455)

For ϕ3 model, β = 9 corresponds to D = 24. In tha case of the
O(N)−sigma model

β = D − 2, (456)

For the experimental value of β = 9, we have the dimension of the
M−theory, D = 11!
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