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Symmetries and conserved quantities (1)

Let (M,g) be a n-dimensional manifold equipped with a
(pseudo-)Riemmanian metric g and denote by

H =
1
2

g ijpipj ,

the Hamilton function describing the motion in a curved space.
In terms of the phase-space variables(x i ,pi) the Poisson
bracket of two observables P,Q is

{P,Q} =
∂P
∂x i

∂Q
∂pi
− ∂P
∂pi

∂Q
∂x i .



Symmetries and conserved quantities (2)

A conserved quantity of motions expanded as a power series in
momenta:

K = K0 +

p∑
k=1

1
k !

K i1···ik (x)pi1 · · · pik .

Vanishing Poisson bracket with the Hamiltonian, {K ,H} = 0,
implies

K (i1···ik ;i) = 0 ,

Such symmetric tensor K i1···ik
k is called a Stäckel-Killing (SK)

tensor of rank k



Gauge covariant approach (1)

In the presence of an gauge field Fij expressed (locally) in
terms of the potential 1 -form Aµ

F = dA ,

the Hamiltonian is

H =
1
2

g ij(pi − Ai)(pj − Aj) + V (x) ,

including a scalar potential V(x).



Gauge covariant approach (2)

Gauge covariant formulation [van Holten 2007]

Introduce the gauge invariant momenta

Πi = pi − Ai = ẋi .

Hamiltonian becomes

H =
1
2

g ijΠiΠj + V (x) ,

Covariant Poisson brackets

{P,Q} =
∂P
∂x i

∂Q
∂Πi
− ∂P
∂Πi

∂Q
∂x i + Fij

∂P
∂Πi

∂Q
∂Πj

.

where Fij = Aj;i − Aj;i is the field strength.



Gauge covariant approach (3)

Fundamental Poisson brackets

{x i , x j} = 0 , {x i ,Πj} = δi
j , {Πi ,Πj} = Fij ,

Momenta Πi are not canonical.
Hamilton’s equations:

ẋ i = {x i ,H} = g ijΠj ,

Π̇i = {Πi ,H} = Fij ẋ j − V,i .



Gauge covariant approach (4)

Conserved quantities of motion in terms of phase-space
variables (x i ,Πi)

K = K0 +

p∑
n=1

1
n!

K i1···in (x) · · ·Πi1Πin ,

Bracket
{K ,H} = 0 .

vanishes for conserved quantities..



Gauge covariant approach (5)

Series of constraints:

K iV,i = 0 ,

K ,i
0 + F i

j K j = K ijV,j .

K (i1···il ;il+1) + F (il+1
j K i1···il )j =

1
(l + 1)

K i1···il+1jV,j ,

for l = 1 , · · · (p − 2) ,

K (i1···ip−1;ip) + F (ip
j K i1···ip−1)j = 0 ,

K (i1···ip;ip+1) = 0 .



Killing-Yano tensors (1)

A Killing-Yano (KY) tensor is a p -form Y (p ≤ n) which satisfies

∇X Y =
1

p + 1
X−| dY ,

for any vector field X , where ’hook’ operator −| is dual to the
wedge product.
In components,

Yi1···ip−1(ip;j) = 0 .

SK and KY tensors could be related. Let Yi1···ip be a KY tensor,
then the symmetric tensor field

Kij = Yii2···ipY i2···ip
j ,

is a SK tensor



Killing-Yano tensors (2)
A conformal Killing-Yano (CKY) tensor is a p -form which
satisfies

∇X Y =
1

p + 1
X−| dY − 1

n − p + 1
X [ ∧ d∗Y ,

where X [ denotes the 1 -form dual with respect to the metric to
the vector field X and d∗ is the exterior co-derivative. Hodge
dual maps the space of p-forms into the space of (n− p)-forms.
Conventions:

∗ ∗ Y = εpY , ∗−1 Y = εp ∗ Y ,

with the number εp

εp = (−1)p ∗−1 detg
|detg|

.

d∗Y = (−1)p ∗−1 d ∗ Y .



Killing-Yano tensors (3)

Conformal generalization of the SK tensors, namely a
symmetric tensor Ki1···ip = K(i1···ip) is called a conformal
Stackel-Killing (CSK) tensor if it obeys the equation

K(i1···ip;j) = gj(i1K̃i2···ip) ,

where the tensor K̃ is determined by tracing the both sides of
equation .
Similar relation between CKY and CSK tensors: If Yij is a CKY
tensor

Kij = Y k
j Ykj ,

is a CSK tensor.



Killing-Yano tensors (4)

Remarks:
I CKY equation is invariant under Hodge duality.
I A CKY tensor is a KY tensor iff it is co-closed.
I Dual of a CKY tensor is a KY tensor iff it is closed.



Killing-Yano tensors (5)

An interesting construction involving CKY tensors Yij of rank 2
in 4 dimensions.
In this particular case:

Yi(j;k) = −1
3

(
gjkY l

i;l + gi(kY l
j) ;l

)
,

and let us denote
Yk := Y l

k ;l .

This vector satisfies equation:

Y(i;j) =
3
2

Rl(iY l
j) .

It is obvious that in a Ricci flat space (Rij = 0 ) or in an Einstein
space ( Rij ∼ gij ),Yk is a Killing vector and we shall refer to it as
the primary Killing vector.



Killing-Maxwell system (1)

Returning to the system of equations for the conserved
quantities e should like to find the conditions of the
electromagnetic tensor field Fij to maintain the hidden
symmetry of the system. To make things more specific, let us
assume that the system admits a hidden symmetry
encapsulated in a SK tensor of rank 2, Kij associated with a KY
tensor Yij . The sufficient condition of the electromagnetic field
to preserve the hidden symmetry is

Fk [iY k
j] = 0 .

where the indices in square bracket are to be antisymmetrized.



Killing-Maxwell system (2)
A concrete realization of this condition is presented by the
Killing-Maxwell system [Carter 1997]. In Carter’s construction a
primary Killing vector is identified, modulo a rationalization
factor, with the source current j i of the electromagnetic field

F ij
;j = 4πj i .

Therefore the Killing-Maxwell system is defined assuming that
the electromagnetic field Fij is a CKY tensor. In addition, it is
a closed 2-form and its Hodge dual

Yij = ∗Fij ,

is a KY tensor.
Now let us consider that the hidden symmetry of the system to
consider is associated with the KY tensor of the Killing-Maxwell
system. It is quite simple to observe that FijY

j
k ∼ Fij ∗ F j

k is a
symmetric matrix ( in fact proportional with the unit matrix) and
therefore above condition is fulfilled.



Examples (1)
Example I. Kerr space (1)

To exemplify the results for Killing-Maxwell system, let us
consider the Kerr solution to the vacuum Einstein equations
[Boyer-Lindquist coordinates (t , r , θ, φ)]

g = −∆

ρ2 (dt − a sin2 θ dφ)2

+
sin2 θ

ρ2 [(r2 + a2)dφ− a dt ]2 +
ρ2

∆
dr2 + ρ2dθ2 ,

where

∆ = r2 + a2 − 2 m r ,

ρ2 = r2 + a2 cos2 θ .

This metric describes a rotating black hole of mass m and
angular momentum J = am.



Examples (2)
Example I. Kerr space (2)

Kerr space admits the SK tensor

Kijdx idx j = −ρ
2a2 cos2 θ

∆
dr2 +

∆a2 cos2 θ

ρ2 (dt − a sin2 θ dφ)2

+
r2 sin2 θ

ρ2 [−a dt + (r2 + a2) dφ]2 + ρ2r2 dθ2,

in addition to the metric tensor gij . This tensor is associated
with the KY tensor

Y = r sin θ dθ ∧ [−a dt + (r2 + a2) dφ]

+a cos θ dr ∧ (dt − a sin2 θdφ).



Examples (3)
Example I. Kerr space (3)

The dual tensor

∗Y = a sin θ cos θ dθ ∧ [−a dt + (r2 + a2) dφ]

+r dr ∧ (−dt + a sin2 θ dφ)

is a CKY tensor ( electromagnetic field Fij of KM system).
Four-potential one-form is

A =
1
2

(a2 cos2 θ − r2)dt +
1
2

a (r2 + a2) sin2 θ dφ.

Finally, the current is to be identified with the primary Killing
vector

Yk := Y kl
;k∂l = 3∂t .



Examples (4)
Example II. Generalized Taub-NUT space (1)

The generalized Taub-NUT metric is

ds2
4 = f (r)(dr2 + r2(dθ2 + sin2 θdφ2)) + g(r)(dψ + cos θdφ)2

where the curvilinear coordinates (r , θ, φ, ψ) are

x1 =
√

r cos
θ

2
cos

ψ + φ

2
, x2 =

√
r cos

θ

2
sin

ψ + φ

2
,

x3 =
√

r sin
θ

2
cos

ψ − φ
2

, x4 =
√

r sin
θ

2
sin

ψ − φ
2

.



Examples (5)
Example II. Generalized Taub-NUT space (2)

In Cartesian coordinates the metric is

ds2
4 = 4r f (r)ds2

0 +

4
(

g(r)

r2 − f (r)

)
(−x2dx1 + x1dx2 − x4dx3 + x3dx4)2

where

ds2
0 =

4∑
1

(dxj)
2

is the standard flat metric.



Examples (6)
Example II. Generalized Taub-NUT space (3)

The associated Hamiltonian in the Cartesian coordinates (x , y)
of the cotangent bundle T ?(R4 − {0}) is

H =
1
2

[
1

4rf (r)

4∑
1

y2
j

+
1
4

(
1

g(r)
− 1

r2f (r)

)
(−x2y1 + x1y2 − x4y3 + x3y4)2

]
+ V (r)

where a potential V (r) was added for latter convenience.
The phase-space T ?(R4 − {0}) is equipped with the standard
symplectic form

dΘ =
4∑
1

dyj ∧ dxj , Θ =
4∑
1

yj ∧ dxj .



Examples (7)
Example II. Generalized Taub-NUT space (4)

Let us consider the principal fiber bundle
π : R4 − {0} → R3 − {0} with structure group SO(2) lifted to a
symplectic action on T ?(R4 − {0}). The action SO(2) is given
by

(x , y)→ (T (t)x ,T (t)y), (x , y) ∈ (R4 − {0}) .

where

T (t) =

(
R(t) 0

0 R(t)

)
, R(t) =

(
cos t

2 − sin t
2

sin t
2 cos t

2

)
.

Let Ψ : T ?(R4 − {0})→ R be the moment map associated with
the SO(2) action

Ψ(x , y) =
1
2

(−x2y1 + x1y2 − x4y3 + x3y4) .



Examples (8)
Example II. Generalized Taub-NUT space (5)

Since ψ is a cyclic variable, the momentum

µ = g(r)(ψ̇ + cos θφ̇) ,

is a conserved quantity. The reduced phase-space Pµ is
defined through

πµ : Ψ−1(µ)→ Pµ := Ψ−1(µ)/SO(2) ,

which is diffeomorphic withT ?(R3 − {0}) ∼= (R3 − {0})× R3.



Examples (9)
Example II. Generalized Taub-NUT space (6)

The coordinates (qk ,pk ) ∈ (R3 − {0})× R3 are given by the
Kunstaanheimo-Stiefel transformation

q1
q2
q3
0

 =


x3 x4 x1 x2
−x4 x3 x2 −x1

x1 x2 −x3 −x4
−x2 x1 −x4 x3




x1
x2
x3
x4

 ,


p1
p2
p3

Ψ/r

 =
1
2r


x3 x4 x1 x2
−x4 x3 x2 −x1

x1 x2 −x3 −x4
−x2 x1 −x4 x3




y1
y2
y3
y4

 .

Note that
∑3

1 q2
k = r2.



Examples (10)
Example II. Generalized Taub-NUT space (7)

The reduced symplectic form ωµ is

ωµ =
3∑

k=1

dpk∧dqk−
µ

r3 (q1 dq2∧dq3+q2 dq3∧dq1+q3 dq1∧dq2) .

The ωµ is the standard symplectic form on T ?(R3 − {0}) plus
the Dirac’s monopole field.
The reduced Hamiltonian is determined by

Hµ =
1

2f (r)

3∑
k=1

p2
k +

µ2

2g(r)
+ V (r) .



Examples (11)
Example II. Generalized Taub-NUT space (8)

Conserved quantities
I Momentum pψ = µ associated with the cycle variable ψ
I Angular momentum vector

~J = ~q × ~p +
µ

r
~q ,

I In some cases the system admits additional constants of
motion polynomial in momenta.



Examples (12)
Example II. Generalized Taub-NUT space (9)

Extended Taub-NUT space

f (r) =
a + br

r
, g(r) =

ar + br2

1 + cr + dr2 , V (r) = 0

with a,b, c,d real constants admits a Runge-Lenz type vector

~A = ~p × ~J − (aE − 1
2

cµ2)
~q
r
,

where E is the conserved energy. If the constants a,b, c,d are
subject to the constraints

c =
2b
a
, d =

b2

a2 ,

the extended metric coincides, up to a constant factor, with the
original Taub-NUT metric.



Examples (13)
Example II. Generalized Taub-NUT space (10)

For
f (r) = 1 , g(r) = r2 , V (r) = −κ

r
we recognize the MIC-Kepler problem with the Runge-Lenz
type conserved vector

~A = ~p × ~J − κ
~q
r
.

Moreover, for µ = 0 recover the standard Coulomb - Kepler
problem.



Examples (14)
Example II. Generalized Taub-NUT space (11)

It is interesting to analyze the reverse of the reduction
procedure .
Using a sort of unfolding of the 3-dimensional dynamics
imbedding it in a higher dimensional space the conserved
quantities are related to the geometrical features of this
manifold, namely higher rank Killing tensors.
To exemplify let us start with the reduced Hamiltonian written in
curvilinear coordinates (µ a constant)

Hµ =
1

2f (r)

[
p2

r +
1
r2

(
p2
θ +

(pφ − µ cos θ)2

sin2 θ

)]
+

µ2

2g(r)
+ V (r) ,

on the 3-dimensional space with the metric

ds2
3 = f (r)(dr2 + r2(dθ2 + sin2 θdφ2))

and the canonical symplectic form

dΘµ = dpr ∧ dr + dpθ ∧ dθ + dpφ ∧ dφ .



Examples (15)
Example II. Generalized Taub-NUT space (12)

At each point of T ?(R3 − {0}) we define the fiber S1 (the circle)
and on the fiber we consider the motion whose equation is

dψ
dt

=
µ

g(r)
− cos θ

f (r)r2 sin2 θ
(pφ − µ cos θ) .

The metric on R4 defines horizontal spaces orthoghonal to the
orbits of the circle, annihilated by the connection

dψ + cos θdφ .



Examples (16)
Example II. Generalized Taub-NUT space (13)

The metric on R4 can be written in the form

ds2
4 = f (r)(dr2 + r2(dθ2 + sin2 θdφ2)) + h(r)(dψ + cos θdφ)2 .

The natural symplectic form on T ?(R4 − {0}) is

dΘ = dΘµ + dpψ ∧ dψ .

Considering the geodesic flow of ds2
4 and taking into account

that ψ is a cycle variable

pψ = h(r)(ψ̇ + cos θφ̇) ,

is a conserved quantity. To make contact with the Hamiltonian
dynamics on T ?(R3 − {0}) we must identify

h(r) = g(r) .



Quantum anomalies (1)

In the quantum case, the momentum operator is given by ∇µ
and the Hamiltonian operator for a free scalar particle is the
covariant Laplacian acting on scalars

H = � = ∇ig ij∇j = ∇i∇i

For a CK vector we define the conserved operator in the
quantized system as

QV = K i∇i .

In order to identify a quantum gravitational anomaly we shall
evaluate the commutator [�,QV ]Φ , for Φ ∈ C∞(M) solutions of
the Klein-Gordon equation.



Quantum anomalies (2)

Explicit evaluation of the commutator:

[H,QV ] =
2− n

n
K ;ki

k ∇i +
2
n

K k
;k� .

In the case of ordinary K vectors, the r. h. s. of this commutator
vanishes and there are no quantum gravitational anomalies.
However for CK vectors, the situation is quite different. Even if
we evaluate the r. h. s. of the commutator on solutions of the
massless Klein-Gordon equation, �Φ(x) = 0,the term K ;ji

j ∇i
survives. Only in a very special case, when by chance this term
vanishes, the anomalies do not appear.



Quantum anomalies (3)

Quantum analog of conserved quantities for Killing tensors K ij

QT = ∇iK ij∇j ,

Similar form for QCSK constructed from a conformal
Stackel-Killing tensor.
Evaluation of the commutator

[�,QT ] = 2
(
∇(kK ij)

)
∇k∇i∇j

+3∇m

(
∇(kK mj)

)
∇j∇k

+

{
−4

3
∇k

(
R [k

m K j]m
)

+ ∇k

(
1
2

gml(∇k∇(mK lj) −∇j∇(mK kl)) +∇i∇(kK ij)
)}
∇j .



Quantum anomalies (4)

In case of Stackel-Killing tensors the commutator simplifies:

[�,QT ] = −4
3
∇k (R [k

m K j]m)∇j .

There are a few notable conditions for which the commutator
vanishes, i.e. No anomalies:

I Space is Ricci flat, i. e. Rij = 0
I Space is Einstein, i. e. Rij ∝ gij

I Stackel-Killing tensors associated to Killing-Yano tensors of
rank 2:

Kij = YikY k
j .



Quantum anomalies (5)

In case of conformal Stackel-Killing tensors there are quantum
gravitational anomalies. Even if we evaluate the commutator for
a conformal Stackel-Killing tensor associated to a conformal
Killing-Yano tensor

Kij = YikY k
j .

the commutator does not vanish.



Outlook

I Non-Abelian dynamics
I Spaces with skew-symmetric torsion
I Higher order Killing tensors (rank ≥ 3)
I .....


