GALILEAN CONFORMAL SYMMETRIES AND SUPERSYMMETRIES

1. Three versions of NR conformal symmetries

- Schrödinger algebra $\operatorname{Schr}(\mathbf{d})$ and its generalization $\operatorname{Sch} r_{N}(d)$
- Galilean conformal algebra (GCA) - C(d)
- ∞ - dim algebra of NR conformal isometries

2. Galilean conformal symmetries - arbitrary d

- two contractions: "physical" $c \rightarrow \infty$ and "geometric" Inonu-Wigner
- realizations of GCA (σ-model type, NR twistors)

3. Galilean conformal supersymmetries (SUSY GCA)

- two contractions and fermionic new charges: algebraic structure
- quaternionic structure and Galilean supertwistors

4. Final remarks

REFERENCES:

Galilean conformal:
J.L., P. Stichel, W.J. Zakrzewski, Phys. Lett. A357, 1 (2006); hep-th/0511259
S. Fedoruk, E. Ivanov, J.L., Phys. Rev. D83, 085013 (2011); arXiv:1101.1658 [hep-th]
S. Fedoruk, P. Kosiński, J.L., P. Maślanka, Phys. Lett. B699, 129 (2011); arXiv:1012.0480 [hep-th]

Galilean superconformal:
J.A. de Azcárraga, J.L., Phys. Lett. B678 411 (2009); arXiv:0905.0188 [math-phys]
S. Fedoruk, J.L., arXiv:1105.3444 [hep-th], Phys. Rev. D, in press

Related: Galilean N-extended SUSY
J.L., Phys. Lett. B694, 478 (2011); arXiv: 1009.0182 [hep-th]

1. Three Versions of NR Conformal Symmetries

"Physical" contraction $c \rightarrow \infty$:

relativistic (super)symmetries \rightarrow Galilean (super)symmetries Usually performed on the level of Lie algebras:
Example: Poincaré algebra $\mathcal{P}(D=d+1) \rightarrow$ Galilean algebra $G(d)$
$\left(M_{\mu \nu}=\left(M_{r s}, M_{o r}\right), P_{\mu}=\left(P_{r}, P_{0}\right)\right) \xrightarrow{c \rightarrow \infty} M_{r s}, B_{r}, P_{r}, H$
$\mu, \nu=0,1 \ldots d \quad r, s=1,2 \ldots d$
Rescaling: $M_{r 0}=c B_{r} \quad P_{0}=m_{0} c+\frac{H}{c} \quad B_{i}$ - Galilean boosts

$$
\mathcal{P}(d)=O(d, 1) \oplus T^{d+1} \underset{c \rightarrow \infty}{ } G(d)=(O(d) \oplus R) \oplus T^{2 d}
$$

One can also study the $c \rightarrow \infty$ limit of space-time and of spacetime differential realizations

$$
\begin{array}{lll}
x_{\mu}=\left(x_{r}, x_{0}=c t\right) & & x_{\mu}^{N R}=\left(x_{r}, t\right) \\
\text { Minkowski space } & & \text { NR space-time }
\end{array}
$$

Second way of getting NR symmetries - from isometries of NR space-time $(\vec{x}, t) \in\left(R^{d} \otimes R\right)$
Relativistic space-time: conformal Killing vectors \Rightarrow
\Rightarrow finite-dimensional relativistic conformal
algebra $O(d+1,2)=O(D, 2)$
Newton-Cartan structure of NR space-time $\left(\boldsymbol{R}^{d} \otimes R\right)$
NR conformal Killing vectors \Rightarrow
$\Rightarrow \infty$-dimensional Galilei-conformal Lie algebra
In flat space: vector fields are parametrized by $2+\frac{d(d+1)}{2}$ functions of time $\boldsymbol{X}^{2}=h(t) \frac{\partial}{\partial t}+\left(\omega_{r s}(t) x_{s}+\beta_{r}(t)+\kappa_{r}(t) x_{s} x_{s}\right.$

$$
\left.+2 \kappa_{s}(t) x_{r} x_{s}+\chi(t) x_{r}\right) \frac{\partial}{\partial x_{r}}
$$

Special choice: generalized Schrödinger-Virasoro Lie algebra

$$
X_{\mathrm{Sv}}=z h(t) \frac{\partial}{\partial t}+\left(\omega_{r s}(t) x_{s}+\beta_{r}(t)+h^{\prime}(t) x_{r}\right) \frac{\partial}{\partial x_{r}}
$$

z is a dynamical exponent entering the solutions of Killing eqs.
$\partial_{r} X_{s}+\partial_{s} X_{r}=\delta_{r s} f \quad \partial_{t} X_{t}=g \quad f+z g=0 \quad X=X_{r} \partial_{r}+X_{t} \partial_{t}$

In general z can be rational. If $z=\frac{2}{N}$ (N integer) one gets finite-dimensional generalized Schrödinger algebra $\operatorname{Schr}_{N}(d)$ (Duval, Horvathy 2011)

$$
\begin{aligned}
X_{S}^{(N)}= & \frac{2}{N}\left(\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}\right) \frac{\partial}{\partial t} \\
& +\left[\omega_{r s} x_{s}+\sum_{n=0}^{N} \beta_{n} t^{n}+\left(\alpha_{1}+2 \alpha_{2} t\right) x_{r}\right] \frac{\partial}{\partial x_{r}}
\end{aligned}
$$

α_{0} - time translations
$H=\frac{2}{N} \frac{\partial}{\partial t}$
$\alpha_{1}-$ space and time rescalings
$D=x_{r} \frac{\partial}{\partial x_{r}}+\frac{2}{N} t \frac{\partial}{\partial t}$
$\alpha_{2}-$ space and time expansions
$\omega_{i j}-\mathrm{O}(\mathrm{d})$ rotations
$K=2 t x_{r} \frac{\partial}{\partial x_{r}}+\frac{2}{N} t^{2} \frac{\partial}{\partial t}$
$M_{r s}=x_{[r} \frac{\partial}{\partial x_{s]}}$
$\beta_{0}-$ space translations
β_{1} - Galilean boosts
$P_{r}=\frac{\partial}{\partial x_{r}}$
$\beta_{2}-$ constant accelerations
$B_{r}=t \frac{\partial}{\partial x_{r}}$
$\beta_{2}-(l \geq 3)$ higher
$F_{r}=t^{2} \frac{\partial}{\partial x_{r}}$
$\beta_{l}-(l \geq 3)$ higher accelerations
$F_{r}^{(l)}=t^{l} \frac{\partial}{\partial x_{r}}$
a) Schrödinger algebra - $\operatorname{Schr}(d) \equiv S \operatorname{ch} r_{1}(d) N=1, z=2$
$(\underbrace{M_{r s}, P_{r}, H, B_{r}}, D, K)$
Galilean algebra extra 2 generators D, K
b) Galilean conformal algebra $G C A: C(g) \equiv S c h r_{2}(d)$

$$
\begin{array}{lc}
(\underbrace{M_{r s}, P_{r}, H, B_{r}}_{\text {Galilean algebra }}, F_{r}, D, K) & z=1, N=2 \\
\text { extra } 2+\text { d generators }
\end{array}
$$

Galilean algebra $G(d)=(O(d) \oplus R) \oplus T^{2 d}$
Schrödinger algebra $\operatorname{Schr}(d)=(O(d) \oplus O(2,1)) \oplus T^{2 d}$
Galilean conf. algebra $C(g)=(O(d) \oplus O(2,1)) \oplus T^{3 d}$
Generalized Schr. algebras $S \operatorname{ch} r_{N}(d)=(O(d) \oplus O(2,1)) \oplus T^{(N+1) d}$ (Newton-Hooke (NR) algebras - $(O(d) \oplus O(2)) \oplus T^{2 d}$,
$\left.(O(d) \oplus O(1,1)) \in T^{2 d}\right)$ nonlinear change of Galilean time:
$R \rightarrow O(2)$ or $R \rightarrow O(1,1)$

If $d=0$ one gets

$$
\begin{gathered}
S c h r(0)=C(0)=O(2,1) \quad C(0)=(\boldsymbol{H}, \boldsymbol{D}, \boldsymbol{K}) \\
{[\boldsymbol{D}, \boldsymbol{H}]=-\boldsymbol{H} \quad[\boldsymbol{K}, \boldsymbol{H}]=-2 \boldsymbol{D} \quad[\boldsymbol{D}, \boldsymbol{K}]=\boldsymbol{K}}
\end{gathered}
$$

Unique conformal algebra in $D=0+1 \Rightarrow$ conformal classical and quantum mechanics (de Alvaro, Fubini, Furlan, 1976) If $d>0$ difference between $\operatorname{Schr}(\boldsymbol{d})$ and $C(d)$

$$
\operatorname{Schr}(d):\left[D, B_{r}\right]=-B_{r} \quad C(d):\left[D, B_{r}\right]=0
$$

For $\operatorname{Schr}_{N}(d)$:
$\left[D, B_{r}\right]=\left(1-\frac{2}{N}\right) B_{r}$

$$
D=x_{r} \frac{\partial}{\partial x_{r}}+\frac{2}{N} t \frac{\partial}{\partial t} \longrightarrow x_{r}^{\prime}=\lambda x_{r} \quad t^{\prime}=\lambda \frac{2}{N} t
$$

Only for CGA ($\mathrm{N}=2$) space and time rescales identically. In Horava approach to gravity $N=\frac{1}{6}(z=3)$ - no finite-dimensional $\mathrm{z}=3$ CGA.
$\operatorname{Sch} r_{N}(d)$ studied also by Henkel (1994), under the name of $\operatorname{alt}_{\frac{N}{2}}(d)$

2. Galilean Conformal Symmetries

$$
\begin{array}{lc}
{\left[M_{\mu \nu}, M_{\rho \tau}\right]=\eta_{\mu \tau} M_{\nu \rho}-\eta_{\mu \rho} M_{\nu \tau}+\eta_{\nu \rho} M_{\mu \tau}-\eta_{\nu \tau} M_{\mu \rho}} \\
{\left[M_{\mu \nu}, P_{\rho}\right]=\eta_{\nu \rho} P_{\mu}-\eta_{\mu \rho} P_{\nu}} & {\left[P_{\mu}, P_{\nu}\right]=0} \\
{\left[M_{\mu \nu}, K_{\rho}\right]=\eta_{\nu \rho} K_{\mu}-\eta_{\mu \rho} K_{\nu}} & {\left[K_{\mu}, K_{\nu}\right]=0} \\
{\left[P_{\mu}, K_{\nu}\right]=2\left(\eta_{\mu \nu} D-M_{\mu \nu}\right)} & \\
{\left[D, M_{\mu \nu}\right]=0 \quad\left[D, P_{\mu}\right]=-P_{\mu}} & {\left[D, K_{\mu}\right]=K_{\mu}}
\end{array}
$$

"Physical" contraction of relativistic conformal algebra:
$C^{\mathrm{rel}}(d)=\left(M_{\mu \nu}=\left(M_{r s}, M_{r 0}\right), P_{\mu}=\left(P_{r}, P_{0}\right), D, K_{\mu}=\left(K_{r}, K_{0}\right)\right)$

Rescaling before taking the limit $c \rightarrow \infty$
$P_{0}=\frac{H}{c} \quad M_{0 r}=c B_{r}$
$K_{0}=c K$
$\boldsymbol{K}_{\boldsymbol{r}}=\boldsymbol{c}^{2} \boldsymbol{F}_{\boldsymbol{r}}$
$M_{r s}, D, P_{r}-$ not rescaled
expansion
accelerations

Galilean conformal algebra (GCA) - C(d):
d-dimensional Euclidean Weyl algebra $\left(M_{r s}, \boldsymbol{P}_{r}, D\right)+$ + additional generators $\left(\boldsymbol{H}, \boldsymbol{K}, \boldsymbol{B}_{r}, \boldsymbol{F}_{r}\right)$

$$
\begin{aligned}
& C(d)=\left(O(d) \oplus O(2,1) \notin T^{3 d}\right. \\
& \nearrow \uparrow \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { index index }
\end{aligned}
$$

Covariance: $\quad\left[M_{r s}, A_{t, a}\right]=\delta_{s t} A_{r, a}-\delta_{r t} A_{s, a}^{\mathrm{r}=1} \ldots \mathrm{~d} \quad \mathrm{a}=1,2,3$
$\left(\eta_{a b}=(1,1,-1)\right) \quad\left[T_{a}, A_{r, b}\right]=\widetilde{\varepsilon}_{a b}^{c} A_{r, b}$
GCA has no central charges except if $\mathrm{d}=2(\mathrm{D}=2+1)$.
One obtains so-called "exotic" central charge θ

$$
\left[B_{r}, B_{s}\right]=\theta \varepsilon_{r s} \quad(r, s=1,2)
$$

The mass m_{0} occurring as central charge in $G(d)$ is not possible in GCA. For $S c h r_{N}(d) m_{0} \neq 0$ as central charge only for $\mathrm{N}=1$, $z=2$, i.e. for Schrödinger algebra.

Second "geometric" WI contraction:

One can rescale $\boldsymbol{P}_{\boldsymbol{\mu}}$ and $\boldsymbol{K}_{\boldsymbol{\mu}}$ without changing relativistic conformal algebra

$$
\widetilde{P}_{\mu}=\xi P_{\mu} \quad \widetilde{K}_{\mu}=\xi^{-1} K_{\mu}
$$

Composing this rescaling with "physical" one and putting $\xi=c$ we get unchanged P_{0}, K_{0}, D and $M_{i j}$ and

$$
\widetilde{P}_{r}=\xi P_{r} \quad \widetilde{K}_{r}=\xi K_{r} \quad \widetilde{M}_{r 0}=\xi B_{r}
$$

One can decompose $O(d+1,2)$ as symmetric Riemannian pair:

$$
\begin{aligned}
& O(d+1,2)=(O(d) \oplus O(2,1)) \oplus \frac{O(d+1,2)}{O(2,1) \otimes O(d)}=h \oplus k \\
& \begin{array}{ccc}
\uparrow & \Uparrow & \Uparrow \\
M_{r s} & \left(\boldsymbol{P}_{0}, \boldsymbol{K}_{0}, \boldsymbol{D}\right) & \left(\boldsymbol{M}_{r 0}, \boldsymbol{P}_{r}, K_{r}\right)
\end{array} \\
& h_{A}^{\prime}=h_{A}, \quad k_{l}^{\prime}=\xi k_{l} \quad \longrightarrow \quad O(d+1,2) \underset{\xi \rightarrow \infty}{ } C(d)
\end{aligned}
$$

The coset generators $\boldsymbol{k}_{\boldsymbol{l}}$ are becoming Abelian (Barut 1973). This is standard Wigner-Inönü contraction.

Realization of GCA symmetry $\Rightarrow \sigma$-model constructions $\alpha) \mathrm{d}=0$ - AFF conformal mechanics (Ivanov, Krivonos, Leviant, 1985)

$$
G_{0}=e^{i t H} e^{i z k} e^{i k D} \quad z=z(t) \quad u=u(t)
$$

$\Omega_{0}=G_{0}^{-1} d G_{0}=i\left(\omega_{H} H+\omega_{K} K+\omega_{D} D\right) \quad d z=\dot{z} d t \quad d u=\dot{u} d t$
One can write $\omega_{D}=d u-2 z d t=D \omega_{D} d t=(\dot{u}-2 z) d t$ etc.

One gets field equations

$$
\ddot{\rho}=\gamma^{2} \rho^{-3} \quad \rho=e^{\frac{u}{2}}
$$

The constraints and e.o.m. can be obtained from the action:

$$
S_{0}=-\gamma \int \omega_{+}=-\int d t\left[e^{u}\left(\dot{z}+z^{2}\right)+\gamma^{2} e^{-u}\right] \quad \omega_{+}=\gamma^{-1} \omega_{K}+\gamma \omega_{H}
$$

$\beta) d>0$ - extensions of AFF conformal mechanics model (Fedoruk, Ivanov, J.L., PRD 2011)

$$
\begin{array}{cl}
K=\frac{G_{d}}{O(d)}=G_{0} \cdot e^{i x_{r} P_{r}} e^{i v_{r} B_{r}} e^{i f_{r} F_{r}} & \begin{array}{l}
x_{r}=x_{r}(t) \\
v_{r}=v_{r}(t) \\
f_{r}=f_{r}(t)
\end{array} \\
\Omega=\Omega_{0}+i\left(\omega_{P, r} P_{r}+\omega_{B, r} B_{r}+\omega_{F, r} F_{r}\right) & \omega_{a, r}=D \omega_{a, r} d t
\end{array}
$$

Two actions:

i) $\quad S_{d}^{(1)}=\int m_{a b} \frac{\omega_{a, r} \omega_{b, r}}{\omega_{H}}=\int d t e^{-u} m_{a b} D \omega_{a, r} D \omega_{b, r}$ where $\omega_{+, r}=\gamma^{-1} \omega_{F r}-\gamma \omega_{P r}$ one gets GCA-invariant model $S_{d}^{(1)}=\frac{1}{2} \int d t \rho^{2}\left[\dot{x}_{r}^{+}+\gamma^{-1} v_{r}\left(\rho \ddot{\rho}-\gamma^{2} \rho^{-2}\right)\right]^{2} \quad x_{r}^{+}=\gamma^{-1} f_{r}-\gamma x_{r}$
ii) $\quad S_{d}^{(2)}=m \int\left(m_{a b} \omega_{a, r} \omega_{b, r}\right)^{1 / 2} \underset{\text { choice }}{\text { special }} m \int d t\left(D \omega_{+, r} D \omega_{+, r}\right)^{1 / 2}$

From $S_{d}^{(2)}$ one gets the same equations as from $S_{d}^{(1)}$ but supplemented with the mass-shell condition

$$
\left(\mathcal{P}_{r}^{+} \mathcal{P}_{r}^{+}-m^{2}\right)=0 \quad \mathcal{P}_{r}^{+}=e^{u} \quad \dot{X}_{r}^{+}
$$

iii) $d=2$

In the presence of central charge θ one gets the extension of AFF model which is a decoupled sum of two models

$$
S^{(3)}=\int d t\left(\dot{\rho}^{2}-\frac{\gamma^{2}}{\rho^{2}}+\frac{\theta}{2} \varepsilon_{r s} y_{\dot{r}} \ddot{y}_{s}\right) \quad y_{r}=e^{u} x_{r}
$$

Second term leads to higher order equation as firstly appeared in (J.L., Stichel, Zakrzewski, 1997). It was linked with classical mechanics on noncommutative $2+1$ space-time with higher order Chern-Simmons type action.

Realizations of GCA (for $\mathrm{d}=3$) \Rightarrow NR counterpart of twistors (Fedoruk, Kosiński, J.L., Maślanka, PRB 2011)
$\mathrm{D}=4$ relativistic twistors \sim spinorial realization of $O(4,2) \simeq S U(2,2)$ For NR conformal algebra some modification:
d=3 NR counterpart of twistors
$=$ Galilean twistors
Penrose twistors $t_{A}=\left(\lambda_{\alpha}, \omega^{\dot{\alpha}}\right) \subset C^{4} \xrightarrow{\text { NR contraction }}$
spinorial realization of semi-simple part of GCA:
$O(3) \oplus O(2,1) \simeq S U(2) \oplus S U(1,1)$
Galilean twistors

$$
t_{\alpha, i} \in M_{2}(c)
$$

t_{A} and $t_{\alpha, i}$ are the same variables - only in NR contraction do disappear the transformations extending $O(3) \oplus O(2,1) \rightarrow O(4,2)$ and they transform under GCA as 2×2 complex matrices Quantized Galilean twistors (N copies: $\mathrm{k}, \mathrm{l}=1 \ldots \mathrm{~N}$)

$$
\left[t_{\alpha, i}^{(k)}, \bar{t}_{\dot{\beta}, j}^{(l)}\right]=\delta^{k l} \delta_{\alpha \dot{\beta}} \omega_{i j} \quad \begin{array}{ll}
\omega_{i j}-S U(1,1) & \text {-Hermitean metric } \\
\delta_{\dot{\alpha} \beta}-S U(2) & \text {-invariant metric }
\end{array}
$$

Basic question: can one introduce the bilinear N -twistor realization of GCA using quantized Galilean twistors?
Relativistic Yes, even if $\mathbf{N}=1$ one gets one-twistor realization case: describing e.g. massless relativistic particle.

For N Penrose twistors $t_{A}^{(k)}=\left(\lambda_{\alpha}^{(k)}, \omega^{(k) \dot{\beta}}\right)$ $(k=1, \ldots N)$ we get e.g.

$$
P_{\mu}=\sum_{k=1}^{N} \bar{\lambda}_{\dot{\alpha}}^{(k)}\left(\sigma_{\mu}\right)^{\dot{\alpha} \beta} \lambda_{\beta}^{(k)} \Rightarrow P_{0}=\sum_{k=1}^{N} \bar{\lambda}_{\dot{\alpha}}^{(k)} \lambda_{\alpha}^{(k)} \quad P_{0} \geq 0!
$$

Galilean - one-twistor realization is not possible
case: - for $\mathrm{N} \geq 2$ one can introduce a twistor realization of GCA but for any N the generator of time translation H is indefinite i.e. $\mathrm{H} \geq 0$ not valid.

Galilean twistors require nonstandard QM!

3. Galilean Superconformal Symmetry (SUSY GCA)

Mathematical problem: supersymmetrization of non-semisimple GCA.
In $d=3(\mathrm{D}=3+1)$ the semisimple part of GCA is supersymmetrized via quaternionic supergroups:
$O(3) \oplus O(2,1) \simeq O^{\star}(4) \simeq U_{\alpha}(2 \mid H) \xrightarrow{\operatorname{susp}} U_{\alpha} U(2, N \mid H) \simeq O S p\left(4^{\star} \mid 2 N\right)$
Bosonic sector of

$$
U_{\alpha} U(2 ; N \mid H): \quad U_{\alpha}(2 \mid H) \oplus U(N \mid H)=O^{\star}(4) \oplus U S p(2 N)
$$

$N=1,2: \quad U(1 ; H) \simeq S U(2) \simeq O(3) \quad U(2 ; H) \simeq U S p(4) \simeq O(5)$
Fermionic sector of $U_{\alpha} U(2 ; N \mid H)$:
2 N quaternionic supercharges $\leftrightarrow 8 \mathrm{~N}$ real supercharges $=8 \mathrm{~N}$ complex supercharges with $\mathrm{SU}(2)$-Majorana subsidiary condition.

What about supersymmetrization of Abelian sector?

$$
\left(P_{r}, B_{r}, F_{r}\right)=A_{r} ; a \quad \begin{aligned}
& r=1,2,3 \\
& a=1,2,3
\end{aligned} \quad(d=3)
$$

We supersymmetrize the coset decomposition of relativistic $\mathrm{D}=4$ CA with stability group given by semisimple part of GCA
$\overline{O^{\star}(4)} \oplus \frac{S U(2,2)}{O^{\star}(4)} \xrightarrow{\mathrm{SUSY}} U_{\alpha} U(2, N \mid H) \oplus \frac{S U(2,2: 2 N)}{\overline{U_{\alpha} U(2 ; N \mid H)}}=\widetilde{h} \oplus \widetilde{k}$
$B: 6$
9
B: $6+\mathrm{N}(2 \mathrm{~N}+1) \quad 9+\mathrm{N}(2 \mathrm{~N}-1)$ $\mathrm{U}(2 \mathrm{~N})-4 \mathrm{~N}^{2}$ generators

$$
\mathrm{F}: 8 \mathrm{~N}
$$

$$
8 \mathrm{~N}
$$

$N(2 N+1)$ - the number of generators of $U S p(2 N)=U(N \mid H)$ $N(2 N-1)=4 N^{2}-N(2 N+1)$ real generators of $\frac{U(2 N)}{U S p(2 N)}$
If we rescale $\widetilde{k}=\xi k$ and perform WI contraction $\xi \rightarrow 0$ of symmetric supercoset decomposition for $S U(2,2 ; 2 N)$, the generators $\widetilde{\boldsymbol{k}}$ become the following Abelian superalgebra:

- Fermionic: 8 N real graded - commutative charges obtained from fermionic generators in \widetilde{k} (will denote by \widetilde{Q}^{-})
- Bosonic: 9 real generators $\left(P_{r}, B_{r}, F_{r}\right) \subset$ CGA and $N(2 N-1)$ internal tensorial central charges from \boldsymbol{k}.
The WI contraction of the supercoset leads to the following structure of N -extended $\mathrm{d}=3$ SUSY GCA (Sakaguchi, JMP 2010, Fedoruk + J.L., PRD 2011)
i) Semisimple superalgebra $\boldsymbol{O S p}\left(4^{\star}, 2 ; 2 N\right) \equiv \boldsymbol{U}_{\alpha} \boldsymbol{U}(2 ; N \mid H)$

$$
\left\{\widetilde{\mathbb{Q}}^{+}, \widetilde{\mathbb{Q}}^{+}\right\} \subset O^{\star}(4) \oplus \boldsymbol{U S p}(2 N) \quad \begin{array}{r}
\widetilde{\mathbb{O}}^{+}-8 N \text { real } \\
\text { supercharges }
\end{array}
$$

ii) Graded Abelian algebra of fermionic charges

$$
\left\{\widetilde{\mathbb{Q}}^{-}, \widetilde{\mathbb{Q}}^{-}\right\}=0
$$

iii) Supersymmetrization of bosonic tensorial central charges $\left\{\widetilde{\mathbb{Q}}^{+}, \widetilde{\mathbb{Q}}^{-}\right\} \subset\left\{\left(P_{r}, B_{r}, F_{r}\right) \oplus N(2 N-1)\right.$ internal charges $\}$

Interesting: N-extended SUSY GCA can be obtained explicitly by "physical" contraction $c \rightarrow \infty$ (de Azcárraga, J.L., PLB 2009, Fedoruk, J.L., PRD 2011)
In order to obtain the supercharges ($\widetilde{\mathbb{Q}}^{+}, \widetilde{\mathbb{Q}}^{-}$) we project 8 N Weyl $S U(2,2 \mid 2 N)$ supercharges $\left(Q_{\alpha, i}, S_{\alpha, i}\right) \quad(\alpha=1,2$, $i=1 \ldots 2 N)$ as follows

$$
\begin{array}{rc}
Q_{\alpha, i}^{ \pm}=\frac{1}{2}\left(Q_{\alpha, i} \pm \varepsilon_{\alpha \beta} \Omega_{i j} \bar{Q}_{\dot{\beta} ; j}\right) & \binom{\text { breaks } O(3,1) \rightarrow}{\rightarrow O(3)} \\
S_{\alpha, i}^{ \pm}=\frac{1}{2}\left(S_{\alpha, i} \pm \varepsilon_{\alpha \beta} \Omega_{i j} \bar{S}_{\dot{\beta} ; j}\right) & \Omega_{i j}=\left(\begin{array}{cc}
0 & \mathbb{1}_{N} \\
-\mathbb{1}_{N} & 0
\end{array}\right) \\
\Rightarrow \bar{Q}_{\alpha, i}^{ \pm}= \pm \varepsilon_{\dot{\alpha} \dot{\beta}} \Omega_{i j} Q_{\beta ; j}^{ \pm} \quad \Rightarrow \quad & \begin{array}{c}
\text { SU(2)-Majorana or } \\
\Rightarrow \bar{S}_{\alpha, i}^{ \pm}= \pm \varepsilon_{\dot{\alpha} \dot{\beta}} \Omega_{i j} S_{\beta ; j}^{ \pm} \quad
\end{array} \quad \begin{array}{c}
\text { Majorana-symplectic } \\
\text { subsidiary conditions }
\end{array}
\end{array}
$$

and define $\mathbb{Q}^{+}=\left(Q_{\alpha, i}^{+}, S_{\alpha, i}^{+}\right), \mathbb{Q}^{-}=\left(Q_{\alpha, i}^{-}, S_{\alpha, i}^{-}\right)$

The "physical" rescaling is given by (rescaled denoted by " \wedge ")

$$
\begin{array}{lll}
Q_{\alpha, i}^{+}=\frac{1}{\sqrt{c}} \widehat{Q}_{\alpha, i}^{+} & Q_{\alpha, i}^{-}=\sqrt{c} \widehat{Q}_{\alpha, i} & \widehat{Q}_{\alpha, i}^{ \pm}=\xrightarrow{c \rightarrow \infty} \widetilde{Q}_{\alpha, i}^{ \pm} \\
S_{\alpha, i}^{+}=\sqrt{c} \widehat{S}_{\alpha, i}^{+} & S_{\alpha, i}^{-}=(\sqrt{c})^{3 / 2} \widehat{S}_{\alpha, i} & \widehat{S}_{\alpha, i}^{ \pm}=\stackrel{c \rightarrow \infty}{\longrightarrow} \widetilde{S}_{\alpha, i}^{ \pm}
\end{array}
$$

as well as by

$$
\begin{array}{lll}
\widetilde{h}_{i j}^{B}=\widehat{h}_{i j}^{B} & \text { in } c \rightarrow \infty \text { limit: } & h_{i j}^{G} \in U S p(2 N) \\
\widetilde{k}_{i j}^{B}=c \widehat{k}_{i j}^{B} & \text { in } c \rightarrow \infty \text { limit: } & k_{i j}^{G} \in T^{N(2 N-1)}
\end{array}
$$

Performing the "physical" contraction in all $S U(2,2 ; 2 N)$ relations one obtains explicitly N -extended $\mathrm{d}=3$ SUSY GCA.
For odd N the possible contractions of $S U(2,2 ; N)$ have pathological properties - do not "supersymmetrize" all generators of GCA. The model by Baghi, Mandal (2009) for $\mathrm{N}=1$ provides $\left(\boldsymbol{F}=\left(\widetilde{Q}^{ \pm}, \widetilde{S}^{ \pm}\right)\right)$

$$
\{F, F\} \subset\left(P_{i}, B_{i}, F_{i}\right) \quad\left(\text { no } H, K, M_{i j}!\right)
$$

Most unwanted feature: H is not a bilinear in F
fundamental realizations of

Galilean supertwistors

$$
q_{A}=\left(q_{1}, q_{2} ; \theta_{1} \ldots \theta_{N}\right)
$$

maximal compact sub -superalgebra
$\leftrightarrow \quad U_{\alpha} U(2 ; N \mid H) \simeq \operatorname{OSp}\left(4^{\star} \mid 2 N\right)$ of SUSY GCA

We see that Galilean twistors and supertwistors are endowed with quaternionic structure:
$\left(q_{1}, q_{2}\right)$ - fundamental representation of $U_{\alpha}(2 ; H) \equiv O^{\star}(4) \simeq$
$\simeq O(2,1) \oplus O(3)($ space-time sector $)$
$\left(\theta_{1}, \theta_{N}\right)$ - fundamental representation of $U_{\alpha}(N ; H)=U S p(2 N)$ (internal sector)
Remark: We presented $\mathrm{d}=3(\mathrm{D}=3+1)$ case. One can describe as well Galilean conformal algebra for $d=2,4,5(D=3,5,6)$ and their supersymmetrization (Fedoruk, J.L., 2011). In $\mathrm{D}=3,6$ one gets infinite sequences of superalgebras. For $\mathrm{D}=5$ unique relativistic CA is obtained as exceptional superalgebra $\mathrm{F}(4)$ with real form providing bosonic sector $O(5,2) \oplus O(3)$

$$
F(4)=O S p\left(4^{\star} \mid 2\right) \oplus \frac{F(4)}{O S p\left(4^{\star} \mid 2\right)} \xrightarrow{\text { contraction }} \mathrm{D}=5 \text { SUSY } G C A
$$

4. Final Remarks

The table for $\mathrm{D}=4$ simple Galilean (super) conformal symmetries

Poincaré	\underline{c} (Galilei
$O(3,1) \oplus T^{4}$		$(O(3) \oplus R) \oplus T^{6}$
\downarrow		\downarrow
conformal	\underline{c} (Galilean conformal
$O(4,2)$		$(O(3) \oplus O(2,1)) \oplus T^{9}$
\downarrow		\downarrow
superconformal $\mathrm{N}=2$	$c \rightarrow \infty$	Galilean superconformal
(Wess-Zumino)		$\operatorname{OSP}\left(4^{\star} ; 2\right) \oplus T^{10 ; 8} \equiv$
$S U(2,2 ; 2)$		$\equiv U_{\alpha}(2 ; 1 \mid H) \oplus T^{10 ; 8}$

$T^{10 ; 8}$ is graded Abelian superalgebra $\left(Q_{\alpha, i}^{-}, S_{\alpha i}^{-} ; P_{r}, B_{r}, F_{r}, A\right)$ with 8 real fermionic and 10 bosonic generators

Question: how looks general Galilean N-extended SUSY?
First step - without Galilean central charges:
Galilean N-extended SUSY is a sub-superalgebra of Galilean superconformal algebra \Rightarrow Galilean SUSY inherits the quaternionic structure and internal symmetry $\operatorname{USp}(2 N)$.

Two ways of supplementing Galilean SUSY with the most general Galilean central charges ($\mathrm{N}(2 \mathrm{~N}-1$) real ones):
a) By making general ansatz and studying Jacobi identities
b) By considering "physical" contraction $c \rightarrow \infty$ of 2 N -extended Poincaré superalgebra with complex $\frac{2 N(2 N-1)}{2}$ central charges - one gets after suitable rescaling by c and $\frac{1}{c}$ in limit $c \rightarrow \infty$ the same number of Galilean central charges. One of Galilean central charges is the mass parameter m_{0} (J.L., PLB 2011)

Presented algebraic set-up should have link with various applications, e.g.

- N - extended SUSY of superconformal mechanics models, eg.
- for $\mathrm{d}=3$ with $\mathrm{N}=4 \operatorname{OSp}\left(4^{\star} \mid 2\right)$ model
- for $\mathrm{d}=5$ with $\mathrm{N}=8 \operatorname{OSp}\left(4^{\star} \mid 4\right)$ model
- Nonrelativistic p-branes (Gomis, Kamimura, Townsend, JHEP 2004)
- Galilean (super) conformal field theory
- Nonrelativistic AdS/CFT (e.g. Bagchi, Gopakumar, JHEP 2009)

