Reduction of $N=I$ E8 SYM over $S U(3) / U(I) x U(I) x Z 3$ and its 4d effective action

N. I. \& G. Zoupanos, PLB 698 (2011) 146

Nikos Irges, NTU Athens
SQS 201I, Dubna, Russia

Two approaches in BSM model building

I. Bottom-up

susy	extra dim	GUT
Strong BSM	massive neutr.	extra matter
extra gauge symm	hidden sectors	flavor symm

Too many possibilities, each with loose theoretical constraints, no clear experimental input yet to select (apart from the neutrino masses) without any doubt the right combination. It is relatively easy to evade experimental bounds depending on how ambitious the model is.

II. Top-down

String Theory or Sugra

Orbifolds, Calabi Yau, Orientifolds, etc

Enormous number of possibilities, each very constrained but the resulting effective theories are far from the SM. It is ridiculously easy to exclude them using experimental data.

So what do we do?

One possibility is to just sit and wait and until the LHC data is out, or else do either SM phenomenology or rigorous mathematical physics.
Another is to try to combine the two approaches in order to construct a simple enough, hopefully viable extension of the Standard Model with new and interesting properties, however more constrained than its generic counterpart.

How do we do that:
I. select a string
2. truncate away everything but the gauge sector (with one noteable exception)
3. choose a compact manifold
4. compute the four-dimensional effective action
5. adjust so that it is consistent at the quantum level (that is, take care of anomalies)
6. patch holes by introducing extra structure (discrete symmetries etc.)

Reduction of $\mathrm{N}=\mathrm{I}$, E8 SYM on $\mathrm{SU}(3) / \mathrm{U}(\mathrm{I}) \times \mathrm{U}(\mathrm{I})$

D. Kapetanakis and G. Zoupanos, Phys. Rept. C219 (1992)
P. Forgacs and N. S. Manton, Commun. Math. Phys. 72 (1992)

Consider a D-dimensional Yang-Mills-Dirac theory with gauge group G defined on a manifold M^{D} compactified on

$$
\begin{gathered}
M^{4} \times S / R \\
A=\int d^{4} x d^{d} y \sqrt{-g}\left[-\frac{1}{4} \operatorname{Tr}\left(F_{M N} F_{K \Lambda}\right) g^{M K} g^{N \Lambda}+\frac{i}{2} \bar{\psi} \Gamma^{M} D_{M} \psi\right], \\
\mathrm{D}=4+\mathrm{d}, \mathrm{~d}=\text { dimS-dimR. } \\
\mathrm{S} \text { and R are Lie groups. }
\end{gathered}
$$

- The CSDR scheme demands that an S-transformation of the extra d coordinates is a gauge transformation of the fields that are defined on the coset, thus a gauge invariant Lagrangian written on this space is independent of the extra coordinates.
- The four-dimensional gauge group H is the centralizer of R in G.
- The extra dimensional components of the gauge field (which are scalars) transform under R as a vector and since the adjoint of R can be embedded in the adjoint of H , there will be h_{i} multiplets of r_{i}

$$
\begin{array}{ll}
S \supset R & a d j S=\operatorname{adj} R+\sum_{i} r_{i} \\
G \supset H & a d j G=(\operatorname{adj} R, 1)+(1, \operatorname{adj} H)+\sum\left(r_{i}, h_{i}\right)
\end{array}
$$

- If the 10 -dimensional fermions are Majorana-Weyl then there will be fermions in identical irreps with the scalars.
- There is a fixed scalar potential originating from the 10 -dim kinetic term.

Reduction of $\mathcal{N}=1 E_{8}$ SYM on $S / R=S U(3) /(U(1) \times U(1))$

The unbroken symmetry: $\quad H=E_{6} \times U(1)_{A} \times U(1)_{B}$

Matter:

$$
\begin{aligned}
\alpha_{i} & \sim \mathbf{2 7}_{\left(3, \frac{1}{2}\right)} \\
\beta_{i} & \sim \mathbf{2 7}_{\left(-3, \frac{1}{2}\right)} \\
\gamma_{i} & \sim \mathbf{2 7}_{(0,-1)} \\
\alpha & \sim \mathbf{1}_{\left(3, \frac{1}{2}\right)} \\
\beta & \sim \mathbf{1}_{\left(-3, \frac{1}{2}\right)} \\
\gamma & \sim \mathbf{1}_{(0,-1)}
\end{aligned}
$$

P. Manousselis and G. Zoupanos, JHEP 0203 (2002) 002

The effective action can be written as a softly broken susy action

$$
\begin{aligned}
& \mathcal{W}\left(A^{i}, B^{j}, C^{k}, A, B, C\right)=\sqrt{40} d_{i j k} A^{i} B^{j} C^{k}+\sqrt{40} A B C \\
& V_{D}=\frac{1}{2} D^{\alpha} D^{\alpha}+\frac{1}{2} D_{1} D_{1}+\frac{1}{2} D_{2} D_{2} \\
& D^{\alpha}=\frac{1}{\sqrt{3}}\left(\alpha^{i}\left(G^{\alpha}\right)_{i}^{j} \alpha_{j}+\beta^{i}\left(G^{\alpha}\right)_{i}^{j} \beta_{j}+\gamma^{i}\left(G^{\alpha}\right)_{i}^{j} \gamma_{j}\right) \\
& D_{1}=\sqrt{\frac{10}{3}}\left(\alpha^{i}\left(3 \delta_{i}^{j}\right) \alpha_{j}+\bar{\alpha}(3) \alpha+\beta^{i}\left(-3 \delta_{i}^{j}\right) \beta_{j}+\bar{\beta}(-3) \beta\right) \\
& D_{2}=\sqrt{\frac{40}{3}}\left(\alpha^{i}\left(\frac{1}{2} \delta_{i}^{j}\right) \alpha_{j}+\bar{\alpha}\left(\frac{1}{2}\right) \alpha+\beta^{i}\left(\frac{1}{2} \delta_{i}^{j}\right) \beta_{j}+\bar{\beta}\left(\frac{1}{2}\right) \beta+\gamma^{i}\left(-1 \delta_{i}^{j}\right) \gamma_{j}+\bar{\gamma}(-1) \gamma\right) \\
& V_{\text {soft }}= \\
& \quad\left(\frac{4 R_{1}^{2}}{R_{2}^{2} R_{3}^{2}}-\frac{8}{R_{1}^{2}}\right) \alpha^{i} \alpha_{i}+\left(\frac{4 R_{1}^{2}}{R_{2}^{2} R_{3}^{2}}-\frac{8}{R_{1}^{2}}\right) \bar{\alpha} \alpha+\left(\frac{4 R_{2}^{2}}{R_{1}^{2} R_{3}^{2}}-\frac{8}{R_{2}^{2}}\right) \beta^{i} \beta_{i}+\left(\frac{4 R_{2}^{2}}{R_{1}^{2} R_{3}^{2}}-\frac{8}{R_{2}^{2}}\right) \bar{\beta} \beta \\
& \quad+\left(\frac{4 R_{3}^{2}}{R_{1}^{2} R_{2}^{2}}-\frac{8}{R_{3}^{2}}\right) \gamma^{i} \gamma_{i}+\left(\frac{4 R_{3}^{2}}{R_{1}^{2} R_{2}^{2}}-\frac{8}{R_{3}^{2}}\right) \bar{\gamma} \gamma+\left[\sqrt{2} 80\left(\frac{R_{1}}{R_{2} R_{3}}+\frac{R_{2}}{R_{1} R_{3}}+\frac{R_{3}}{R_{2} R_{1}}\right) d_{i j k} \alpha^{i} \beta^{j} \gamma^{k}\right. \\
& \left.\quad+\sqrt{2} 80\left(\frac{R_{1}}{R_{2} R_{3}}+\frac{R_{2}}{R_{1} R_{3}}+\frac{R_{3}}{R_{2} R_{1}}\right) \alpha \beta \gamma+h . c\right]
\end{aligned}
$$

$$
V=\text { const. }+V_{F}+V_{D}+V_{\text {soft }}
$$

The Wilson flux breaking mechanism

$$
M^{4} \times B_{0} \longrightarrow M^{4} \times B \quad B=B_{0} / F^{S / R}
$$

$F^{S / R}$: a freely acting symmetry of B_{0}
I. B becomes multiply connected
2. For every element $g \in F^{S / R} \quad \rightarrow \quad U_{g}=\mathcal{P} \exp \left(-i \int_{\gamma_{g}} T^{a} A_{M}^{a}(x) d x^{M}\right) \in H$
3. If the contour is non-contractible then $\quad U_{g} \neq 1 \quad$ and then $\quad f(g(x))=U_{g} f(x)$
(so, it is basically like a freely acting orbifold)

$$
F^{S / R}=Z_{3} \subseteq \mathrm{~W}, \mathrm{~W}=\mathrm{W}_{S} / \mathrm{W}_{R}
$$

W_{S} : Weyl group of S
W_{R} : Weyl group of R

$$
\gamma_{3}=\operatorname{diag}\left(\mathbf{1}, \omega \mathbf{1}, \omega^{2} \mathbf{1}\right) \quad \omega=e^{2 i \pi / 3} \in Z_{3}
$$

$$
\begin{aligned}
A_{\mu} & =\gamma_{3} A_{\mu} \gamma_{3}^{-1} \\
\vec{\phi}_{i} & =\omega^{i} \gamma_{3} \vec{\phi}_{i} \\
\phi_{i} & =\omega^{i} \phi_{i}
\end{aligned}
$$

$A_{\mu}^{A}, \quad A \in S U(3)_{c} \times S U(3)_{L} \times S U(3)_{R}$
$H_{1} \sim(\overline{3}, 1,3)_{(3,1 / 2)}$
$H_{2} \sim(3, \overline{3}, 1)_{(0,-1)}$
$H_{3} \sim(1,3, \overline{3})_{(-3,1 / 2)}$
$\theta_{(0,-1)}$

$$
\begin{aligned}
& V_{\mathrm{sc}}=\left(3 \Lambda^{2}+\Lambda^{\prime 2}\right)\left(\frac{1}{R_{1}^{4}}+\frac{1}{R_{2}^{4}}\right)+\frac{4 \Lambda^{\prime 2}}{R_{3}^{4}}+V_{\text {susy }}+V_{\text {soft }} \\
& V_{D}=\frac{1}{2} \sum_{A} D^{A} D^{A}+\frac{1}{2} D^{1} D^{1}+\frac{1}{2} D^{2} D^{2} \\
& D^{1}=3 \sqrt{\frac{10}{3}}\left(\left\langle H_{1} \mid H_{1}\right\rangle-\left\langle H_{2} \mid H_{2}\right\rangle\right) \\
& D^{2}=\sqrt{\frac{10}{3}}\left(\left\langle H_{1} \mid H_{1}\right\rangle+\left\langle H_{2} \mid H_{2}\right\rangle-2\left\langle H_{3} \mid H_{3}\right\rangle-2|\theta|^{2}\right) \\
& D^{A}=\frac{1}{\sqrt{3}}\left\langle H_{i}\right| G^{A}\left|H_{i}\right\rangle \\
& \quad\left\langle H_{i}\right| G^{A}\left|H_{i}\right\rangle=\sum_{i=1,2,3} H_{i}^{a}\left(G^{A}\right)_{a}^{b} H_{i b} \\
&\left\langle H_{i} \mid H_{i}\right\rangle=\sum_{i=1,2,3} H_{i}^{a} \delta_{a}^{b} H_{i b}
\end{aligned}
$$

A trick: $\quad H_{1} \sim(\overline{3}, 1,3) \longrightarrow N_{p}^{\alpha}$

$$
\begin{gathered}
H_{2} \sim(3, \overline{3}, 1) \longrightarrow L_{\alpha}^{a} \\
H_{3} \sim(1,3, \overline{3}) \longrightarrow M_{a}^{p} \\
\hat{N}_{\alpha}^{p}=\frac{1}{3} \frac{\partial I_{3}}{\partial N_{p}^{\alpha}} \\
\hat{M}_{p}^{a}=\frac{1}{3} \frac{\partial I_{3}}{\partial M_{a}^{p}} \\
\hat{L}_{a}^{\alpha}=\frac{1}{3} \frac{\partial I_{3}}{\partial L_{\alpha}^{a}} \\
I_{3}=\operatorname{det} \mathrm{N}+\operatorname{det} \mathrm{M}+\operatorname{det} \mathrm{L}-\operatorname{tr}(N M L)
\end{gathered}
$$

then:

$$
\begin{aligned}
& \left\langle H_{1} \mid H_{1}\right\rangle=\operatorname{tr}\left(N^{\dagger} N\right) \\
& \left\langle H_{2} \mid H_{2}\right\rangle=\operatorname{tr}\left(L^{\dagger} L\right) \\
& \left\langle H_{3} \mid H_{3}\right\rangle=\operatorname{tr}\left(M^{\dagger} M\right) \\
& d_{a b c} H_{1}^{a} H_{2}^{b} H_{3}^{c}=\operatorname{det}^{\dagger}+\operatorname{det}^{\dagger}+\operatorname{det}^{\dagger}-\operatorname{tr}\left(N^{\dagger} M^{\dagger} L^{\dagger}\right) \\
& V_{F}=40 \operatorname{tr}\left(\hat{N}^{\dagger} \hat{N}+\hat{M}^{\dagger} \hat{M}+\hat{L}^{\dagger} \hat{L}\right)
\end{aligned}
$$

and the d-symbols have 'disappeared’
finally, re-introduce 3 flavors by having 3 windings in R

Supersymmetry and gauge symmetry breaking

K.S. Babu, X.-G. He and S. Pakvasa, Phys. Rev. D33 (I986)
J. Sayre, S.Wiesenfeld and S.Willenbrock, Phys. Rev. D73 (2006)
consider the vevs:

$$
\begin{gathered}
M_{0}^{(1)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & V
\end{array}\right) \quad M_{0}^{(2)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
V & 0 & 0
\end{array}\right) \\
M_{0}^{(1)}: \quad S U(3)_{L} \times S U(3)_{R} \times U(1)_{A} \times U(1)_{B} \rightarrow S U(2)_{L} \times S U(2)_{R} \times U(1) \\
M_{0}^{(2)}: S U(3)_{L} \times S U(3)_{R} \times U(1)_{A} \times U(1)_{B} \rightarrow S U(2)_{L} \times S U(2)_{R}^{\prime} \times U(1)^{\prime}
\end{gathered}
$$

their combination gives:
$S U(3)_{L} \times S U(3)_{R} \times U(1)_{A} \times U(1)_{B} \longrightarrow S U(2)_{L} \times U(1)_{Y}$
electroweak symmetry breaking then proceeds by:

$$
M_{0}^{(1)}=\left(\begin{array}{ccc}
v & 0 & 0 \\
0 & v & 0 \\
0 & 0 & V
\end{array}\right)
$$

do these vevs minimize V ?
$V_{D_{1}}=15\left(V^{2}+2 v^{2}\right)^{2}$
$V_{D_{2}}=\frac{5}{9}\left(V^{2}+2 v^{2}-\theta_{0}^{2}\right)^{2}$
$V_{F}=\frac{40}{9} v^{2}\left(2 V^{2}+v^{2}\right)$
$V_{\text {soft }}=\left(\frac{4 R_{2}^{2}}{R_{1}^{2} R_{3}^{2}}-\frac{8}{R_{2}^{2}}\right)\left(V^{2}+2 v^{2}\right)+\left(\frac{4 R_{3}^{2}}{R_{1}^{2} R_{2}^{2}}-\frac{8}{R_{3}^{2}}\right)\left(\theta_{0}^{(1)}\right)^{2}+160 \sqrt{3}\left(\frac{R_{1}}{R_{2} R_{3}}+\frac{R_{2}}{R_{1} R_{3}}+\frac{R_{3}}{R_{1} R_{2}}\right) V v^{2}$
for $\mathrm{RI}=\mathrm{R} 2=\mathrm{R} 3, \mathrm{~V}=0$ if
$\left(\theta_{0}^{(1)}\right)^{2}=\frac{1}{10 R^{2}}\left[5 R^{2} V^{2}+10 R^{2} v^{2}+9+\left(-675 V^{4} R^{4}-3100 V^{2} v^{2} R^{4}+270 V^{2} R^{2}-2900 v^{4} R^{4}\right.\right.$

$$
\left.\left.+540 v^{2} R^{2}+27-21600 \sqrt{3} V v^{2} R^{3}\right)^{1 / 2}\right]
$$

for $\quad V=1 \quad$ and $\quad R \sim \mathcal{O}(1 / 2) \quad \longrightarrow \quad v \sim \mathcal{O}(0.1)$
the representations involved are

$$
\begin{array}{ll}
(\overline{3}, 1,3)_{(3,1 / 2)} \longrightarrow(\overline{3}, 1,1+1+1)_{(3,1 / 2)} & \rightarrow \overline{\mathbf{u}}, \overline{\mathbf{d}}, \overline{\mathbf{g}} \\
(3, \overline{3}, 1)_{(-3,1 / 2)} \longrightarrow(3,2+1,1)_{(-3,1 / 2)} & \rightarrow \mathbf{Q}, \mathbf{g} \\
(1,3, \overline{3})_{(0,-1)} \longrightarrow(1,2+1,1+1+1)_{(0,-1)} & \rightarrow L, \bar{e}, \bar{N}_{1}, \bar{N}_{1}, H_{u}, H_{d}
\end{array}
$$

the full spectrum:

$S U(3)_{c} \times S U(2)_{L}$	$U(1)_{Y}$	$U(1)_{A}$	$U(1)_{B}$
$\mathbf{Q} \sim(3,2)$	$1 / 6$	-3	$1 / 2$
$\overline{\mathbf{u}} \sim(\overline{3}, 1)$	$-2 / 3$	3	$1 / 2$
$\overline{\mathbf{d}} \sim(\overline{3}, 1)$	$1 / 3$	3	$1 / 2$
$L \sim(1,2)$	$-1 / 2$	0	-1
$\bar{e} \sim(1,1)$	1	0	-1
$H_{u} \sim(1,2)$	$1 / 2$	0	-1
$H_{d} \sim(1,2)$	$-1 / 2$	0	-1
$\mathbf{g} \sim(3,1)$	$-1 / 3$	-3	$1 / 2$
$\overline{\mathbf{g}}^{\sim} \sim(\overline{3}, 1)$	$1 / 3$	3	$1 / 2$
$\bar{N}_{1} \sim(1,1)$	0	0	-1
$\bar{N}_{2} \sim(1,1)$	0	0	-1
$\Theta^{(1)} \sim(1,1)$	0	0	-1

I. Notice that $U(1)_{A}=-9 B$
2. at least one of the $U(I)$'s is anomalous. One needs to add by hand (not really)
C. Coriano, N. Irges and E. Kiritsis, Nucl. Phys. B746 (2006)

$$
\mathcal{L}_{\mathrm{St}-\mathrm{WZ}}=\frac{1}{2}\left(\partial_{\mu} a+M A_{\mu}\right)^{2}+c \frac{a}{M} F_{A} \wedge F_{A}+\mathcal{L}_{\mathrm{an}}
$$

3. the coset structure eventually breaks:

$$
\Theta^{(1)} \overline{\mathbf{g}} \mathbf{g}
$$

4. the susy structure will also be violated and fermion masses and mixing can be generated

$$
L \bar{e} H_{d}\left(\frac{\Theta^{(1) *}}{M}\right)^{3} \quad L H_{u} \bar{N}\left(\frac{\Theta^{(1) *}}{M}\right)^{3} \quad M \overline{N N}\left(\frac{\Theta^{(1) *}}{M}\right)^{2}
$$

Conclusions

I. we have constructed an extension of the SM that could originate from the heterotic string
II. the 4D effective action can be written in softly broken form (without any special susy breaking mechanism)
III. the superpotential and the scalar potential are completely fixed
IV. there is no proton decay
V. the Froggatt-Nielsen mechanism is naturally relaized

