What is the partition bundle?

Måns Henningson

Chalmers University of Technology
Göteborg, Sweden

A quantum theory is characterized by its partition function Z.

In a Hamiltonian formalism

$$
Z=\operatorname{Tr}_{\mathcal{H}}\left(e^{-\beta H+\gamma J+\ldots}\right)
$$

with

$$
\begin{aligned}
\mathcal{H} & =\text { Hilbert space } \\
H, J, \ldots & =\text { commuting observables } \\
\beta, \gamma, \ldots & =\text { formal parameters. }
\end{aligned}
$$

In a Lagrangian formalism with periodic time

$$
Z=\int \mathcal{D} q \ldots e^{-\int_{0}^{\beta} d t L}
$$

with

$$
q, \ldots=\text { dynamical variables }
$$

But what is the counterpart of Z for theories with no classical description (no Lagrangian or even equations of motion)?

The best known examples are the $(2,0)$ superconformal theories in six dimensions:

- Completely classified by the type

$$
\Phi \in \mathrm{ADE} \simeq \text { \{simply laced Lie algebras }\}
$$

- Realized in type IIB string theory at codimension 4 singularity.
- A-series (D-series) realized on coincident M5-branes (with orientifold plane).
- Holographic representation of A-series as M-theory on $\mathrm{AdS}_{7} \times S^{4}$.
- $\operatorname{OSp}(6,2 \mid 4)$ superconformal algebra in flat space with so $(6,2) \oplus \operatorname{sp}(4)$ even subalgebra.

But $(2,0)$ theories can also be defined on an arbitrary six-manifold M endowed with some additional data.

- Data related to the geometry of M :

$$
\begin{aligned}
\sigma & \in \Sigma \\
& =\{\text { orientations on } M\} \\
& =\text { affine space over } H^{0}\left(M, \mathbb{Z}_{2}\right) \\
s & \in \mathcal{S} \\
& =\{\text { spin structures on } M\} \\
& =\text { affine space over } H^{1}\left(M, \mathbb{Z}_{2}\right) \\
{[g] } & \in \mathcal{G} \\
& =\{\text { conformal structures on } M\} \\
& =\text { infinite dimensional real manifold }
\end{aligned}
$$

- Data related to the $\mathrm{sp}(4) \simeq \operatorname{so}(5) R$-symmetry (neglected in this talk).
- Data related to observables defined on twoand four-dimensional submanifolds of M (also neglected here).
- Q: What kind of object is Z, and how does it depend on the geometric data?
- A: We will describe it for the A_{N-1} model. The leading term in the IR-limit of its holographic dual is a Schwarz-type topological field theory with action

$$
S=N \int_{A d S_{7}} C \wedge d C
$$

where C is an abelian three-form gauge field.

Geometric quantization of this TFT leads to a holomorphic prequantum line bundle and a finite-dimensional space V of holomorphic sections.

The 'partition vector' Z of $(2,0)$ theory is an element of the Hilbert space V of the TFT.

More precisely:

The data ($\sigma, s,[g]$) in the infinite-dimensional space $\Sigma \times \mathcal{S} \times \mathcal{G}$ determines data (ω, u, J) in a finite-dimensional space $\Omega \times \mathcal{U} \times \mathcal{J}$:
$\omega \in \Omega$
$=\left\{\right.$ symplectic structures on $H^{3}(M, \mathbb{R})$ induced from the intersection form\}
$=$ set with 2 elements
$u \in \mathcal{U}$
$=\{$ non-degenerate quadratic forms on
$H^{3}\left(M, \mathbb{Z}_{2}\right)$ polarized by $\left.\omega\right\}$
$=$ set with $2^{2 \mathrm{n}}$ elements
$J \in \mathcal{J}$
$=\{$ translation invariant complex structures on $\left.H^{3}(M, \mathbb{R})\right\}$
$=$ complex space of dimension $\frac{1}{2} n(n+1)$.
Here $n=\frac{1}{2} b_{3}(M)$ (the third Betti number of M).

In more detail:

- The symplectic structure ω on $H^{3}(M, \mathbb{R})$ is given by the wedge product followed by integration over M.
- The non-degenerate quadratic form u on $H^{3}\left(M, \mathbb{Z}_{2}\right)$ is defined as

$$
(-1)^{u(\gamma)}=\exp \left(2 \pi i \frac{1}{2} \int_{S^{1} \times M} C \wedge d C\right) .
$$

Here C is an abelian three-form gauge field on $S^{1} \times M$ determined by a straight line from 0 to $\gamma \in H^{3}(M, \mathbb{Z}) \subset H^{3}(M, \mathbb{R})$. Because of $\frac{1}{2}$, to make sense of this expression requires a spin structure s on M.

- The complex structure J on $H^{3}(M, \mathbb{R})$ is given by the Hodge duality operator $*$, which obeys $* *=-1$ for a Euclidean signature on M.

The data (ω, u, J) determine a Hermitian line bundle \mathcal{L} over the intermediate Jacobian torus

$$
T=H^{3}(M, \mathbb{R}) / H^{3}(M, \mathbb{Z})
$$

(T parametrizes abelian three-form gauge fields on M.)

- The curvature of \mathcal{L} is given by ω.
- The holonomy of \mathcal{L} along a closed curve on T obtained from a straight line from 0 to $\gamma \in H^{3}(M, \mathbb{Z})$ is given by $(-1)^{u(\gamma)}$.

For the A_{N-1} model, the TFT prequantum line bundle is \mathcal{L}^{N} and the Hilbert space is

$$
V=H^{0}\left(T, \mathcal{L}^{N}\right)
$$

of dimension

$$
\operatorname{dim} V=N^{n}
$$

(by the index theorem).
The partition vector Z is an element of V.
\mathcal{L}^{N} is invariant under the commuting translations

$$
T_{c}: T \rightarrow T
$$

by elements $c \in \frac{1}{N} H^{3}(M, \mathbb{Z})$. Clearly $T_{c}^{N}=\mathbb{1}$.
But the induced operators

$$
T_{c}^{*}: V \rightarrow V
$$

fulfill the Heisenberg relations

$$
\begin{aligned}
\left(T_{c}^{*}\right)^{N} & =(-1)^{u(N c)} \\
T_{c}^{*} T_{c^{\prime}}^{*} & =T_{c^{\prime}}^{*} T_{c}^{*} \exp \left(2 \pi i N \int_{M} c \wedge c^{\prime}\right) .
\end{aligned}
$$

The spin structure s determines the choice of square root signs in the Heisenberg algebra

$$
T_{c}^{*} T_{c^{\prime}}^{*}= \pm \sqrt{\exp \left(2 \pi i N \int_{M} c \wedge c^{\prime}\right)} T_{c+c^{\prime}}^{*}
$$

The vector space V carries an irreducible representation of this Heisenberg algebra.

- Q: What happens to the vector space V as the geometric data ($\sigma, s,[g]$) are varied in the space $\Sigma \times S \times \mathcal{G}$?
- A: We have described a map

$$
\phi: \Sigma \times S \times \mathcal{G} \rightarrow \Omega \times \mathcal{U} \times \mathcal{J}
$$

$V=H^{0}\left(T, \mathcal{L}^{N}\right)$ is the fiber of a rank N^{n} holomorphic vector bundle over the latter finite dimensional space.

Pullback by ϕ gives a 'partition bundle' over the former space.

- Eventually, one would like to compute the precise 'partition section' Z of this bundle, but this goal is still out of reach.
- But for the moment, we can gain a better understanding of the holomorphic vector bundle:

There is a homomorphism from the mapping class group of M to an $\mathrm{Sp}_{2 n}(\mathbb{Z})$ group of transformation on $H^{3}(M, \mathbb{Z}) \simeq \mathbb{Z}^{2 n}$. This preserves the symplectic structure ω and permutes the possible quadratic forms u in two orbits:

- The first orbit consists of u which give $H^{3}\left(M, \mathbb{Z}_{2}\right)$ the structure of a direct sum of n hyperbolic planes.

There is then a Lagrangian decomposition

$$
H^{3}(M, \mathbb{Z})=A \oplus B
$$

with

$$
u(a+b)=\int_{M} a \wedge b \text { for } a \in A, b \in B
$$

- The second orbit consists of u which give $H^{3}\left(M, \mathbb{Z}_{2}\right)$ the structure of a direct sum of $n-1$ hyperbolic planes and a two-dimensional anisotropic space. (We conjecture that no u on this orbit arise from a spin structure on M as described above.)
- We will describe a holomorphic vector bundle over the space

$$
\mathcal{J}=\overline{\mathcal{J}} / \mathrm{Sp}_{2 n}(\mathbb{Z})
$$

of complex structures on the intermediate Jacobian torus $T=H^{3}(M, \mathbb{R}) / H^{3}(M, \mathbb{Z})$.

We do this by an explicit construction of a holomorphic frame for a bundle over the universal covering space $\overline{\mathcal{J}}$.

- $\overline{\mathcal{J}}$ can be identified with the genus n Siegel upper half space.

The holomorphic frame then amounts to a kind of vector-valued Siegel modular forms that do not seem to have been much considered before.

In terms of the decomposition

$$
H^{3}(M, \mathbb{Z})=A \oplus B
$$

the complex structure on $H^{3}(M, \mathbb{R})$ can be described by a map

$$
\tau: A \rightarrow B \otimes \mathbb{C}
$$

subject to a certain self-adjointness property and with positive definite imaginary part.

The intermediate Jacobian torus can then be identified as

$$
T=\frac{B \otimes \mathbb{C}}{B \oplus \tau A}
$$

The fiber $V=H^{0}\left(T, \mathcal{L}^{N}\right)$ can be identified with the space of holomorphic functions

$$
\psi(\tau \mid .): B \otimes \mathbb{C} \rightarrow \mathbb{C}
$$

subject to the double quasi-periodicity conditions
$\psi(\tau \mid z+m+\tau n)=\psi(\tau \mid z) \exp \left(-i \pi N \int_{M} n \wedge \tau n+2 n \wedge z\right)$ for $z \in B \otimes \mathbb{C}, n \in A$, and $m \in B$.

We define a (up to a common factor) unique holomorphic frame $\left\{\psi_{[a]}\right\}$ indexed by $[a] \in \frac{1}{N} A / A$ by requiring the following behaviour under the Heisenberg translations:

$$
\begin{aligned}
& \psi_{[a]}\left(\tau \mid z+b^{\prime}+\tau a^{\prime}\right)=\psi_{\left[a+a^{\prime}\right]}(\tau \mid z) \\
& \quad \times \exp \left(-i \pi N \int_{M} a^{\prime} \wedge \tau a^{\prime}+2 a^{\prime} \wedge z-2 a \wedge b^{\prime}\right)
\end{aligned}
$$

for $a^{\prime} \in \frac{1}{N} A$ and $b^{\prime} \in \frac{1}{N} B$.
The solution is

$$
\begin{aligned}
\psi_{[a]}(\tau \mid z) & =\frac{1}{\theta(\tau \mid 0)} \sum_{n \in A} \exp \left(i \pi N \int_{M}\right. \\
(n+a) & \wedge \tau(n+a)+2(n+a) \wedge z)
\end{aligned}
$$

(Here

$$
\theta(\tau \mid z)=\sum_{n \in A} \exp (n \wedge \tau n+n \wedge z)
$$

is the Riemann theta function.)

With $H^{3}(M, \mathbb{Z})=A \oplus B$, a symplectic map
$S: H^{3}(M, \mathbb{Z}) \rightarrow H^{3}(M, \mathbb{Z})$ can be written as

$$
S=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right):\left(\begin{array}{ll}
B \rightarrow B & A \rightarrow B \\
B \rightarrow A & A \rightarrow A
\end{array}\right) .
$$

Its action on a section ψ of $H^{0}\left(T, \mathcal{L}^{N}\right)$ is

$$
S \psi(\tau \mid z)=\psi(S \tau \mid S z) \exp \left(-\frac{N}{2} \gamma z \wedge S z\right)
$$

with

$$
\begin{aligned}
& \tau \mapsto S \tau=(\alpha \tau+\beta)(\gamma \tau+\delta)^{-1} \\
& z \mapsto S z=(\gamma \tau+\delta)^{*-1} z
\end{aligned}
$$

For the frame $\left\{\psi_{[a]}\right\}$ with $[a] \in \frac{1}{N} A / A$, one finds the automorphic transformation law

$$
\begin{aligned}
& \psi_{[a]}(\tau \mid z)=\frac{\sqrt[8]{1}}{N^{n}} \sum_{[b] \in \frac{1}{N} B / B} S \psi_{[-\gamma b+\delta a]}(\tau \mid z) \\
& \times \exp \left(-i \pi N \int_{M} \delta a \wedge \beta a+2 \beta a \wedge \gamma b+\gamma b \wedge \alpha b\right)
\end{aligned}
$$

This defines a rank N^{n} vector bundle over

$$
\mathcal{J}=\overline{\mathcal{J}} / \mathrm{Sp}_{2 n}(\mathbb{Z})
$$

Summary

- The $A D E$-series of six-dimensional $(2,0)$ superconformal theories do not admit a Lagrangian formulation.
- Instead of a partition function, they have a 'partition vector' Z that takes its values in a finite dimensional vector space.
- As the six-dimensional geometric data on M are varied in their infinite dimensional moduli space, these vector spaces fit together to a 'partition bundle'.
- This bundle is the pullback of a holomorphic bundle over a finite-dimensional moduli space of data related to the complex geometry of the intermediate Jacobian torus $H^{3}(M, \mathbb{R}) / H^{3}(M, \mathbb{Z})$.

Some further reading

- These results have been reported in my paper 'The partition bundle of type A_{N-1} $(2,0)$ theory'.
- For more background on the $(2,0)$ theories, see e.g. E. Witten's papers
- 'Some comments on string dynamics'
- 'AdS/CFT correspondence and topological field theory'
- 'Five brane effective action in M-theory'
- 'Geometric Langlands from six dimensions'
- There is also related work by e.g. G. Moore et al.

Thank you!

Tack!

Спасибо!

