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A quantum theory is characterized by its par-
tition function Z.

In a Hamiltonian formalism

Z = TrH
(
e−βH+γJ+...

)
with

H = Hilbert space
H, J, . . . = commuting observables
β, γ, . . . = formal parameters.

In a Lagrangian formalism with periodic time

Z =
∫
Dq . . . e−

∫ β
0 dtL

with

q, . . . = dynamical variables

But what is the counterpart of Z for theories
with no classical description (no Lagrangian or
even equations of motion)?



The best known examples are the (2,0) super-

conformal theories in six dimensions:

• Completely classified by the type

Φ ∈ ADE ' {simply laced Lie algebras}

• Realized in type IIB string theory at codi-

mension 4 singularity.

• A-series (D-series) realized on coincident

M5-branes (with orientifold plane).

• Holographic representation of A-series as

M-theory on AdS7 × S4.

• OSp(6,2|4) superconformal algebra in flat

space with so(6,2)⊕sp(4) even subalgebra.



But (2,0) theories can also be defined on an
arbitrary six-manifold M endowed with some
additional data.

• Data related to the geometry of M :

σ ∈ Σ
= {orientations on M}
= affine space over H0(M,Z2)

s ∈ S
= {spin structures on M}
= affine space over H1(M,Z2)

[g] ∈ G
= {conformal structures on M}
= infinite dimensional real manifold

• Data related to the sp(4) ' so(5) R-symmetry
(neglected in this talk).

• Data related to observables defined on two-
and four-dimensional submanifolds of M
(also neglected here).



• Q: What kind of object is Z, and how does

it depend on the geometric data?

• A: We will describe it for the AN−1 model.

The leading term in the IR-limit of its holo-

graphic dual is a Schwarz-type topological

field theory with action

S = N
∫
AdS7

C ∧ dC,

where C is an abelian three-form gauge

field.

Geometric quantization of this TFT leads

to a holomorphic prequantum line bundle

and a finite-dimensional space V of holo-

morphic sections.

The ‘partition vector’ Z of (2,0) theory is

an element of the Hilbert space V of the

TFT.



More precisely:

The data (σ, s, [g]) in the infinite-dimensional

space Σ × S × G determines data (ω, u, J) in a

finite-dimensional space Ω× U × J :

ω ∈ Ω

= {symplectic structures on H3(M,R)

induced from the intersection form}
= set with 2 elements

u ∈ U
= {non−degenerate quadratic forms on

H3(M,Z2) polarized by ω}
= set with 22n elements

J ∈ J
= {translation invariant complex structures on

H3(M,R)}
= complex space of dimension

1

2
n(n+ 1).

Here n = 1
2b3(M) (the third Betti number of

M).



In more detail:

• The symplectic structure ω on H3(M,R)
is given by the wedge product followed by
integration over M .

• The non-degenerate quadratic form u on
H3(M,Z2) is defined as

(−1)u(γ) = exp
(

2πi
1

2

∫
S1×M

C ∧ dC
)
.

Here C is an abelian three-form gauge field
on S1 × M determined by a straight line
from 0 to γ ∈ H3(M,Z) ⊂ H3(M,R). Be-
cause of 1

2, to make sense of this expression
requires a spin structure s on M .

• The complex structure J on H3(M,R) is
given by the Hodge duality operator ∗, which
obeys ∗∗ = −1 for a Euclidean signature on
M .



The data (ω, u, J) determine a Hermitian line
bundle L over the intermediate Jacobian torus

T = H3(M,R)/H3(M,Z).

(T parametrizes abelian three-form gauge fields
on M .)

• The curvature of L is given by ω.

• The holonomy of L along a closed curve
on T obtained from a straight line from 0
to γ ∈ H3(M,Z) is given by (−1)u(γ).

For the AN−1 model, the TFT prequantum
line bundle is LN and the Hilbert space is

V = H0(T,LN)

of dimension

dimV = Nn

(by the index theorem).

The partition vector Z is an element of V .



LN is invariant under the commuting transla-

tions

Tc:T → T

by elements c ∈ 1
NH

3(M,Z). Clearly TNc = 1l.

But the induced operators

T ∗c :V → V

fulfill the Heisenberg relations

(T ∗c )N = (−1)u(Nc)

T ∗c T
∗
c′ = T ∗c′T

∗
c exp

(
2πiN

∫
M
c ∧ c′

)
.

The spin structure s determines the choice of

square root signs in the Heisenberg algebra

T ∗c T
∗
c′ = ±

√
exp

(
2πiN

∫
M
c ∧ c′

)
T ∗c+c′.

The vector space V carries an irreducible rep-

resentation of this Heisenberg algebra.



• Q: What happens to the vector space V as
the geometric data (σ, s, [g]) are varied in
the space Σ× S × G?

• A: We have described a map

φ: Σ× S × G → Ω× U × J .

V = H0(T,LN) is the fiber of a rank Nn

holomorphic vector bundle over the latter
finite dimensional space.

Pullback by φ gives a ‘partition bundle’ over
the former space.

• Eventually, one would like to compute the
precise ‘partition section’ Z of this bundle,
but this goal is still out of reach.

• But for the moment, we can gain a bet-
ter understanding of the holomorphic vec-
tor bundle:



There is a homomorphism from the mapping
class group of M to an Sp2n(Z) group of trans-
formation on H3(M,Z) ' Z2n. This preserves
the symplectic structure ω and permutes the
possible quadratic forms u in two orbits:

• The first orbit consists of u which give
H3(M,Z2) the structure of a direct sum
of n hyperbolic planes.

There is then a Lagrangian decomposition

H3(M,Z) = A⊕B
with

u(a+ b) =
∫
M
a ∧ b for a ∈ A, b ∈ B.

• The second orbit consists of u which give
H3(M,Z2) the structure of a direct sum of
n−1 hyperbolic planes and a two-dimensional
anisotropic space. (We conjecture that no
u on this orbit arise from a spin structure
on M as described above.)



• We will describe a holomorphic vector bun-

dle over the space

J = J /Sp2n(Z)

of complex structures on the intermediate

Jacobian torus T = H3(M,R)/H3(M,Z).

We do this by an explicit construction of

a holomorphic frame for a bundle over the

universal covering space J .

• J can be identified with the genus n Siegel

upper half space.

The holomorphic frame then amounts to a

kind of vector-valued Siegel modular forms

that do not seem to have been much con-

sidered before.



In terms of the decomposition

H3(M,Z) = A⊕B,
the complex structure on H3(M,R) can be de-
scribed by a map

τ :A→ B ⊗ C
subject to a certain self-adjointness property
and with positive definite imaginary part.

The intermediate Jacobian torus can then be
identified as

T =
B ⊗ C
B ⊕ τA

The fiber V = H0(T,LN) can be identified with
the space of holomorphic functions

ψ(τ |.):B ⊗ C→ C
subject to the double quasi-periodicity condi-
tions

ψ(τ |z+m+τn) = ψ(τ |z) exp
(
−iπN

∫
M
n ∧ τn+ 2n ∧ z

)
for z ∈ B ⊗ C, n ∈ A, and m ∈ B.



We define a (up to a common factor) unique

holomorphic frame {ψ[a]} indexed by [a] ∈ 1
NA/A

by requiring the following behaviour under the

Heisenberg translations:

ψ[a](τ |z + b′+ τa′) = ψ[a+a′](τ |z)

× exp
(
−iπN

∫
M
a′ ∧ τa′+ 2a′ ∧ z − 2a ∧ b′

)
for a′ ∈ 1

NA and b′ ∈ 1
NB.

The solution is

ψ[a](τ |z) =
1

θ(τ |0)

∑
n∈A

exp
(
iπN

∫
M

(n+ a) ∧ τ(n+ a) + 2(n+ a) ∧ z)

(Here

θ(τ |z) =
∑
n∈A

exp (n ∧ τn+ n ∧ z) .

is the Riemann theta function.)



With H3(M,Z) = A ⊕ B, a symplectic map
S:H3(M,Z)→ H3(M,Z) can be written as

S =

(
α β
γ δ

)
:

(
B → B A→ B
B → A A→ A

)
.

Its action on a section ψ of H0(T,LN) is

Sψ(τ |z) = ψ (Sτ |Sz) exp
(
−
N

2
γz ∧ Sz

)
with

τ 7→ Sτ = (ατ + β)(γτ + δ)−1

z 7→ Sz = (γτ + δ)∗−1z.

For the frame {ψ[a]} with [a] ∈ 1
NA/A, one finds

the automorphic transformation law

ψ[a](τ |z) =
8√1

Nn

∑
[b]∈ 1

NB/B

Sψ[−γb+δa](τ |z)

× exp
(
−iπN

∫
M
δa ∧ βa+ 2βa ∧ γb+ γb ∧ αb

)
.

This defines a rank Nn vector bundle over

J = J /Sp2n(Z).



Summary

• The ADE-series of six-dimensional (2,0)
superconformal theories do not admit a La-
grangian formulation.

• Instead of a partition function, they have
a ‘partition vector’ Z that takes its values
in a finite dimensional vector space.

• As the six-dimensional geometric data on
M are varied in their infinite dimensional
moduli space, these vector spaces fit to-
gether to a ‘partition bundle’.

• This bundle is the pullback of a holomor-
phic bundle over a finite-dimensional mod-
uli space of data related to the complex ge-
ometry of the intermediate Jacobian torus
H3(M,R)/H3(M,Z).



Some further reading

• These results have been reported in my
paper ‘The partition bundle of type AN−1
(2,0) theory’.

• For more background on the (2,0) theo-
ries, see e.g. E. Witten’s papers

– ‘Some comments on string dynamics’

– ‘AdS/CFT correspondence and topolog-
ical field theory’

– ‘Five brane effective action in M-theory’

– ‘Geometric Langlands from six dimen-
sions’

• There is also related work by e.g. G. Moore
et al.



Thank you!

Tack!

Spasibo!


