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A quantum theory is characterized by its par-
tition function Z.

In a Hamiltonian formalism

with
H — Hilbert space
H,J,... = commuting observables
B,7v,... = formal parameters.

In a Lagrangian formalism with periodic time
Z=/Dq...e_f05dtL
with

q,... = dynamical variables

But what is the counterpart of Z for theories
with no classical description (no Lagrangian or
even equations of motion)?



The best known examples are the (2,0) super-
conformal theories in six dimensions:

e Completely classified by the type

® € ADE ~ {simply laced Lie algebras}

e Realized in type IIB string theory at codi-
mension 4 singularity.

e A-series (D-series) realized on coincident
M5-branes (with orientifold plane).

e Holographic representation of A-series as
M-theory on AdS~ x S4.

e OSp(6,2|4) superconformal algebra in flat
space with so(6,2)®sp(4) even subalgebra.



But (2,0) theories can also be defined on an
arbitrary six-manifold M endowed with some
additional data.

e Data related to the geometry of M:

o € 2

{orientations on M}
— affine space over HY(M, Z»)

s € §
= {spin structures on M}

affine space over HY(M, Z>)

g

{conformal structures on M}

infinite dimensional real manifold

lg]

ml

e Data related to the sp(4) ~ so(5) R-symmetry
(neglected in this talk).

e Data related to observables defined on two-
and four-dimensional submanifolds of M
(also neglected here).



e Q: What kind of object is Z, and how does
it depend on the geometric data?

e A: We will describe it for the Ay _1 model.

The leading term in the IR-limit of its holo-
graphic dual is a Schwarz-type topological
field theory with action
S=N C NdC,
AdS7

where C' is an abelian three-form gauge
field.

Geometric quantization of this TFT leads
to a holomorphic prequantum line bundle
and a finite-dimensional space V of holo-
morphic sections.

The ‘partition vector’ Z of (2,0) theory is
an element of the Hilbert space V of the
TFT.



More precisely:

The data (o,s,[g]) in the infinite-dimensional
space > x S x G determines data (w,u,J) in a
finite-dimensional space Q2 x U x J-

w €
= {symplectic structures on H3(M,R)
induced from the intersection form}
= set with 2 elements
u € U
{non—degenerate quadratic forms on
H3(M,Z») polarized by w}
set with 22" elements
J € J
= {translation invariant complex structures on
H3(M,R)}

1
= complex space of dimension En(n + 1).

Here n = 3b3(M) (the third Betti number of



In more detail;

e The symplectic structure w on H3(M,R)
is given by the wedge product followed by
integration over M.

e T he non-degenerate quadratic form u« on
H3(M,Z>) is defined as

_1yu() — 1
(—1) exp (QMQ /SlxM

Here C is an abelian three-form gauge field
on S x M determined by a straight line
from 0 to v € H3(M,Z) ¢ H3(M,R). Be-
cause of % to make sense of this expression
requires a spin structure s on M.

O/\dC).

e The complex structure J on H3(M,R) is
given by the Hodge duality operator %, which
obeys xx = —1 for a Euclidean signature on
M.



The data (w,u,J) determine a Hermitian line
bundle £ over the intermediate Jacobian torus

T = H3(M,R)/H3(M, 7).

(T parametrizes abelian three-form gauge fields
on M.)

e [ he curvature of L is given by w.

e T he holonomy of £ along a closed curve
on T obtained from a straight line from O
to v € H3(M,Z) is given by (—1)4().

For the An_1 model, the TFT prequantum
line bundle is £& and the Hilbert space is

v = HO(T, V)
of dimension
dimV = N"
(by the index theorem).

The partition vector Z is an element of V.



LY is invariant under the commuting transla-
tions

Te:'T'— T
by elements ¢ € %H:S(M, 7). Clearly TCN = 1.

But the induced operators
TV =V
fulfill the Heisenberg relations
(THN = (-1 N
TXTS = ThTrexp (27m'N /Mc/\ c’).

The spin structure s determines the choice of
square root signs in the Heisenberg algebra

THTY = i\/exp (27m'N /Mc A c’) o

The vector space V carries an irreducible rep-
resentation of this Heisenberg algebra.




e Q: What happens to the vector space V as
the geometric data (o, s, [g]) are varied in
the space > x S x g7

e A: We have described a map

P2 XISXG—QQxUXJT.

V = HO(T, V) is the fiber of a rank N™
holomorphic vector bundle over the latter
finite dimensional space.

Pullback by ¢ gives a ‘partition bundle’ over
the former space.

e Eventually, one would like to compute the
precise ‘partition section’ Z of this bundle,
but this goal is still out of reach.

e But for the moment, we can gain a bet-
ter understanding of the holomorphic vec-
tor bundle:



There is a homomorphism from the mapping
class group of M to an Sp»,,(Z) group of trans-
formation on H3(M,Z) ~ Z2". This preserves
the symplectic structure w and permutes the
possible quadratic forms « in two orbits:

e [ he first orbit consists of uw which give
H3(M,7Z>) the structure of a direct sum
of n hyperbolic planes.

There is then a Lagrangian decomposition
H3(M,7Z) = A® B
with
w(a 4+ b) =/Ma/\b for a€ A,be B.

e [ he second orbit consists of u which give
H3(M,Z>) the structure of a direct sum of
n—1 hyperbolic planes and a two-dimensional
anisotropic space. (We conjecture that no
u on this orbit arise from a spin structure
on M as described above.)



e \We will describe a holomorphic vector bun-
dle over the space

J = 7/Sp2n(z)

of complex structures on the intermediate
Jacobian torus T = H3(M,R)/H3(M, 7).

We do this by an explicit construction of
a holomorphic frame for a bundle over the
universal covering space J.

e 7 can be identified with the genus n Siegel
upper half space.

The holomorphic frame then amounts to a
kind of vector-valued Siegel modular forms
that do not seem to have been much con-
sidered before.



In terms of the decomposition
H3(M,Z) = A® B,

the complex structure on H3(M,R) can be de-
scribed by a map

7 A — BRC

subject to a certain self-adjointnhess property
and with positive definite imaginary part.

The intermediate Jacobian torus can then be
identified as

_ B®C
_BEBTA

The fiber V.= HO(T, £V) can be identified with
the space of holomorphic functions

b(7].): B®C — C

subject to the double quasi-periodicity condi-
tions

¢(7'|z—|—m—|—7-n) = ¢(7'|z) exp (—in /Mn AN Tn 4+ 2n A z)
forze BRC, ne A, and m € B.



We define a (up to a common factor) unique
holomorphic frame {¢,} indexed by [a] € %A/A
by requiring the following behaviour under the
Heisenberg translations:

1oy (712 + 0+ 7a") = Ppaq0n(7]2)
X exp (—iT('N/ a ANta +2a Az —2a N b/)
M

/ 1 / 1
for a ENA and b GNB-

T he solution is

¢[a](T|Z) = 9( |O) Z exp (ZT('N/
(n—l—a)/\T(n—I—a)—I—Q(n—l—a)/\z)

(Here

0(t]z) = > _exp(nATn+nAz).
ncA

is the Riemann theta function.)



With H3(M,7Z) = A ® B, a symplectic map
S: H3(M,Z) — H3(M,Z) can be written as

_(a B\.[ B—B A—B
\~y )\ B—A A—-A )"
Its action on a section ¢ of HO(T, V) is

S(rlz) = (ST]Sz)exp (—g’yz A Sz>
with
T — St=(ar+8)(yr+86)1
z — Sz=(yr+8)* 1z

For the frame {1, } with [a] € %A/A, one finds
the automorphic transformation law

1
Ya)(712) = > SUptsa) (T]2)
[ble~B/B

X exp (—iﬂ'N/M da N Ba + 2Ba N\ vb 4+ ~vb A ozb) .

This defines a rank N vector bundle over

J = 7/Sp2n(z)-



Summary

The ADE-series of six-dimensional (2,0)
superconformal theories do not admit a La-
grangian formulation.

Instead of a partition function, they have
a ‘partition vector’ Z that takes its values
in a finite dimensional vector space.

As the six-dimensional geometric data on
M are varied in their infinite dimensional
moduli space, these vector spaces fit to-
gether to a ‘partition bundle’.

This bundle is the pullback of a holomor-
phic bundle over a finite-dimensional mod-
uli space of data related to the complex ge-
ometry of the intermediate Jacobian torus
H3(M,R)/H3(M,7Z).



Some further reading

e [ hese results have been reported in my
paper ‘The partition bundle of type An_1q
(2,0) theory'’.

e For more background on the (2,0) theo-
ries, see e.g. E. Witten's papers

— ‘Some comments on string dynamics’

— ‘AdS/CFT correspondence and topolog-
ical field theory’

— ‘Five brane effective action in M-theory’
— ‘Geometric Langlands from six dimen-

sions’

e T hereis also related work by e.g. G. Moore
et al.



Thank you!

Tackl

Cnacubo!



