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A well defined mathematical

problem

Our goal is just to find and classify all spherical symmetric solutions of
Supergravity with a static metric of Black Hole type

The solution of this problem is found by reformulating it into the context
of a very rich mathematical framework which involves:
1. The Geometry of COSET MANIFOLDS
2. The theory of Liouville Integrable systems constructed on Borel-
type subalgebras of SEMISIMPLE LIE ALGEBRAS
3. Avery topical issue in conyemporary ADVANCED LIE ALGEBRA
THEORY namely:
1. THE CLASSIFICATION OF ORBITS OF NILPOTENT
OPERATORS



The N=2 Supergravity Theory
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Special Kahler Geometry
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Let £L — M complex line bundle such that
first Chern class equals Kahler form K. Let
SY — M be a holomorphic flat vector bundle
of rank 2n+2 with structural group Sp(2n + 2, R)
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Special Geometry identities
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The matrix N5
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the two (n+ 1) x (n+ 1) vectors




When the special manifold is a symmetric coset ..
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The main point

1) space-like p-branes as the cosmic billiards, or

2) time-like p-branes as several rotational invariant black-
holes in D = 4 and more general solitonic branes in
diverse dimensions

reduce to geodesic equations on coset manifolds of the
type
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Dimensional Reduction to D=3

THE C-MAP @

D=4 SUGRA with SK,  msssssssss) D=3 c-model on Q,,.,
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SUGRA BH.s = one-dimensional Lagrangian model

. 1 : d
Evolution parameter + ~ = = f
r dt

L =U4 hrs¢d" ¢°+e 2V (a+Z'CZ)° + 2e YV ZE M4 Z

Time-like geodesic = non-extremal Black Hole

v2 > 0
L = v2 = O Null-like geodesic = extremal Black Hole
—2v2 < 0 Space-like geodesic = naked singularity

A Lagrangian model can always be turned into a Hamiltonian one
by means of standard procedures.

SO BLACK-HOLE PROBLEM = DYNAMICAL SYSTEM

FOR SK,, = symmetric coset space THIS DYNAMICAL SYSTEM is

LIOUVILLE INTEGRABLE, always!




When homogeneous symmetric manifolds
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General Form of the Lie
U D=3 2 U D=4 algebra decomposition

adj(Up=3) = adj(Up=4) ® adj(SL(2,R)g) & W w)

Ta,Tb] — fabc TC
L*, LY] = f*, L7,
T, W] = (A W,
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Relation between
y y *

One just changes the sign of the scalars coming from
W, gy part in:

adj(Gp=3) = adj(Gp=4) ® adj(SL(2,R)) & W, g)

where R is a symplectic representation of Gp—4

Examples E8(8) E8(8)
SO(16)  SO(16)*
SO(4,4) \ SO(4,4)
SO(4) x SO(4))  S0(2,2) x SO(2,2)
G(22) \ G(2.2)

SU(2) x SU(2) ~ SU(1,1) x SU(1,1)



The solvable parametrization

There is a fascinating theorem which provides an identification of the geometry

of moduli spaces with Lie algebras for (almost) all supergravity theories.

THEOREM: All non compact (symmetric) coset manifolds are metrically

equivalent to a solvable group manifold

U/H = exp [Solv (U/H)
U=H

Splitting the Lie algebra U into the maximal compact
subalgebra H plus the orthogonal complement K

*There are precise rules to construct Solv(U/H)

Essentially Solv(U/H) is made by

the non-compact Cartan generators H, € CSA[] K and

® K

those positive root step operators E* which are not orthogonal to the non

compact Cartan subalgebra CSA (1 K



The simplest example G

2(2)

One vector multiplet

= (adj [sl(2,R)g] 1) & (1, adj[sl(2,R)]) & (2, 4)
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OXIDATION 1
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where App = 2n cosfOdy Taub-NUT charge
[e2Y (a + 2"z - 25 27)]
The electromagnetic charges n=Taub NUT charge
oM =2 {e_UleZ' — nCZ}M = (52)

From the o-model viewpoint all these first integrals of the motion
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OXIDATION 2

The electromagnetic field-strenghts

FN = 29" sin0do Adp + Z"Ndr A (dt + 2n cos 6 dp)
U, a, O~ Z, ZA parameterize in the G/H case the coset representative

L(P) = exp {—a Lfﬂ exp [\/5 zM WM} La(o) exp {U LOE]

Coset -
Element of Beﬂes. in
Ehlers
Borel (Up=3) Enlers




From coset rep. to Lax equation

d
(1) = L_l(T) EL(T) From coset representative

>(r) = L(r) & W(r)
W(r) e H* = UWT(T) +W(r)n =0 decomposition
L(r) e K = nLT(x) = L(r)n =0

W(T) — L>(T) — L<(7‘) R-matrix

L(T) — [W(T) . L(T)] Lax equation



Integration algorithm

Initial conditions LO = [ ( O ) , LO = L ( O )

Building block  C(1) := exp[—2 T Lg]
C11(7) ... C1,(7)

9,(C) := Det s s s , Do(r)=1.
Ci1(r) ... Ci(7)

1 C11(r) .. Cri—1(r) (C(TL(0) Ny
(L(r)_l)___ — Det 5 : : :
TR0\ a(n) .. Ciiii(r) (C(PL(O)D);

Found by Fre & Sorin 2009 - 2010



Key property of integration

algorithm

L(T) = Q(C) Lo (Q(C)) ™}
Q(C) € H*

Hence all LAX evolutions occur within distinct orbits of
H*

Fundamental Problem: classification of
ORBITS



The role of H*

H mMax. comp. subgroup  COSMOL.

H * Different real form of H 5;?_22

In our simple G, ;) model

H* = sl(2,R) @ sl(2, R)



The algebraic structure of Lax

For the simplest model ,the Lax operator, is in the representation
(1=3)(1=3)
DY R U
of s[(2,R) x sl(2, R)
L ~ A4

We can construct invariants and tensors with powers of L



Invariants & Tensors
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Tensors 2

QUADRATIC
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Tensors 3

Hence we are able to construct
quartic tensors

Ty
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ALL TENSORS, QUADRATIC and QUARTIC
are symmetric

Their signatures classify orbits, both regular and nilpotent!



Tensor classification of orbits

Orbit || Order | Stand. Stab. Sign. Sign. Sign. Bivect. Ja Dim.

Nilp. Repr. subg. Ty Ty Tab weals at n=20

n= shell

Schw. o0 S O(2) {+,+,+} | {+.0,0} | {+,0,0} | #0O #= 0 4 |

Dil. 50 D O(1,1) {—,—+} [{-0,0} | {-,0,0} | #0 £ 0 4
NO1 2 Lyo, | O(1,1)xR?| {0,0,0} [ {0,0,0} | {0,0,0} 0 0 2
NO2 3 Lyxo, | O(1,1)x R | {0,0,0} | {0,0,0} | {0,0,0} #0 0 3
NO3 3 Lno, R {0,0,+} | {0,0,0} | {0,0,0} | #0O <0 4
NO3’ 3 Lo, R {0,0,—} | {0,0,0} | {0,0,0} | #0 <0 4
NO4 3 Lo, R {0,0,0} | {0,0,0} [ {0,0,+} | #0 >0 4
NO4’ 3 Lo, R {0,0,0} | {0,0,0} | {0,0,—} | #0O >0 4
NO5 7 Lo, 0 {0,+,—} [ {0,0,—} [{0,+. =} #oO <0 5

How do we get to this classification? The answer is
the following: by choosing a new Cartan subalgebra
iInside H* and recalculating the step operators

associated with roots in the new Cartan Weyl basis!
Then applying the technique of standard triples...!




Relation between old and new

Cartan Weyl bases

New Cartan Weyl generators | their form in the HK-basis }

c K




The method of standard triplets

The basic theorem proved by mathematicians
IS that any nilpotent element of a Lie alge-
bra X € g can be regarded as belonging to a
triplet of elements {xz,y, h} satisfying the stan-
dard commutation relations of the s[(2) Lie al-
gebra, namely:

h,z] =z ; [h,yl =—-y . I[z,y] = 2h

Hence the classification of nilpotent orbits is
just the classification of embeddings of an s[(2)
Lie algebra in the ambient one, modulo con-
jugation by the full group Gr or by one of its
subgroups. In our case the relevant subgroup
is H* C G]R-



Angular momenta

Embeddings of subalgebras h C g are charac-
terized by the branching law of any representa-
tion of g into irreducible representations of b.
In the case of the sl(2) ~ s0(1,2) algebra the
branching law is expressed by listing the an-
gular momenta {j1, jo,...Jn} Of the irreducible
blocks into which the fundamental representa-
tions decomposes.

> (24;+1) =N
i=1



(j=3) ==========) The largest orbit NOg
(j=1, j=1/2, j=1/2) === The orbit NO2

(j=1, j=1,j=0) == Splitsinto NO3 and NO4
orbits and their primed versions

(J=1/2, J=1/2, =0, |=0, |]=0) ==) The smallest orbit
NO1



Results to appear in short

Mario Trigiante will describe the classification of
nilpotent orbits by means of ., B and y—labels in

the next talk.
In a paper to appear in a couple of weeks we (Fre,

Trigiante & Sorin) will:

Show that the classification of nilpotent orbits is a
universality property, namely depends only on the Tits
Satake universality class of the considered homogeneous
special geometry.

Describe a computational algorithm of H* orbits based on

the Weyl group and certain appropriate subgroups
thereof so far not yet introduced in the math literature
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Thank you for your attention



