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Motivations

In the last 25 years, superconformal field the-

ories in various dimensions are attracting more

interest, especially in view of their applications

in string theory. From these very important

is the AdS/CFT correspondence, namely, the

remarkable proposal of Maldacena, according

to which the large N limit of a conformally

invariant theory in d dimensions is governed

by supergravity (and string theory) on d + 1-

dimensional AdS space (often called AdSd+1)

times a compact manifold. Actually the possi-

ble relation of field theory on AdSd+1 to field

theory on Md has been a subject of long in-

terest, cf., e.g., [FF1,NS,DMPPT]. The pro-

posal of Maldacena was elaborated by Gubser-

Klebanov-Polyakov and Witten who proposed

a precise correspondence between conformal

field theory observables and those of super-

gravity. More recently, there were develop-

ments of integrability in the context of the



AdS/CFT correspondence, in which supercon-

formal field theories, especially in 4D, were also

playing important role. For this we refer to the

review of Beisert [1012.4004 hep-th] and ref-

erences therein.

Clearly, the classification of the UIRs of the

conformal superalgebras is of great importance.

For some time such classification was known

only for the D = 4 superconformal algebras

su(2,2/1) [FF] and su(2,2/N) for arbitrary N

[DP1,DP2,DP3]). Then, more progress was

made with the classification for D = 3 (for

even N), D = 5, and D = 6 (for N = 1,2) in

[M] (some results being conjectural), then the

D = 6 case (for arbitrary N) was finalized in

[D1]. Finally, the cases D = 9,10,11 were

treated by finding the UIRs of osp(1/2n), [DZ].

After the list of UIRs is found the next prob-

lem to address is to find their characters since



these give the spectrum which is important

for the applications. This problem is solved

in principle, though not all formulae are ex-

plicit, for the UIRs of D = 4 conformal super-

algebras su(2,2/N) in [D2]. From the math-

ematical point of view this question is clear

only for representations with conformal dimen-

sion above the unitarity threshold viewed as

irreps of the corresponding complex superal-

gebra sl(4/N) (see Serganova, etc.). But for

su(2,2/N) even the UIRs above the unitarity

threshold are truncated for small values of spin

and isospin. Furthermore, in the applications

the most important role is played by the repre-

sentations with “quantized” conformal dimen-

sions at the unitarity threshold and at discrete

points below. In the quantum field or string

theory framework some of these correspond to

operators with “protected” scaling dimension

and therefore imply “non-renormalization the-

orems” at the quantum level, cf., e.g., [Heslop



& Howe, Ferrara & Sokatchev]. Especially im-

portant in this context are the so-called BPS

states, cf., [Andrianopoli, Ferrara, Sokatchev

& Zupnik, Arutyunov et al, Ryzhov, etc.].

These investigations require deeper knowledge

of the structure of the UIRs, in particular, more

explicit results on the decompositions of long

superfields as they descend to the unitarity

threshold . Fortunately, most of the needed in-

formation is contained in [DP1,DP2,DP3,DP4,D2],



Preliminaries

Representations of D=4 conformal supersym-

metry

The conformal superalgebras in D = 4 are

G = su(2,2/N). The even subalgebra of G is

the algebra G0 = su(2,2)⊕u(1)⊕su(N). We

label their physically relevant representations

of G by the signature:

χ = [ d ; j1 , j2 ; z ; r1 , . . . , rN−1 ] (1)

where d is the conformal weight, j1, j2 are

non-negative (half-)integers which are Dynkin

labels of the finite-dimensional irreps of the

D = 4 Lorentz subalgebra so(3,1) of dimen-

sion (2j1 + 1)(2j2 + 1), z represents the

u(1) subalgebra which is central for G0 (and is

central for G itself when N = 4), and r1, . . . , rN−1

are non-negative integers which are Dynkin la-

bels of the finite-dimensional irreps of the in-

ternal (or R) symmetry algebra su(N).



We recall a root system of the complexifica-

tion GCI of G. The positive root system ∆+ is

comprised of αij , 1 ≤ i < j ≤ 4 + N . The

even positive root system ∆+
0̄

is comprised

of αij , with i, j ≤ 4 and i, j ≥ 5; the odd

positive root system ∆+
1̄

is comprised of αij ,

with i ≤ 4, j ≥ 5. The generators correspond-

ing to the latter (odd) roots will be denoted

as X+
i,4+k , where i = 1,2,3,4, k = 1, . . . , N .

The simple roots are chosen as:

γ1 = α12 , γ2 = α34 , γ3 = α25 , γ4 = α4,4+N

γk = αk,k+1 , 5 ≤ k ≤ 3 + N. (2)

Thus, the Dynkin diagram is:

©
1
−−−⊗

3
−−−©

5
−−− · · · −−− ©

3+N
−−−⊗

4
−−−©
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This is a non-distinguished simple root system

with two odd simple roots [Kac].



Remark: We recall that the group-theoretical

approach to D = 4 conformal supersymmetry

developed in [DP1,DP2,DP3] involves two re-

lated constructions - on function spaces and as

Verma modules. The first realization employs

the explicit construction of induced represen-

tations of G (and of the corresponding super-

group G = SU(2,2/N)) in spaces of func-

tions (superfields) over superspace which are

called elementary representations (ER). The

UIRs of G are realized as irreducible compo-

nents of ERs, and then they coincide with the

usually used superfields in indexless notation.

The Verma module realization is also very use-

ful as it provides simpler and more intuitive

picture for the relation between reducible ERs,

for the construction of the irreps, in particular,

of the UIRs. For the latter the main tool is

an adaptation of the Shapovalov form to the

Verma modules [DP]. Here we shall need only

the second - Verma module - construction. ¥



We use lowest weight Verma modules V Λ over

GCI, where the lowest weight Λ is characterized

by its values on the Cartan subalgebra H and

is in 1-to-1 correspondence with the signature

χ. If a Verma module V Λ is irreducible then

it gives the lowest weight irrep LΛ with the

same weight. If a Verma module V Λ is re-

ducible then it contains a maximal invariant

submodule IΛ and the lowest weight irrep

LΛ with the same weight is given by factor-

ization: LΛ = V Λ / IΛ.

There are submodules which are generated by

the singular vectors related to the even sim-

ple roots γ1, γ2, γ5, . . . , γN+3 . These gener-

ate an even invariant submodule IΛ
c present in

all Verma modules that we consider and which

must be factored out. Thus, instead of V Λ we

shall consider the factor-modules:

Ṽ Λ = V Λ / IΛ
c (3)



The Verma module reducibility conditions for

the 4N odd positive roots of GCI were derived

in [DP] adapting the results of Kac for the

complex case:

d = d1
Nk − zδN4 (4a)

d1
Nk ≡ 4− 2k + 2j2 + z + 2mk − 2m/N

d = d2
Nk − zδN4 (4b)

d2
Nk ≡ 2− 2k − 2j2 + z + 2mk − 2m/N

d = d3
Nk + zδN4 (4c)

d3
Nk ≡ 2 + 2k − 2N + 2j1 − z − 2mk + 2m/N

d = d4
Nk + zδN4 (4d)

d4
Nk ≡ 2k − 2N − 2j1 − z − 2mk + 2m/N

where in all four cases of (4) k = 1, . . . , N ,

(mN ≡ 0), and

mk ≡
N−1∑

i=k

ri , m ≡
N−1∑

k=1

mk =
N−1∑

k=1

krk (5)



Note that we shall use also the quantity m∗
which is conjugate to m :

m∗ ≡
N−1∑

k=1

krN−k =
N−1∑

k=1

(N − k)rk , (6)

m + m∗ = Nm1 . (7)

We need the result of [DP2] (cf. part (i) of

the Theorem there) that the following is the

complete list of lowest weight (positive energy)

UIRs of su(2,2/N) :

d ≥ dmax = max(d1
N1, d3

NN) , (8a)

d = d4
NN ≥ d1

N1 , j1 = 0 , (8b)

d = d2
N1 ≥ d3

NN , j2 = 0 , (8c)

d = d2
N1 = d4

NN , j1 = j2 = 0 , (8d)

where dmax is the threshold of the continuous

unitary spectrum. Note that in case (d) we

have d = m1, z = 2m/N − m1 , and that it is

trivial for N = 1.



Next we note that if d > dmax the factor-

ized Verma modules are irreducible and coin-

cide with the UIRs LΛ . These UIRs are called

long in the modern literature. Analogously,

we shall use for the cases when d = dmax , i.e.,

(8a), the terminology of semi-short UIRs,

while the cases (8b,c,d) are also called short.

Next consider in more detail the UIRs at the

four distinguished reducibility points determin-

ing the UIRs list above: d1
N1 , d2

N1 , d3
NN ,

d4
NN . The above reducibilities occur for the

following odd roots, resp.:

α3,4+N = γ2 + γ4 , α4,4+N = γ4 ,

α15 = γ1 + γ3 , α25 = γ3 . (9)

We note a partial ordering of these four points:

d1
N1 > d2

N1 , d3
NN > d4

NN . (10)

Due to this ordering at most two of these

four points may coincide.



First we consider the situations in which no

two of the distinguished four points coincide.

There are four such situations:

a : d = dmax = d1
N1 = da ≡

≡ 2 + 2j2 + z + 2m1 − 2m/N > d3
NN(11a)

b : d = d2
N1 = db ≡

≡ z − 2j2 + 2m1 − 2m/N > d3
NN ,

j2 = 0 ; (11b)

c : d = dmax = d3
NN = dc ≡

≡ 2 + 2j1 − z + 2m/N > d1
N1 ; (11c)

d : d = d4
NN = dd ≡

≡ 2m/N − 2j1 − z > d1
N1 , j1 = 0 (11d)

where for future use we have introduced no-

tations da, db, dc, dd, each definition including

also the corresponding inequality.

We shall call these cases single-reducibility-

condition (SRC) Verma modules or UIRs,

depending on the context. In addition, as al-

ready stated, we use for the cases when d =



dmax , i.e., (11a,c), the terminology of semi-

short UIRs, while the cases (11b,d), are also

called short UIRs.

The factorized Verma modules Ṽ Λ with the

unitary signatures from (11) have only one in-

variant odd submodule which has to be factor-

ized in order to obtain the UIRs. These odd

embeddings and factorizations are given as fol-

lows:

Ṽ Λ → Ṽ Λ+β , LΛ = Ṽ Λ/Iβ , (12)

where we use the convention that arrows point

to the oddly embedded module, and we give

only the cases for β that we shall use later:

β = α3,4+N , for (11a), j2 > 0, (13a)

= α3,4+N + α4,4+N , (11a), j2 = 0, (13b)

= α15 , for (11c), j1 > 0, (13c)

= α15 + α25, (11c), j1 = 0. (13d)



We consider now the four situations in which

two distinguished points coincide:

ac : d = dmax = d1
N1 = d3

NN =

= dac ≡ 2 + j1 + j2 + m1 (14a)

ad : d = d1
N1 = d4

NN =

= dac ≡ 1 + j2 + m1 , j1 = 0(14b)

bc : d = d2
N1 = d3

NN =

= dbc ≡ 1 + j1 + m1 , j2 = 0(14c)

bd : d = d2
N1 = d4

NN =

= dbd ≡ m1 , j1 = j2 = 0 (14d)

We shall call these double-reducibility-condition

(DRC) Verma modules or UIRs. The cases in

(14a) are semi-short UIR, while the other cases

are short.



The odd embedding diagrams and factoriza-

tions for the DRC modules are [DP1]:

Ṽ Λ+β′ → Ṽ Λ+β+β′

↑ ↑

Ṽ Λ → Ṽ Λ+β

(15)

LΛ = Ṽ Λ/Iβ,β′ , Iβ,β′ = Iβ ∪ Iβ′

and we give only the cases for β, β′ to be used

later:

(β, β′) = (α15, α3,4+N),

for (14a), j1j2 > 0 ; (16a)

= (α15, α3,4+N + α3,4+N),

for (14b), j1 > 0, j2 = 0 ;(16b)

= (α15 + α25, α3,4+N),

for (14c), j1 = 0, j2 > 0 ;(16c)

= (α15 + α25, α3,4+N + α3,4+N),

for (14d), j1 = j2 = 0 (16d)



Decompositions of long superfields

First we present the results on decomposi-

tions of long irreps as they descend to the uni-

tarity threshold [D2].

In the SRC cases we have established that for

d = dmax there hold the two-term decomposi-

tions:
(
L̂long

)
|d=dmax

= L̂Λ ⊕L̂Λ+β , r1+rN−1 > 0 ,

(17)

where Λ is a semi-short SRC designated as type

a (then r1 > 0) or c (then rN−1 > 0) and

there are four possibilities for β depending on

the values of j1, j2 as given in (13). In cases

(13a,c) also the second UIR on the RHS of

(17) is semi-short, while in cases (13b,d) the

second UIR on the RHS of (17) is short of type

b, d, resp.



In the DRC cases we have established that for

N > 1 and d = dmax = dac hold the four-term

decompositions:
(
L̂long

)
|d=dac

= L̂Λ ⊕ L̂Λ+β ⊕ L̂Λ+β′ ⊕ L̂Λ+β+β′,

r1rN−1 > 0 , (18)

where Λ is the semi-short DRC designated as

type ac and there are four possibilities for β, β′
depending on the values of j1, j2 as given in

(16a,b,c,d). Note that in case (16a) all UIRs

in the RHS of (18) are semi-short. In the case

(16b) the first two UIRs in the RHS of (18)

are semi-short, the last two UIRs are short of

type bc. In the case (16c) the first two UIRs

in the RHS of (18) are semi-short, the last two

UIRs are short of type ad. In the case (16d)

the first UIR in the RHS of (18) is semi-short,

the other three UIRs are short of types bc, ad,

bd, resp.



Next we note that for N = 1 all SRC cases en-

ter some decomposition, while no DRC cases

enter any decomposition. For N > 1 the sit-

uation is more diverse and so we give the list

of UIRs that do not enter decompositions to-

gether with the restrictions on the R-symmetry

quantum numbers:



• SRC cases N > 1 :

•a d = da , r1 = 0 .

•b d = db , r1 ≤ 2 .

•c d = dc , rN−1 = 0 .

•d d = dd , rN−1 ≤ 2 .

• DRC cases:
all non-trivial cases for N = 1, while for N > 1
the list is:

•ac d = dac , r1rN−1 = 0 .

•ad d = dad , rN−1 ≤ 2 , r1 = 0 for N > 2.

•bc d = dbc , r1 ≤ 2 , rN−1 =
0 for N > 2.

•bd d = dbd , r1, rN−1 ≤ 2 for N > 2,
1 ≤ r1 ≤ 4 for N = 2.



Note that representations and cases are con-

jugated as follows:

j1 ↔ j2

(r1, . . . , rN−1) ↔ (rN−1, . . . , r1)

a ↔ c

b ↔ d

ad ↔ bc

Thus, we would omit the conjugated cases.



Reduction of supersymmetry in short and

semi-short UIRs

Our first task is to present explicitly the re-

duction of the supersymmetries in the irre-

ducible UIRs. This means to give explicitly the

number κ of odd generators which are elim-

inated from the corresponding lowest weight

module, (or equivalently, the number of super-

derivatives that annihilate the corresponding

superfield).

R-symmetry scalars

We start with the simpler cases of R-symmetry

scalars when ri = 0 for all i, which means also

that m1 = m = m∗ = 0. These cases are valid

also for N = 1. More explicitly:



• a d = da
|m=0

= 2 + 2j2 + z , j1 arbitrary,

κ = N + (1−N)δj2,0 , or casewise :

κ = N, if j2 > 0,

κ = 1, if j2 = 0

Here, κ is the number of anti-chiral generators

X+
3,4+k, k = 1, . . . , κ, that are eliminated.

Thus, in the cases when κ = N the semi-short

UIRs may be called semi-chiral since they lack

half of the anti-chiral generators.

In the conjugated case c when κ = N the

semi-short UIRs may be called semi–anti-chiral

since they lack half of the chiral generators.



• b d = db
|m=0

= z , j1 arbitrary, j2 = 0,

κ = 2N (19)

These short UIRs may be called chiral since

they lack all anti-chiral generators X+
3,4+k ,

X+
4,4+k , k = 1, . . . , N .

In the conjugated case d the short UIRs may

be called anti-chiral since they lack all chiral

generators X+
1,4+k , X+

2,4+k , k = 1, . . . , N .



• ac d = dac
|m=0

= 2 + j1 + j2 , z = j1 − j2 ,

κ = 2N + (1−N)(δj1,0 + δj2,0),

or casewise :

κ = 2N, if j1, j2 > 0,

κ = N + 1, if j1 > 0, j2 = 0,

κ = N + 1, if j1 = 0, j2 > 0,

κ = 2, if j1 = j2 = 0.

Here, κ is the number of mixed elimination:

chiral generators X+
1,4+k, and anti-chiral gen-

erators X+
3,4+k. Thus, in the cases when

κ = 2N the semi-short UIRs may be called

semi–chiral–anti-chiral since they lack half of

the chiral and half of the anti-chiral genera-

tors. (They may be called Grassmann-analytic

following [FS].)



• ad d = dad
|m=0

= 1 + j2 = − z , j1 = 0,

κ = 3N + (1−N)δj2,0, or casewise :

κ = 3N, if j2 > 0,

κ = 2N + 1, if j2 = 0.

Here, κ is the number of mixed elimination:
chiral generators X+

1,4+k , and both types anti-

chiral generators X+
3,4+k, X+

4,4+k . Thus, in
the cases when κ = 3N the semi-short UIRs
may be called chiral - semi–anti-chiral since
they lack half of the chiral and all of the anti-
chiral generators.

In the conjugated case bc in the cases when
κ = 3N the semi-short UIRs may be called
semi–chiral - anti-chiral since they lack all the
chiral and half of the anti-chiral generators.

The last two cases ad,bc form two of the
three series of massless states, holomorphic
and antiholomorphic [DP2].



The case •bd for R-symmetry scalars is triv-

ial, since also all other quantum numbers are

zero (d = j1 = j2 = z = 0).



R-symmetry non-scalars

Here we need some additional notation.

Let N > 1 and let i0 be an integer such that

0 ≤ i0 ≤ N − 1 , ri = 0 for i ≤ i0 , and if

i0 < N − 1 then ri0+1 > 0.

Let now i′0 be an integer such that 0 ≤
i′0 ≤ N − 1 , rN−i = 0 for i ≤ i′0 , and if

i′0 < N − 1 then rN−1−i′0
> 0.

(Both definitions are formally valid for N = 1 with

i0 = i′0 = 0.)

With this notation the cases of R-symmetry

scalars occur when i0+ i′0 = N−1, thus, from

now on we have the restriction:

0 ≤ i0 + i′0 ≤ N − 2 (20)

Now we can make a list for the values of κ for

R-symmetry non-scalars:



• a d = da , j1, j2 arbitrary,

κ = 1 + i0(1− δj2,0) ≤ N − 1 . (21)

• b d = db , j2 = 0 , j1 arbitrary,

κ = 2 + 2i0 ≤ 2N − 2 . (22)

We omit the conjugated cases c,d.

• ac d = dac , z = j1 − j2 + 2m/N −m1 ,

j1, j2 arbitrary, (23)

κ = 2 + i0(1− δj2,0) + i′0(1− δj1,0) ≤ N .

Here, the eliminated chiral generators are X+
1,4+k ,

k ≤ 1 + i′0 , and the eliminated anti-chiral gen-

erators are X+
3,4+k , k ≤ 1 + i0 .



• ad d = dad = 1 + j2 + m1 , j1 = 0 , (24)

z = 2m/N −m1 − 1− j2 , j2 arbitrary,

κ = 3 + i0(1− δj2,0) + 2i′0 ≤ 1 + N + i′0 ≤ 2N − 1

Here, the eliminated chiral generators are X+
1,4+k ,

k ≤ 1 + i′0 , and the eliminated anti-chiral gen-

erators are X+
3,4+k , X+

4,4+k , k ≤ 1 + i0 .

We omit the conjugated case bc.



• bd d = dbd = m1 , j1 = j2 = 0 ,(25)

z = 2m/N −m1 ,

κ = 4 + 2i0 + 2i′0 ≤ 2N .

Here, the eliminated chiral generators are X+
1,4+k ,

X+
2,4+k , k ≤ 1 + i′0 , and the eliminated anti-

chiral generators are X+
3,4+k , X+

3,4+k , k ≤
1 + i0 .
Note that the case κ = 2N is possible ex-
actly when i0 + i′0 = N − 2, i.e., when there
is only one nonzero ri, namely, ri0+1 6= 0,
i0 = 0,1, . . . , N − 2:

• bd κ = 2N : d = m1 = ri0+1 , (26)

j1 = j2 = 0 , z = ri0+1
2 + 2i0 −N

N
.

When d = m1 = 1 these 1
2-eliminated UIRs

form the ’mixed’ series of massless representa-
tions [DP2]. This series is absent for N = 1.



Remark: Here we use the Verma (factor-
)module realization of the UIRs. We give here
a short remark on what happens with the ER
realization of the UIRs. As we know, cf. [DP3],
the ERs are superfields depending on Minkowski
space-time and on 4N Grassmann coordinates
θi
a, θ̄k

b , a, b = 1,2, i, k = 1, . . . , N . There is
1-to-1 correspondence in these dependencies
and the odd null conditions. Namely, if the
condition X+

a,4+k |Λ〉 = 0, a = 1,2, holds,
then the superfields of the corresponding ER
do not depend on the variable θk

a , while if the
condition X+

a,4+k |Λ〉 = 0, a = 3,4, holds,
then the superfields of the corresponding ER
do not depend on the variable θ̄k

a−2 . These
statements were used in the proof of unitar-
ity for the ERs picture, cf. [DP4], but were
not explicated. They were analyzed in detail
in papers of Ferrara and Sokatchev, using the
Dubna notions of ’harmonic superspace ana-
lyticity’ and Grassmann analyticity. ♦

In the next Section we shall apply the above
classification to the so-called BPS states.



BPS states

PSU(2,2/4)

The most interesting case is when N = 4.

This is related to super-Yang-Mills and con-

tains the so-called BPS states. They are char-

acterized by the number κ of odd generators

which annihilate them - then the correspond-

ing state is called κ
4N -BPS state. Group-

theoretically the case N = 4 is special since

the u(1) subalgebra carrying the quantum

number z becomes central and one can invari-

antly set z = 0.

We give now the explicit list of these states:



•a d = d1
41 = 2+2j2+2m1− 1

2m > d3
44 .

The last inequality leads to the restriction:

2j2 + r1 > 2j1 + r3 . (27)

In the case of R-symmetry scalars, i.e., m1 = 0,

follows that j2 > j1 , i.e., j2 > 0, and then we

have:

κ = 4, m1 = 0, j2 > 0 . (28)

In the case of R-symmetry non-scalars, i.e.,

m1 6= 0, we have the range: i0 + i′0 ≤ 2, and

thus:

κ = 1 + i0(1− δj2,0) ≤ 3 . (29)

•b d = d2
41 = 1

2m∗ > d3
44 , j2 = 0 .

The last inequality leads to the restriction:

r1 > 2 + 2j1 + r3 . (30)

The latter means that r1 > 2, i.e., m1 6= 0,

i0 = 0, and thus:

κ = 2 . (31)



We omit the conjugated cases c, d.

•ac d = dac = 2 + j1 + j2 + m1 . From

z = 0 follows:

2j2 + r1 = 2j1 + r3 . (32)

In the case of R-symmetry scalars, i.e., m1 = 0,

follows that j2 = j1 = j , and then we have:

κ = 8− 6δj,0 , d = 2 + 2j . (33)

In the case of R-symmetry non-scalars, i.e.,

m1 6= 0, i0 + i′0 ≤ 2, and thus:

κ = 2 + i0(1− δj2,0) + i′0(1− δj1,0) ≤ 4 . (34)

•ad From z = 0 follows: r3 = 2 + 2j2 +

r1 =⇒ r3 ≥ 2 =⇒ m1 6= 0, and i′0 =

0, i0 ≤ 2 =⇒
κ = 3 + i0(1− δj2,0) ≤ 5 , (35)

d = dad = 1 + j2 + m1 = 3 + 3j2 + 2r1 + r2,

χ4 = {0 ; r1, r2,2 + 2j2 + r1 ; 2j2 } .



We omit the conjugated case bc.

•bd From z = 0 follows: r1 = r3 = r, thus,

i0 = i′0 = 0,1 and then we have:

κ = 4(1 + i0) , (36)

d = dbd = m1 = 2r + r2 6= 0 ,

r, r2 ∈ ZZ+ ,

χ4 = {0 ; r, r2, r ; 0 } .

We summarize the results in a Table:



Table 1

PSU(2,2/4) BPS states

d j1, j2 r1, r2, r3 κ

a 2 + 2j2 j2 > 0 m1 = 0 4

a 2 + 2j2+ 2j2 + r1 > m1 6= 0 1+i0(1−δj2,0)

2m1 − m/2 2j1 + r3 ≤ 3

b m∗/2 j2 = 0 r1 > 2+ 2
2j1 + r3

ac 2 + 2j j = j1 = j2 m1 = 0 8 − 6δj,0
ac 2 + j1+ 2j2 + r1 = m1 6= 0 2+i0(1−δj2,0)

j2 + m1 2j1 + r3 +i′0(1 − δj1,0)

≤ 4

ad 1 + j2 r3 = 2+ m1 6= 0 3+i0(1−δj2,0)

+m1 ≥ 3 2j2 + r1, ≤ 5
j1 = 0

bd m1 0,0 m1 6= 0 4(1 + i0)
= 4,8



From the above BPS states we list now the

most interesting ones in three Tables:

Table 2

PSU(2,2/4), 1
2-BPS states, (κ = 8)

d j1, j2 r1, r2, r3 prot.
ac 2 + 2j ≥ 3 j = j1 = j2 ≥ 1/2 m1 = 0
bd r2 ≥ 1 j1 = j2 = 0 m1 = r2

Table 3

PSU(2,2/4), 1
4-BPS states, (κ = 4)

d j1, j2 r1, r2, r3 prot.
a 2 + 2j2 ≥ 3 j2 ≥ 1/2 m1 = 0
ac 2 + j1+ j1 − j2 = r1+i0 6= 0,

j2 + r1+i0
1
2r1+i0(1− i0) i0 ≤ 2

≥ 3
ad m

2 ≥ 9
2 j1 = 0, r1 = 0, N

j2 ≥ 1/2 r3 = 2 + 2j2
bdm1 ≥ 2 j1 = j2 = 0 r1 = r3 ≥ 1 N, if

r1 > 2



Table 4

PSU(2,2/4), 1
8-BPS states, (κ = 2)

d j1, j2 r1, r2, r3 prot.
a 2 + 2j2+ 2j2 > 2j1 + r3 r1 = 0,

r2 + 1
2r3 r2 > 0

b m∗/2 j2 = 0 r1 > 2+ N
2j1 + r3

ac2 + m1 ≥ 2 j1 = j2 = 0 N, if
r1r3 6= 0



SU(2,2/N), N arbitrary

We can set z = 0 also for N 6= 4 though

this does not have the same group-theoretical

meaning as for N = 4. We summarize the

corresponding results in a several Tables:



Table 5
SU(2,2/1)

d j1, j2 κ prot.
a 2 + 2j2 ≥ 3 j2 > j1 1 N
ac2 + 2j ≥ 2 j = j1 = j2 2

Table 6
SU(2,2/2)

d j1, j2 κ prot.
a 2 + 2j2 + r j2 > j1 1 + i0 ≤ 2 N, if

r > 0
ac 2 + 2j + r j = j1 = j2 2 + 2δi0j,0 ≤ 4 N, if

r > 0
bd r ≥ 1 j1 = j2 = 04 N, if

r > 4



Table 7

SU(2,2/N), 1
2-BPS states, κ = 2N , N ≥ 3

d j1, j2 r1, . . . , rN−1 prot.
ac 2 + 2j ≥ 3 j = j1 = m1 = 0

j2 ≥ 1/2
bd rN

2
≥ 1 j1 = j2 = 0m1 = rN

2
N even



Table 8

SU(2,2/3), 1
4-BPS states, κ = 3

d j1, j2 r1, r2 prot.
a 2 + 2j2 ≥ 3 j2 ≥ 1/2 m1 = 0
ac 2 + j1+ j1 − j2 = m1 = r1+i0

j2 + r1+i0
r1−r2

3 6= 0 6= 0,

≥ 6 i0 ≤ 1
ad 2m

3 ≥ 4 j1 = 0, r2 = 3+ N, if
j2i0 = 0 r1 + 3j2 r1 > 0



Table 9

SU(2,2/N), 1
4-BPS states, κ = N , N > 4

d j1, j2 r1, . . . , rN−1 prot.
a 2 + 2j2 j2 ≥ 1/2 m1 = 0

≥ 3
ac 2 + j1+ j1 − j2 = m1 = r1+i0

j2 + r1+i0 r1+i0(1− 6= 0,

≥ 3 2
N (1 + i0)) i0 ≤ N − 2

ad 1 + m1 j1 = j2 = 0 i′0 = N−3
2 N, if

N odd r1 6= 0
ad 2m

N j1 = 0, i0 + i′0 N, if
j2 ≥ 1/2 ≤ N − 3 r1 6= 0

bd m1 j1 = j2 = 0 i0 + i′0 N, if
N even = N

2 − 2 r1, rN−1
> 2



THANK YOU !


