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KERR-SCHILD WAY TO QUANTUM GRAVITY.

Resolution of the conflict between Quantum theory and Gravity is a way

to their Unification. Against common conjectures

GRAVITY IS NOT WEAK AND VERY ESSENTIAL ON ALL LEVELS!

General covariance is main merit of General Relativity and main reason of

the conflict: Quantum theory works in the local momentum space – Gravity

requires global configuration space.

NO USUAL PLANE WAVES IN GRAVITY ! No Fourier transform!

PP-WAVES are consistent with Superstrings and Quantum Theory. No

Quantum and Stringy corrections!

The Kerr-Schild form of metrics gµν = ηµν + 2Hkµkν is rigidly linked with

auxiliary Minkowski background ηµν, and kµ is a null Killing direction. SIN-

GULAR RAY – pole in the orthogonal to kµ plane.

KERR–SCHILD GEOMETRY RESOLVES PRINCIPAL CONFLICT!

In spice of the rigidity, the KS metrics describe practically all the physically

interesting solutions of General Relativity. Vector field kµ is determined by

the KERR THEOREM in twistor terms.

The curved KS spacetimes are foliating onto twistor null planes. Twistor

version of the Fourier transform ! [E.Witten, 2003]
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On the level of cosmic black holes Gravity turns elementary excitations of

black-holes into twistor-beams – Singular beams supported by twistor lines of

the Kerr congruence. Twistor-beams tend asymptotically into pp-waves,

analogs of HETEROTIC STRINGS of the superstring theory.

Figure 1: Excitations of a black hole by weak electromagneticfield yields

twistor-beams creating a horizon covered by fluctuating micro-holes.
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KERR-NEWMAN ELECTRON.

Quantum theory states that electron is pointlike and structureless.

”...There’s no evidence that electrons have internal structure (and a lot of

evidence against it)” (Frank Wilczek),

electron radius is ”...most probably not much bigger and not much smaller

than the Planck length..”(Leonard Susskind).

Kerr-Newman solution gives NEW DIMENSIONAL PARAMETER

a = J/m.

The ”KN electron” is consistent with gravity and the low energy string

theory!

Parameters of electron: mass, spin, charge and magnetic moment determine

unambiguously parameters of the Kerr-Newman background!

Large spin of electron, a = J/m >> m ⇒ black hole horizons disappear:

NAKED SINGULAR RING IS A SOURCE OF SPINNING PARTICLE.

The Kerr-Newman gravity: the metric is almost flat, but the spacetime has

a topological peculiarity at the Compton distance rc = a = ~
2m.

The Kerr ring forms a closed GRAVITATIONAL STRING of the Comp-

ton size. D.Ivanenko & AB (Izv. Vuzov. 1975), Excitations of the Kerr

string are TRAVELING WAVES (AB, ZETP 1974).
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The Kerr-Newman solution: Metric

gµν = ηµν + 2Hkµkν, H =
mr − e2/2

r2 + a2 cos2 θ
, (1)

and electromagnetic (EM) vector potential is

Aµ
KN = Re

e

r + ia cos θ
kµ. (2)

Gravitational and EM fields are concentrated near the Kerr singular ring.
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The Kerr ring forms a sort of waveguide, or a closed string. It is a branch

line of the TWOSHEETED Kerr-Schild geometry.

Vector field kµ(x) is tangent to Principal Null Congruence (PNC).

kµdxµ = P−1(du + Ȳ dζ + Y dζ̄ − Y Ȳ dv), (3)
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where Y (x) = eiφ tan θ
2 is a projective angular coordinate, and

ζ = (x + iy)/
√

2, ζ̄ = (x− iy)/
√

2, u = (z − t)/
√

2, v = (z + t)/
√

2

are the null Cartesian coordinates.

Kerr congruence (PNC) is controlled by

KERR THEOREM:

The geodesic and shear-free Principal null congruences (type D metrics)

are determined by holomorphic function Y (x) which is analytic solution of

the equation

F (T a) = 0 , (4)

where F is an arbitrary analytic function of the

projective twistor coordinates

T a = {Y, ζ − Y v, u + Y ζ̄}. (5)

The Kerr theorem is a practical tool for obtaining exact solutions:

F (T a) = 0 ⇒ F (Y, xµ) = 0 ⇒ Y (xµ) ⇒ kµ(x)

For the Kerr-Newman solution function F is quadratic in Y, which yields

TWO roots Y ±(x) ⇒ two congruences!
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The Kerr singular ring r = cos θ = 0 is a branch line of space on two sheets:

“negative (–)” and “positive (+)” where the fields change their directions.

In particular,

kµ(+) 6= kµ(−) ⇒ g(+)
µν 6= g(−)

µν . (6)

Twosheetedness! Mystery of the Kerr source!

Kerr’s oblate spheroidal coordinates x+ iy = (r+ ia)eiφ sin θ, z = r cos θ, cover

spacetime twice: disk r = 0 separates the ‘out’-sheet r > 0, from the ‘in’-

sheet r < 0.
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a) Stringy source: AB 1974, D.Ivanenko & AB 1975, W.Israel 1977,

Gravitational strings. Kerr’s ring as ‘Alice’ string: a ‘mirror gate’ to ‘Alice

world’. STRINGS AS SOLITONS of the low energy SFT.

b) Rotating superconducting disk (bubble): W.Israel (1969), Hamity,

I.Tiomno (1973), C.A. L‘opez (1983)9; A.B. (1989,2000-2004) Regularized

KN solution – GRAVITATING SOLITON (chiral Higgs model, AB 2010).
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FUNDAMENTAL STRINGS as soliton like classical solutions in the effec-

tive field theory. Dabholkar at.al (NPB 1990).

Classical solutions in the effective string field theory may correspond to

fields around a HETEROTIC STRING E. Witten (Phys.Lett.B 1985).

MACROSCOPIC CHARGED HETEROTIC STRING, A. Sen (NPB 1992-

1993): bosonic zero modes of the four dimensional solutions in the effective

field theory are in one to one correspondence to the bosonic degrees of

freedom of heterotic string moving in four dimensions. PP-wave solutions.

In particular, critical heterotic string theory in four dimensions with the

extra six dimensions compactified.

Solutions to Einstein’s eqs. are solutions of (super)string theory. PP-

WAVES, Horowitz & Steif (PRL 1990), A. Tseytlin (PRD 1993).

Strings as Solitons & Black Holes as Strings Dabholkar at.al (NPB 1995).

Traveling waves as modes of string excitations, D.Garfinkel (PRD 1992).

Kerr-Sen solution to low energy string theory: The Kerr solution with axion

and dilaton, A. Sen (PRL 1992).

The Kerr SINGULAR RING is a ‘closed’ heterotic string. The field around

Kerr-Sen solution to low energy string theory is similar to the Sen solution

for HETEROTIC STRING. AB (PRD 1995)
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How can it be related with the Dirac theory of electron?

ZITTERBEWEGUNG

The KN gravity indicates Compton radius of the Kerr string. Compton

area plays also peculiar role in QED and in the Dirac theory as a limit of

localization of the wave packet leading to ”zitterbewegung”.

”The variables α (velocity operators, AB) also give rise to some rather

unexpected phenomena concerning the motion of the electron. .. It is

found that an electron which seems to us to be moving slowly, must ac-

tually have a very high frequency oscillatory motion of small amplitude

superposed on the regular motion which appears to us. As a result of

this oscillatory motion, the velocity of the electron at any time equals the

velocity of light”, (P.A.M.Dirac in his Nobel Prize Lecture.)

CORPUSCULAR ASPECT OF TRAVELING WAVES
Relation with the DIRAC EQUATION: Mass without mass

Lightlike character of ”zitterbewegung” suggests a corpuscular analogue

with the string traveling waves and with Wheeler’s model of ”mass without

mass”: MASSLESS PARTICLE CIRCULATES IN (x,y)-PLANE.
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The local 4-momentum is lightlike, p2
x + p2

y + p2
z = E2, while the effective

mass-energy was created by an averaged orbital motion,

< p2
x > + < p2

y >= m̃2. (7)

Averaging four-momentum pµ under condition (7) yields

< p2
x + p2

y + p2
z >= m̃2 + p2

z = E2. (8)

Quantum analog of this model corresponds to a wave function φ(~x, t) and

operators, ~p → ~̂p = −i~∇, Ê = i~∂t. From () and (7) one obtains two wave

equations:

(∂2
x + ∂2

y)φ = m̃2φ = (∂2
t − ∂2

z )φ, (9)

which may be separated by the ansatz

φ = M(x, y)Φ0(z, t). (10)

The RHS of (9) yields the usual equation for a massive particle, (∂2
t −∂2

z )Φ0 =

m̃2Φ0, and the corresponding (de Broglie) plane wave solution

Φ0(z, t) = exp
i

~
(zpz − Et), (11)

while the LHS determines the “internal” structure factor

Mν = Hν(
m̃

~
ρ) exp{iνϕ}, (12)
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in polar coordinates ρ, φ, where Hν(
m̃
~ ρ) are the Hankel functions of index

ν. Mν are eigenfunctions of operator Ĵz = ~
i ∂ϕ with eigenvalues Jz = ν~. For

electron we have Jz = ±~/2, ν = ±1/2, and the factor

M±1/2 = ρ−1/2 exp{i(m̃
~

ρ± 1

2
ϕ)} (13)

creates a singular ray along z-axis, which forms a branch line, and the wave

function is twovalued.

Principal peculiarity of the obtained solution is that the de Broglie plane

wave Ψ0 appears as a MODULATION of a FUNDAMENTAL STRING

formed by the singular vortex solution M.

There are diverse generalizations of this solution.

THE CORRESPONDING SPINOR MODEL.

The massless spinor equation iγµ∂µψ = 0 has the solutions

ψ = γµ∂µφ = ψ0M(x, y) + Φ0(z, t)MD where the spinor plane wave ψ0 =

γµ∂µΦ0(z, t) satisfies the usual massive Dirac equation iγµ∂µψ0 = mψ0, while

the spinor ‘formfactor’ MD = γµ∂µM(x, y) satisfies the spinor constraints

(γx∂x + γy∂y)MD = mMD, similar to LHS of (9).
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Physical picture and exact solutions for excitations:
THE KERR RING AS A CLOSED LIGHTLIKE STRING

Kerr string forms a waveguide for the lightlike traveling waves – a wave

analogue of the dual corpuscular picture of the circulating light-like particle.

Analogue of the Wheeler ‘geon’ model of ‘mass without mass’ [”microgeon

with spin”, AB (1969 – 1974)].

Gravitational strings [D. Ivanenko and AB (1975), AB (1995)] .

Kerr’s string carries the LIGHTLIKE current and the lightlike excitations:

TRAVELING waves [AB, ZETP (1974)]. The field structure of the Kerr

ring is close to that of the Sen heterotic string [AB, Phys.Rev. D (1995)].

Exact KS solutions for the electromagneticexcitations [AB (2009)] show

that there appear two mutually antipodal ‘axial’ heterotic half-strings which

are coupled topologically with the Kerr closed heterotic string.
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ELECTRON AS A GRAVITATING SOLITON (BUBBLE MODEL).

Alternate resolution of Kerr’s twosheetedness is to cover the Kerr singular

ring by a bubble with flat interior. Evolution of the Israel-Hamity-Lopez

models for four decades [AB, 2010].

REGULARIZATION of the KN solution by phase transition from the ex-

ternal KN ‘vacuum state’, Vext = 0, to a flat internal ‘pseudovacuum’ state,

Vint = 0. The U(1)× Ũ(1) chiral field model of phase transition.

Flat interior of the bubble determines unambiguously form of the bubble

boundary, H = 0 ⇒ r = re = e2/(2m) – a relativistically rotating oblate disk

of the Compton radius rc ≈ a = ~/(2m) with the thickness re.

Interior of the bubble is formed by the Higgs condensate Φ = |Φ| exp{iχ}, and

electromagnetic Kerr-Newman field Aµ is regularized by the Higgs mecha-

nism of broken symmetry, similarly to other solitonic models of the elec-

troweak theory. Main equations ¤Aµ = Iµ = e|Φ|2(χ,µ +eAµ).

Inside the bubble, |Φ| > 0, Iµ = 0, we have

¤Aµ = 0, χ,µ +eAµ = 0, (14)

which shows that gradient of the phase of the Higgs field χ,µ ”eats up” the

KN electromagnetic(EM) field Aµ, expelling the field strength and currents

to the string-like boundary of the bubble.
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The Kerr-Newman gravitating soliton exhibits essential peculiarities:

(i) the Kerr ring is regularized, forming a closed relativistic string of the

Compton radius rc on the border of disklike bubble,

(ii) the KN electromagnetic potential forms on the perimeter a quantized

loop
∮

eAϕdϕ = −4πma, which results in quantization of the soliton spin,

J = ma = n~/2, n = 1, 2, 3, ...,

(iii) the Higgs condensate forms a coherent vacuum state oscillating with

the frequency ω = 2m – oscillon,

The Kerr-Newman gravitating soliton forms a background for excitations

of the Kerr string.

EXPERIMENT: In spite of the very large Compton size of the bubble, the

inner false vacuum will not interact with the particles of high energy. The

high energy scattering will have only a pointlike contact interaction with

the string. Neither shape of the string nor its extension can be recognized.

To recognize the string as a whole, the experiment should be based on the

wavelengths comparable with the extension of the string. It is necessary a

relatively low-energy, resonance scattering.

THANK YOU FOR ATTENTION!
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Consequence of the twosheetedness.

kµ(+) 6= kµ(−) ⇒ g(+)
µν 6= g(−)

µν , Aµ(+) 6= Aµ(−)

Exact solutions demand ALIGNMENT of the electromagnetic field to the

Kerr congruences, Aµk
µ = 0 !

It does not allow to mix the Aµ(+) and Aµ(−) solutions, which is ignored in

perturbative approach.

As a result, the exact solutions differ drastically from per-
turbative ones!
Algebraically degenerated solutions of the Einstein-Maxwell equations.

The the Einstein-Maxwell equations for the metrics of the KS class gµν =

ηµν +2Hkµkν, were integrated out and reduced to the system of the ordinary

differential equations (Debney, Kerr and Schild 1969).
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Notations: the null tetrad ea, a = 1, 2, 3, 4, where e3µ = Pkµ is real and aligned with the PNC,
∂a ≡ (.),a≡ eµ

a∂µ - tetrad derivatives.

Electromagnetic field is determined by functions A and γ,

A,2−2Z−1Z̄Y,3 A = 0, A,4 = 0, (15)

DA + Z̄−1γ,2−Z−1Y,3 γ = 0. (16)

Tetrad components of the electromagnetic strength (autodual) Fab = eµ
ae

ν
bFµν,

F12 = AZ2, F31 = γZ − (AZ),1 , where PZ−1 = dF/dY.

Gravitational sector: has two equations for function M, which take into

account the action of electromagnetic field

M,2−3Z−1Z̄Y,3 M = Aγ̄Z̄, (17)

DM =
1

2
γγ̄. (18)

where D = ∂3 − Z−1Y,3 ∂1 − Z̄−1Ȳ ,3 ∂2 .

gµν = ηµν + 2Hkµkν, H =
P 2

2
[M(Z + Z̄)− AĀZZ̄], T rad

µν =
1

2
γ̄γkµkν.

In DKS-work integration was restricted by the case γ = 0, corresponding

to the non-radiative, stationary solutions, in fact, restricted by the Kerr-

Newman solution.
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Stationary case γ = 0 ⇒ no radiation T rad
µν = 1

2 γ̄γkµkν = 0.

The black-hole is at rest ⇒ P = 2−1/2(1 + Y Ȳ ), Y,3 = −ZPY /P, DA = DM = 0,
−PZ−1 = r + ia cos θ is a complex radial distance.

Strong reduction of the equations.

Explicit solution: A = ψ(Y )/P 2, M = m/P 3, vector potential
Aµ = −1

2Re[ ψ
r+ia cos θ ]k

µ, and metric

H =
mr − ψψ̄/2

r2 + a2 cos2 θ
, gµν = ηµν + 2Hkµkν,

KERR-NEWMAN SOLUTION: ψ(Y ) = constant = e – the charge of black hole. One sees
that the Kerr-Newman solution is not unique.

Integration shows that ψ(Y ) may be an arbitrary holomorphic function of Y (x).
Y = eiφ tan θ

2 is a projective coordinate on celestial sphere S2, and there is infinite set of
the exact solutions, in which ψ(Y ) is singular at the set of points {Yi = eiφi tan θi

2 },

ψ(Y ) =
∑

i

qi

Y (x)− Yi
,

corresponding to angular directions φi, θi.

Twistor-beams.

Poles at Yi produce semi-infinite singular electromagnetic beams, sup-

ported by twistor rays of the Kerr congruence. One sees that the electro-

magnetic twistor-beams have very strong back-reaction on metric.
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Integration of the non-stationary DKS case γ 6= 0, [A.B. (2004-2009)]

shows that typical time-dependent (type D) solutions contain outgoing twistor-beam

pulses which have very strong back reaction on metric and perforate horizon.

There appears a semiclassical Kerr-Schild geometry formed by fluctuat-

ing twistor-beams. It should still be averaged to get the usual classical

gravity, and therefore it takes an intermediate position between Classical

and Quantum gravity.

Any interaction of the black hole with external, even very weak, electro-

magnetic field results in the creation of a twistor-beams pulse.

Figure 2: The horizon covered by fluctuating micro-holes.
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Complex Shift and Complex Structure of the Kerr geometry.
Appel solution 1887!

A point-like charge e, placed on the complex z-axis (x0, y0, z0) = (0, 0,−ia),

gives a real potential

φa = Re e/r̃, (19)

where r̃ turns out to be a complex radial coordinate r̃ = r+iξ, and we obtain

r̃2 = r2−ξ2 +2irξ = (x−x0)
2 +(y−y0)

2 +(z−z0)
2, which leads to two equations

rξ = az, r2 − ξ2 = x2 + y2 + z2 − a2, (20)

corresponding to the Kerr oblate spheroidal coordinates r and θ.

Starting from the usual system of angular coordinates, we would like to

retain after complex shift the relation z = r cos θ, and obtain ξ = a cos θ,

r̃ = r + ia cos θ, (21)

and the equation (r2 +a2) sin2 θ = x2 +y2, which may be split into two complex

conjugate equations. This splitting

(x± iy) = (r ± ia)e±iφ sin θ (22)

yields the Kerr-Schild Cartesian coordinate system.
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Complex Light Cone. Twistors as Null Planes.
Complex Kerr-Schild null tetrad ea, (ea)2 = 0: real directions

e3 = du + Ȳ dζ + Y dζ̄ − Y Ȳ dv

(PNC) and

e1 = dζ − Y dv, e2 = dζ̄ − Ȳ dv, e4 = dv + he3.

The complex light cone with the vertex at some complex point xµ
0 ∈ CM 4:

(xµ − x0µ)(xµ − xµ
0) = 0, can be split into two families of null planes: ”left”

planes

xµ
L = xµ

0(τ ) + αe1µ + βe3µ (23)

spanned by null vectors e1 and e3, and”right”planes

xµ
R = xµ

0(τ ) + αe2µ + βe3µ, (24)

spanned by null vectors e2 and e3.

The Kerr congruence K arises as a real slice of the family of the ”left”

null planes (Y = const.) of the complex light cones whose vertices lie at a

complex source x0(τ ).
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Complex Source of the Kerr geometry and Retarded Time

Appel’s complex shift (xo, yo, zo) → (0, 0,−ia) [Appel 1887!].

Kerr’s source can be considered as a mysterious ”particle” propagating

along a complex world-line xµ
0(τ ) in CM 4, parametrized by a complex time τ .

There appears a complex retarded-time construction (Newman, Lind.) In

the complex case there are two different ways for obtaining retarded time.

For a given real point x ∈ M 4 one considers the past light cone to obtain the

root of its intersection with a given complex world-line x0(τ ). It is known

that a LIGHT CONE splits into

the left:

↙x

and right: x↘ complex null planes, which are spanned, correspondingly,

on the null forms e3 ∧ e1 and e3 ∧ e2.

Correspondingly, there are two roots:

x0↙x and x↘x0
,

and two different (in general case) retarded times

τ0↙t and t↘τ0

for the same complex world-line: the ‘Left’ and ‘Right’ projections.
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The real Kerr-Schild geometry appears as a real slice of this complex

structure. This construction may be super-generalized by ‘super-complex

translation’, leading to super Kerr-Newman solution to broken N=2 super-

gravity [AB, Clas.Q. Grav.,2000].

Along with the considered complex world-line (say ‘Left’), there is a com-

plex conjugate world-line, XL(τL) and XR(τR).

Figure 3: Complex light cone at a real point x. The adjoined to congruence Left and Right complex null planes. Four roots:
Xadv

L , Xret
L and Xadv

R , Xret
R which are related by crossing symmetry.

Complex world-line forms a world-sheet of an open Euclidean string

XL(τL) ≡ Xµ
L(tL + iσL) with the ends at σ = ±a. Left and Right structures

form an Orientifold (Ω = Antip.map + CC + Revers of time).

Antipodal map: Y → −1/Ȳ .
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Twistor-Beams. The exact time-dependent KS solutions.
Debney, Kerr and Schild (1969). The black-hole at rest: gµν = ηµν+2Hkµkν,

P = 2−1/2(1 + Y Ȳ ).

Tetrad components of electromagnetic field Fab = eµ
ae

ν
bFµν,

F12 = AZ2, F31 = γZ − (AZ),1 , (25)

here Z = −P/(r + ia cos θ) is a complex expansion of the congruence. Station-

arity ⇒ γ = 0.

Kerr-Newman solution is exclusive: ψ(Y ) = const.

In general case ψ(Y ) is an arbitrary holomorphic function of Y (x) = eiφ tan θ
2,

which is a projective coordinate on celestial sphere S2,

A = ψ(Y )/P 2, (26)

and there is infinite set of the exact solutions, in which ψ(Y ) is singular at the

set of points {Yi}, ψ(Y ) =
∑

i
qi

Y (x)−Yi
, corresponding to angular directions

φi, θi.

Twistor-beams. Poles at Yi produce semi-infinite singular lightlike beams,

supported by twistor rays of the Kerr congruence. The twistor-beams have

very strong backreaction to metric gµν = ηµν − 2Hkµkν, where

H =
mr − |ψ|2/2

r2 + a2 cos2 θ
. (27)
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How act such beams on the BH horizon?

Black holes with holes in the horizon, A.B., E.Elizalde, S.R.Hildebrandt and

G.Magli, Phys. Rev. D74 (2006) 021502(R)

Singular beams lead to formation of the holes in the black hole horizon,

which opens up the interior of the “black hole” to external space.
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Figure 4: Near extremal black hole with a hole in the horizon. The event horizon is a closed surface surrounded by surface
g00 = 0.
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Twistor-beams are exact stationary and time-dependent Kerr-Schild solutions

(of type D) which show that ‘elementary’ electromagneticexcitations have

generally singular beams supported by twistor null lines. Interaction of a black-

hole with external, even very weak, electromagnetic field resulted in appear-

ance of the beams, which have very strong back reaction to metric and

horizon and form a fine-grained structure of the horizon pierced by fluctu-

ating microholes. [A.B., E. Elizalde, S.R. Hildebrandt and G. Magli, Phys.Lett. B 671

486 (2009), arXiv:0705.3551[hep-th]; A.B., arXiv:gr-qc/0612186.]

Figure 5: Excitations of a black hole by weak electromagneticfield yields twistor-beams creating a horizon covered by
fluctuating micro-holes.
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CONCLUSIONS:

– As a consequence of the Einstein-Maxwell field equations, the experimen-

tally observable, mass, spin, charge and magnetic momentum of the electron

lead unambiguously to the conclusion that the electron background has to

be described by the Kerr-Newman gravitational field.

– Topology of the Minkowski background should be broken in the Compton

zone of the electron by the Kerr singular ring with the appearance of the

twosheeted Kerr spacetime.

– The regularized Kerr-Newman solution forms a GRAVITATING SOLI-

TON, a thin rotating disk (membrane) spanned by the Kerr ring. ‘Mate-

rial’ of the disk represents a COHERENT pseudovacuum state of the chiral

Higgs field with a closed relativistic string on the perimeter of the Compton

region.

– Wave function of the electron corresponds to the oscillating Higgs field

forming a superconducting false-vacuum state inside the disklike bubble.

– It is assumed that the Kerr string may be detected by the novel experi-

mental approach – the ”non-forward Compton scattering.”

THANK YOU FOR YOUR ATTENTION!
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Gravitational sector of the model is described by the Gürses–Gürsey form

of metric, gµν = ηµν + 2Hkµkν, where H = f (r)/(r2 + a2 cos2 θ). It allows one to

match smoothly the rotating metrics of different types! For fint = αr4, the

Kerr singularity is suppressed: a regular rotating internal space-time with

the constant curvature R = −24α,(A.B. 2002).
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The KN source is formed by a rotating oblate BUBBLE (r is the oblate

spheroidal coordinate). We use the bubble with flat interior, α = 0, which

corresponds to parameters of the López model, r = re = e2/2m, however the

interior of the bubble is not empty, but filled by Higgs field interaction with

the Kerr-Newman EM field.
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Chiral sector.
Phase transition from external KN solution to internal vacuum state is

determined by a supersymmetric chiral model with three chiral fields Φi.

The potential V is determined via superpotential W by the relation

V (r) =
∑

i |∂iW |2, where ∂1 = ∂Φ, ∂2 = ∂Z, ∂3 = ∂Σ.

Superpotential

W = λZ(ΣΣ̄− η2) + (cZ + µ)ΦΦ̄, (28)

produces a domain wall interpolating between the internal V (int) = 0 and

external vacuum states V (ext) = 0, determined by the condition

∂iW = 0.

We will use the thin wall approximation, assuming that the depth of wall

ξ, is much smaller than its position r0, which yields

Int vacuum state, for r < r0, V (int) = 0 : Z = −µ/c; Σ = 0; |Φ| = η
√

λ/c.

Ext vacuum state, for r > r0, V (ext) = 0 : Z = 0; Φ = 0; Σ = η.
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The EM – Higgs sector is described by the usual Higgs Lagrangian,

L = −1

4
FµνF

µν +
1

2
DµΦD̄µΦ̄ + V, (29)

where Dµ = ∇µ + ieAµ; Fµν = Aµ,ν − Aν,µ ; Φ = Φ0 exp{iχ}, leading to equations

¤Aµ = Iµ = e|Φ|2(χ,µ +eAµ). (30)

Potential V provides the phase transition from external KN solution, where

Φ = 0, to superconducting internal state Iµ = 0, but |Φ| = Φ0 > 0.

The vector-potential

Aµdxµ|r =
−er

r2 + a2 cos2 θ
[dt + a sin2 θdφ] +

2erdr

(r2 + a2)
(31)

increases, approaching the boundary of bubble r = r0 = e2/2m, and in the

equatorial plane, cos θ = 0, it reaches the magnitude A
(edge)
µ dxµ = −2m

e [dt+adφ]+
2er0dr
(r2

0+a2)
. The directions A

(edge)
µ in the equatorial plane are tangent to the Kerr

singular ring and form a closed loop at the edge. The Wilson loop integral

S(edge) =

∮

(edge)

Aµ(x)dxµ =

∮
eA

(edge)
φ dφ = −4πma = −4πJ (32)

turns out to be proportional to the KN angular momentum.
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The Higgs field Φ(x) = Φ0e
iχ(x) expels the electromagnetic field and current

from the bulk of the superconducting bubble, and we should set Iµ = 0 for

r < r0. It gives the internal solution

χ,µ = −eA(in)
µ , (33)

as a full differential, and the second equation ¤A
(in)
µ = 0 is satisfied auto-

matically. Taking the Higgs phase in general form χ = ωt + nφ + χ1(r), one

obtains from (33) the internal solution

A
(in)
0 = −ω

e
; A

(in)
φ = −n

e
; A(in)

r = χ′1(r)/e. (34)

Matching the edge field with internal one, we obtain

ω = 2m; J = ma = n/2; χ1(r) = − ln(r2 + a2), (35)

and therefore

Φ(x) = Φ0 exp{iχ} = Φ0 exp{i2mt− i ln(r2 + a2) + inφ}. (36)
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Singular pp-wave solutions (A.Peres)

Self-consistent solution of the Einstein-Maxwell equations: singular plane-

fronted waves (pp-waves). Kerr-Schild form of metric gµν = ηµν +2hkµkν with

a constant vector kµ =
√

2du = dz − dt.

Function h determines the Ricci tensor

Rµν = −kµkν¤h, (37)

where ¤ is a flat D’Alembertian

¤ = 2∂ζ∂ζ̄ + 2∂u∂v . (38)

The Maxwell equations take the form ¤A = J = 0, and can easily be

integrated leading to the solutions

A+ = [Φ+(ζ) + Φ−(ζ̄)]f+(u)du, (39)

where Φ± are arbitrary analytic functions, and function f+ describes re-

tarded waves.

The poles in Φ+(ζ) and Φ−(ζ̄) lead to the appearance of singular lightlike

beams (pp-waves) which propagate along the z+ semi-axis.

PP-waves have very important quantum properties, being exact solutions

in string theory with vanishing all quantum corrections [ G.T. Horowitz,

A.R. Steif, PRL 64 (1990) 260; A.A. Coley, PRL 89 (2002) 281601.]
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Quadratic generating function F(Y) and interpretation of parameters.

[A.B. and G. Magli, Phys.Rev.D 61044017 (2000)].

The considered in DKS function F is quadratic in Y ,

F ≡ a0 + a1Y + a2Y
2 + (qY + c)λ1 − (pY + q̄)λ2, (40)

where the coefficients c and p are real constants and a0, a1, a2, q, q̄, are complex

constants. The Killing vector of the solution is determined as

K̂ = c∂u + q̄∂ζ + q∂ζ̄ − p∂v. (41)

Writing the function F in the form

F = AY 2 + BY + C, (42)

one can find two solutions of the equation F = 0 for the function Y (x)

Y1,2 = (−B ±∆)/2A, (43)

where ∆ = (B2 − 4AC)1/2.

We have also

r̃ = −∂F/∂Y = −2AY −B, (44)

and consequently

r̃ = PZ−1 = ∓∆. (45)
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These two roots reflect the known twofoldedness of the Kerr geometry.

They correspond to two different directions of congruence on positive and

negative sheets of the Kerr space-time. In the stationary case

P = pY Ȳ + q̄Ȳ + qY + c . (46)

Link to the complex world line of the source. The stationary and boosted Kerr

geometries are described by a straight complex world line with a real 3-

velocity ~v in CM 4:

xµ
0(τ ) = xµ

0(0) + ξµτ ; ξµ = (1, ~v) . (47)

The gauge of the complex parameter τ is chosen in such a way that Re τ

corresponds to the real time t.

K̂ is a Killing vector of the solution

K̂ = ∂τx
µ
0(τ )∂µ = ξµ∂µ . (48)

P = K̂ρ = ∂τx
µ
0(τ )e3

µ , (49)

where

ρ = λ2 + Ȳ λ1 = xµe3
µ. (50)

It allows one to set the relation between the parameters p, c, q, q̄, and ξµ,

showing that these parameters are connected with the boost of the source.
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The complex initial position of the complex world line xµ
0(0) in Eq. (47)

gives six parameters for the solution, which are connected to the coefficients

a0, a1 a2 . It can be decomposed as ~x0(0) = ~c + i~d, where ~c and ~d are real

3-vectors with respect to the space O(3)-rotation. The real part ~c defines

the initial position of the source, and the imaginary part ~d defines the value

and direction of the angular momentum (or the size and orientation of a

singular ring).

It can be easily shown that in the rest frame, when ~v = 0, ~d = ~d0, the

singular ring lies in the orthogonal to ~d plane and has a radius a = |~d0|. The

corresponding angular momentum is ~J = m~d0.
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Wonderful Consequences of the Kerr Theorem
Kerr’s multi-particle solution is obtained on the base of the Kerr theorem. Choosing

generating function of the Kerr theorem F as a product of partial functions Fi for spinning
particles i=1,...k, we obtain a multi-sheeted, multi-twistorial space-time over M 4 possessing
unusual properties. Twistorial structures of the i-th and j-th particles do not feel each
other, forming a type of its internal space. Gravitation and electromagnetic interaction of
the particles occurs via a singular twistor line which is common for twistorial structures
of interacting particles.

Action-at-the-distance.

The obtained multi-particle Kerr-Newman solution turns out
to be ‘dressed’ by singular twistor lines linked to surrounding
particles. We conjecture that this structure of space-time has
the relation to a stringy structure of vacuum and opens a geo-
metrical way to quantum gravity.
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THE KERR THEOREM.
One-particle generating function F (T a) is to be quadratic in Y, which corresponds to the
Kerr PNC up to the Lorentz boosts, orientations of angular momenta and the shifts of
origin.
Function F (Y ) can be expressed via the set of parameters q which determine the boost
and orientation of the Kerr spinning particle

F (Y |q) = A(x|q)Y 2 + B(x|q)Y + C(x|q). (51)

This equations can be resolved explicitly, leading to two roots Y = Y ±(x|q)
which correspond to two sheets of the Kerr space-time.

The root Y +(x) determines out-going congruence on the (+)-sheet, while the root Y −(x)
gives in-going congruence on the (−)-sheet.

Therefore, function F may be represented in the form

F (Y |q) = A(x|q)(Y − Y +)(Y − Y −),

which allows one to obtain all the required functions of the Kerr solution in explicit
form. The detailed form of Y ±(x|q) is not important for further treatment.
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Multi-twistorial space-time.
Selecting an isolated i-th particle with parameters qi, one can obtain the roots Y ±

i (x) of
the equation Fi(Y |qi) = 0 and express Fi in the form

Fi(Y ) = Ai(x)(Y − Y +
i )(Y − Y −

i ). (52)

Then, the (+) or (−) root Y ±
i (x) determines congruence k

(i)
µ (x) and consequently, the Kerr-

Schild metric

g(i)
µν = ηµν + 2h(i)k(i)

µ k(i)
ν , (53)

and finally, the function h(i)(x) may be expressed in terms of r̃i = −dY Fi, (??), as follows

h(i) =
m

2
(
1

r̃i
+

1

r̃∗i
) +

e2

2|r̃i|2 . (54)

Electromagnetic field is given by the vector potential

A(i)
µ = <e(e/r̃i)k

(i)
µ . (55)

For a system of k particles we form the function F as a product of the known blocks
Fi(Y ),

F (Y ) ≡
k∏

i=1

Fi(Y ). (56)

The solution of the equation F = 0 acquires 2k roots Y ±
i , and the twistorial space turns

out to be multi-sheeted.
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Figure 6: Multi-sheeted twistor space over the auxiliary Minkowski space-time of the multi-particle Kerr-Schild solution.
Each particle has twofold structure.

The twistorial structure on the i-th (+) or (−) sheet is determined by the equation Fi = 0
and does not depend on the other functions Fj, j 6= i. Therefore, the particle i does not
feel the twistorial structures of other particles. Similar, the condition for singular lines
F = 0, dY F = 0 acquires the form

k∏

l=1

Fl = 0,
k∑

i=1

k∏

l 6=i

FldY Fi = 0 (57)

and splits into k independent relations

Fi = 0,
k∏

l 6=i

FldY Fi = 0. (58)
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One sees, that i-th particle does not feel also singular lines of other particles. The space-
time splits on the independent twistorial sheets, and therefore, the twistorial structure
related to the i-th particle plays the role of its “internal space”.

It looks wonderful. However, it is a direct generalization of the well known twofoldedness
of the Kerr space-time which remains one of the mysteries of the Kerr solution for the
very long time.
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Multi-particle Kerr-Schild solution. Using the Kerr-Schild formalism with the consid-
ered above generating functions

∏k
i=1 Fi(Y ) = 0, one can obtain the exact asymptotically

flat multi-particle solutions of the Einstein-Maxwell field equations. Since congruences
are independent on the different sheets, the congruence on the i-th sheet retains to be
geodesic and shear-free, and one can use the standard Kerr-Schild algorithm of the paper
[?]. One could expect that result for the i-th sheet will be in this case the same as the
known solution for isolated particle. Unexpectedly, there appears a new feature having a
very important consequence.

Formally, we have only to replace Fi by F =
∏k

i=1 Fi(Y ) = µiFi(Y ), where µi =
∏k

j 6=i Fj(Y ) is a
normalizing factor which takes into account the external particles. However, in accordance
with (??) this factor µi will appear also in the function r̃ = −dY F = −µidY Fi, and in the
function P = µiPi.

So, we obtain the different result

hi =
mi(Y )

2µ3
i

(
1

r̃i
+

1

r̃∗i
) +

(e/µi)
2

2|r̃i|2 , (59)

A(i)
µ = <e

e

µir̃i
k(i)

µ (60)

which looks like a renormalization of the mass m and charge e.1

This fact turns out to be still more intriguing if we note that µi is not constant, but a
function of Yi. We can specify its form by using the known structure of blocks Fi

µi(Yi) =
∏

j 6=i

Aj(x)(Yi − Y +
j )(Yi − Y −

j ). (61)

1Function mi(Y ) is free and satisfies the condition (mi),Ȳ = 0. It and has to be chosen in the form mi(Y ) = m0µ
3
i to provide reality of metric.
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The roots Yi and Y ±
j may coincide for some values of Yi, which selects a common twistor

for the sheets i and j. Assuming that we are on the i-th (+)-sheet, where congruence is
out-going, this twistor line will also belong to the in-going (−)-sheet of the particle j . The
metric and electromagnetic field will be singular along this twistor line, because of the
pole µi ∼ A(x)(Y +

i −Y −
j ). Therefore, interaction occurs along a light-like Schild string which

is common for twistorial structures of both particles. The field structure of this string is
similar to the well known structure of pp-wave solutions.

These equations give the exact multi-particle solution of the Einstein-Maxwell field equations.
It follows from the fact that the equations were fully integrated out in [?] and expressed
via functions P and Z before (without) concretization of the form of congruence, under
the only condition that it is geodesic and shear free. In the same time the Kerr theorem
determines the functions P and Z via generating function F, eq.(??), and the condition of
reality for metric may be provided by a special choice of the free function m(Y ).

The obtained multi-particle solutions show us that, in addition to the usual Kerr-
Newman solution for an isolated spinning particle, there is a series of the exact ‘dressed’
Kerr-Newman solutions which take into account surrounding particles and differ by the
appearance of singular twistor strings connecting the selected particle to external particles.
This is a new gravitational phenomena which points out on a probable stringy (twistorial)
texture of vacuum and may open a geometrical way to quantum gravity.

The number of surrounding particles and number of blocks in the generating function
F may be assumed countable. In this case the multi-sheeted twistorial space-time will
possess the properties of the multi-particle Fock space.
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Figure 7: Schematic representation of the lightlike interaction via a common twistor line connecting out-sheet of one particle
to in-sheet of another.
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