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General context

>

Lax pairs in terms of vector fields (diff. operators of the first order) —
Zakharov, Shabat (1979)

Differential reductions, N-orthogonal coordinate systems — Zakharov
(1998). The works of Kyoto school on KP hierarchy reductions (BKP,
CKP, etc.)

Dispersionless limit of integrable systems in (2+1)

Integrable systems of twistor theory, Plebariski heavenly equations and
generalizations, hyper-Kahler hierarchies — multidimensional integrable
models

Manakov-Santini hierarchy: generalizes dKP, it is a simplest
non-degenerate example of the hierarchy for general vector fields.
Dressing method, inverse scattering method for vector fields

Dunajski interpolating system — describes "a symmetry reduction of
the anti-self-dual Einstein equations in (2, 2) signature by a conformal
Killing vector whose selfdual derivative is null". On the other hand, it
is a simple differential reduction of the Manakov-Santini system
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The Manakov-Santini system

The Manakov-Santini system — two-component integrable generalization of
the dKP equation,

Uxt = Uyy + (qu)x + VxUxy — UxxVy,
Vst =  Vyy F UVxx + VxVxy — VixVy.
Lax pair
Oy W = ((p — vx)0x — ux0p)W,
W = ((p* — vup + u — vy)0x — (uxp + uy)0p) W,

where p plays a role of a spectral variable. For v = 0 reduces to dKP
(Khohlov-Zabolotskaya equation)

Uxt = Uyy + (qu)X7
reduction u = 0 gives the equation (Pavlov, Martinez Alonso and Shabat)
Vxt = Vyy + VxVxy — VxxVy.
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Dunajski interpolating system
The condition used by Dunajski (JPA 2008) to reduce the Manakov-Santini
system to the interpolating system

au = Vy,
The reduced MS system can be written as deformed dKP,

Uxt = Uy + (UUX)X + VxlUxy — UxxVy,

vy = au,
it also implies a single equation for v,
-1

Vst = Vyy T Q "W F Vi Vyy — VxVy.

The limit « — 0 corresponds to dKP, o — oo — to equation, introduced by
Pavlov, Martinez Alonso and Shabat

Dunajski interpolating system describes "a symmetry reduction of the
anti-self-dual Einstein equations in (2, 2) signature by a conformal Killing

vector whose selfdual derivative is null".
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Elementary description of reductions

MS Lax equation
Oy W = ((p— v)0x — uxOp)W.

Basic solutions W1, Wy, general solution F(Wq, V7).

Existence of polynomial solution p” + f,_2p" 2 4 ... for L operator defines
Gelfand-Dikii reduction (for MS no stationarity with respect to higher
time!), the case n = 1 corresponds to Pavlov equation.

Formally adjoint Lax equation (u0 — —0u)

Oyd = ((p — v)0x — ux0p)J — Vi d,

J={V1,Vo}, {f, g} = frgx — fgp, general solution JF(V1, V5).
Remark For divergence-free vector fields Lax equations are self-adjoint.
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Interpolating reductions

(L.V. Bogdanov, JPA 43 (2010) 115206)
Adjoint Lax equation in terms of InJ

OyInd = ((p— v)Ox — ux0p) InJ — vy,

nonhomogeneous linear equation, general solution InJ + F(W1, W5).
Interpolating reduction — nonhomogeneous Lax equations possess a
polynomial solution f = —ap” + fr_op" 2+ ....

a = 0 corresponds to dKP (divergence-free vector fields), @« — oo — to MS
Gelfand-Dikii reduction of the order n.

For n = 1, substituting f = —ap to adjoint Lax operator, we obtain

au = Vy,

corresponding to Dunajski interpolating system.
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One-parametric family of Lax pairs

If we have a Lax pair in terms of vector fields, e.g.
oW =iV,
oV = W,

in the general (not divergence-free) case we have a one-parametric family
of Lax pairs of more general form,

W = W = (s — a T div i)W,
oW = VW = (v —a tdiv i)W,
having the same compatibility condition because
[0, V] = [,0] — oL div[a, ]

(the Lie algebra of extended vector fields stays the same). The reduction
means the existence of solution InW = p" + f,_op" 2 + ... of Lax

equations for some a.
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Hamiltonian interpretation of Dunajski interpolating system

Lax equations for the Dunajski interpolating system can be written in
Hamiltonian form, but with the modified Poisson bracket
{—,—} = e*P{—, =} (S.V. Manakov). Indeed, the equation

oW = ((p— au)dx — uxdp)WV,

can be written in the form

Oy = {Hy, W} = e*P{H;, W},
Hi=e *P(u—at(p+al)).

The situation with higher reductions is not so transparent, they should
probably have some geometric interpretation.
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Two-component generalization of d2DTL hierarchy

Two-component generalization of the dispersionless 2DTL equation (L.V.
Bogdanov, JPA 43 (2010) 434008)

(e_¢)tt = mt¢xy - mx¢tya

mtte_‘Z> = My My — Myy My.

The Lax pair
My My
oW = ((A )0, Ao @)@) v,
mge my

1e ¢ —¢
oW = <eat G )taA> v
A mg mg

For m = t the system reduces to the dispersionless 2DTL equation

(eid))tt = (z)xya
The reduction ¢ = 0 gives an equation (Pavlov; Shabat and Martinez
Alonso)

Mt = My My — My Me.
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Interpolating reduction for d2DTL case
Adjoint Lax equations (nonhomogeneous linear equations for the Jacobian)
possess a solution f = —aIn A, defining the reduction

ea(z) = Myg.

This reduction makes it possible to rewrite the system as one equation for
m 1

My = (M) o (Mymy — my,my). (%)
Equation (x) is equivalent to the generalization of a dispersionless (1 +
2)-dimensional Harry Dym equation, Blaszak (2002). It is also connected
with an equation describing ASD vacuum metric with conformal symmetry,
Dunajski and Tod (1999)

(77Fy + F)’T)(UFX - FXT) - (772F - FTT)FXY = 462”7

The limit « — 0 gives the d2DTL equation, the limit & — oo gives the
equation (Pavlov; Shabat and Martinez Alonso)

My = mtymx — mxymt.
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The Manakov-Santini hierarchy

Lax-Sato equations

ot (o) = ()~ () ) ()

where L, M, corresponding to the Lax and Orlov functions of the
dispersionless KP hierarchy, are the series

L=p+ Z un(t)p™",
n=1

M= Mo+ M, M=) tl",

o o0
My=> va(t)L" = Un(t)p",
n=1 n=1

and x = to, (3% unp™") 4 =D oo unp”, {L,M} = LM, — LiM,. A
more standard choice of times for the dKP hierarchy corresponds to
l?t L"

=
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Lax-Sato equations are equivalent to the generating relation

(cwr) =0

Lax-Sato equations for the first two flows of the hierarchy

0, (,&) = ((p = vx)0x — ux0p) (I\Lﬂ>
90 (1) = (6 = wep w0 — (s )20) )

where u = u1, v=vi, x =ty, y = t1, t = t», correspond to the Lax pair
of the Manakov-Santini system
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A class of differential reductions of the MS hierarchy

The dynamics of the Poisson bracket J = {L,M}, J =14 v,p 1 +... is
described by the nonhomogeneous equation
0

g I = (Ands = Bady) InJ + 0cAn — 9B,

n n
() o ().
7). 7).

An, B are polynomials in p. InJ + F(L, M) also satisfies these equations.
We define a class of reductions of Manakov-Santini hierarchy by the
condition

(InJ—alk)_ =0,

where « is a constant. Then InJ — aL¥ is a polynomial.
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Characterization of the reduction

Proposition
The existence of a polynomial solution

i=k—2
F——aph s 3 A0,
0

(where the coefficients f; don’t contain constants, see below) of equations

0
Otn

f = (AnOx — Bnp) f + 0xAn — 0p B,

is equivalent to the reduction condition

(InJd —alk)_ =0,
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General k

(Ind—alf)_=0= (InJ—alX)y=(nJ—al®, = —a(L%),,
f = —a(L¥), is a solution of nonhomogeneous equation of the Proposition.
J=expa(Lh — (L%,)) = expa(LF_),

and Lax-Sato equations of reduced hierarchy read

0
Oty

Generating relation takes the form

(e‘O‘Lde A dl\/l)i —0.

L= (eI, 0L — (eI L), 0, L.

For the first flow n = 1 we obtain a condition

9y (L) = ((p — v)Ox — uxp)(als) + Ve

This condition defines a differential reduction of Manakov-Santini system.
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The case k = 0 (or a = 0) corresponds to Hamiltonian vector fields.
Indeed, in this case J = 1, and from nonhomogeneous equations we have

OxAn — 9,8, = 0.

This is the case of the dKP hierarchy.

Proposition

The reduction with general k is ‘interpolating’ between the dKP hierarchy
(o — 0), and the Gelfand-Dikii reduction of the MS hierarchy of the order
k, Lk =0, fora — oo.

(directly follows from the definition of the reduction)
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L.V. Bogdanov (L.D. Landau ITP RAS) SQS’2011, Dubna

k = 1. Dunajski interpolating system
In the case k=1

(InJ—al)-=0=(Ind—alL)=(InJ —al); = —ap,
J=expa(L — p).

Lax-Sato equations

0
ot,

The generating relation for the reduced hierarchy reads

eP=DarAndM) =0= (e ?tdLAdM) =0.
(e DaLndm) =0 (etaLrdm)

L= (P D), oL — (e*P D), DL

Differential reduction reads
ou = vy,

which is exactly the condition used by Dunajski (JPA 2008) to reduce the
Manakov-Santini system to the interpolating system.
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The reduced MS system (equivalent to Dunajski interpolating system) can
be written as deformed dKP,

Uxt = Uy + (UUX)X + Vxlxy — UxxVy,

vy = au,
it also implies a single equation for v,
-1
Vst = Vyy +Q "Wy + VxVxy — VaxVy.

The limit o« — 0 corresponds to dKP, & — oo — to equation, introduced by
Pavlov.
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Differential reductions. Special cases

The case k = 2.
J = el?-)
Differential reduction for the MS system
20(uy + viely) = Vi
The case k = 3. Differential reduction

3a (Gy(uy + uevy) + Ox(uy vy + uxvf + uux)) = Vix.
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A pair of reductions with different k — reduction to (1+1)

Reductions of interpolating system (i.e., the reduction with k = 1, together
with the reduction of some order k # 1 with a constant (3).
For k = 2 we obtain a system

Uy + Vylyx = (28) W,
vy = au,
which implies a hydrodynamic type equation (Hopf type equation) for u,

uy + auuy = Uy.

23
The system for k = 3 read
Oy (uy + uxvy) + Ox(uy vy + uXvX2 + uuy) = 38 Mo,
Vi = au,

it implies an equation for u,

o
uyy + 0x(2auyu + Q2 uyu? + uuy — @
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which can be rewritten as a system of hydrodynamic type for two functions
u, w,

a 2,2
wy, = (% — U — u)uyx — 2auwy,
Uy = Wy.

A system of equations of hydrodynamic type corresponding to the reduction
of interpolating system of arbitrary order k > 3 can be written explicitly.
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Two reductions of higher order

A simple example of a system defined by two reductions of higher order
(reductions of the order 2 and 3),

Uy + Vxlyx = (2a)_1vxx,
(Oy(uy + uxvy) + Ox(uy v + Uv2 + uuy)) = (38) v

A system of hydrodynamic type for the functions u, w = vy,
Uy + wuy = (2a) tw,

= — Wy — WWy — 20cUUy.
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The characterization of reductions in terms of the dressing
data

A dressing scheme for the MS hierarchy

Lin - Fl(Lout; Mout)7
Min - FZ(LOUta Mout);

Lin(p,t), Min(p,t) are analytic inside the unit circle, the functions

Lout(p,t), Mout(p, t) are analytic outside the unit circle with a prescribed
singulariry defined by the series.

The Riemann problem implies the analyticity of the differential form

dLAdM

o= TLmy

and the generating relation for the hierarchy.
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Let Gi(\, 1), Go(A, ) define an area-preserving diffeomorphism,
G € SDiff(2),

D(Gy, Gy)
D(A, 1)

Let us fix a pair of analytic functions f1(A, i), f2(A, ) (the reduction data)
and consider a problem

fl(Lim Min) = Gl(fl(Louh Mout)a f2(Louta Mout))a
f2(Lina Min) = G2(f1(Lout; Mout)7 f2(Lout7 Mout));

which defines a reduction of the MS hierarchy. In terms of the Riemann
problem for the MS hierarchy, which can be written in the form

(Lin7 Min) = F(Louta Mout)>
the reduction condition for the dressing data reads
foFof ! cSDiff(2).
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In terms of equations of the MS hierarchy the reduction is characterized by
the condition

(dA(L, M) Adfa(L, M))out = (dfi(L, M) A df2(L, M))in,
thus the differential form
Qreq = dfi (L, M) A dfa(L, M)

is analytic in the complex plane, and reduced hierarchy is defined by the
generating relation

(df (L, M) A dfp(L, M))- = 0.
Taking
A(L,M) = L,
B(LM) = e "M,
we obtain the generating relation

(e‘O‘Lde A dl\/l)i —0,

coinciding with the generating relation for k-reduced MS hierarchy.
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Thus we come to the following conclusion:

Proposition

In terms of the dressing data for the Riemann problem, the class of
reductions (defined above) is characterized by the condition

foFof! c SDiff(2),
where the components of f are defined as

A(LM) =L, fh(L,M)=e"M,

For the interpolating equation we have f; = L, b = e *LM, and the
Riemann problem can be written in the form

Lin = Gl(LoutaeiaLOUtMout)p

My, = eaGI(L(’"t’eiaLOUtMWt)G2(Lout e_aL°“tMout)
) )

where G € SDiff(2).
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Hamiltonian structure

Lax-Sato equations for the reduction with kK = 1 (Dunajski interpolating
equation) can be written in Hamiltonian form, but with the modified
Poisson bracket (S.V. Manakov). Indeed,

{L,M} = expa(L — p) = e*P{L,e LM} =1,

that indicates that the dynamics is Hamiltonian with the bracket
{—, =} = e*P{—, —}. The first flow of reduced hierarchy

oW = ((p— au)dx — udp)V,
can be written in Hamiltonian form

OyW = e“P{H;, W},
Hy=e P(u—at(p+al)).
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It is possible to prove that all the flows of the reduced hierarchy are
Hamiltonian with the bracket {—, —} = e*?{—, —}, however, we don't
have an explicit formula for H,,.

For higher reductions, there is an anti-symmetric invariant, but the
corresponding 'bracket’ doesn’t satisfy the Jacobi identity.
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General (N+2)-dimensional hierarchy

Connection of Jacobian with 'local parameter’ is a general type of
reduction.

Set of functions
o
WO = X4 Wi, e
n=1

o0 o0
WE =Tt (W0)T ) Wk (W)
n=0 n=1
where L <k <N, th=(t,... k...
Generating relation

(JgtdWwO A dwt A A dwl)

0,
Jo is a determinant of Jacobian matrix J,
; 0 0
ij— iwjy <.7.<N7 = A = a3 1<k<N7
JJ 0 0 1) (90 N 8k an
where xk = té‘.
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Lax-Sato equations

kW = Z WO LW, 0<n< o0, 1 <k<N.

First flows of the hierarchy

N
OfW = (A — > (Okup)Tp — (Dcn)On)W, 0 < k <N,

p=1

where u, = Wk, 0 < k < N. A compatibility condition for any pair of linear
equations (e.g., with 0¥ and 9, k # q) implies closed nonlinear

(N+2)-dimensional system of PDEs for the set of functions uy, ug, which
can be written in the form

O gt — OJ Okt + [0k r, Dg ] = (Okio)Dg — (Do) Ok,
afaqUo — 8f’8kuo + (8k fl)ﬁqu() — (8qf1)8kU0 =0,

where i is a vector field, & = Zgzl ukOk.
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Reductions for (N+2)-dimensional hierarchy

(L.V. Bogdanov, TMPh 167(3): 705-713 (2011))
Nonhomogeneous equations for the Jacobian

N N
OKInJo =D " (J(WO)") 40 In Jo + Y 3i(JH(WO)")+
i=0 i=0

Solution (In Jo — a(W?)k). Reduction
(InJp — a(W%)K)_ =0.
In terms of the dressing data reductions belong to the class
foFof ! cSDiff(N+1).
Generating relation for the reduced hierarchy
(exp(—a(WO))AWO A WL A AdUN) =0,
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Reductions

k =0 Jp = 1, divergence-free vector field in Lax-Sato equations and vector
fields .

On the other hand, volume-preserving reduction can be obtained from the
reduction with arbitrary k in the limit & — 0. Thus the reduction with
arbitrary k is an ‘interpolating’ reduction between the volume-preserving
hierarchy and the hierarchy, characterized by the existence of polynomial
solution of Lax-Sato equations, (W°)k = 0 (Gelfand-Dikii reduction).
k=1 Jy =expa(Wo— A). Reduction implies the existence of the solution
—a of equations for In Jy and leads to the condition

N
divid = Z(?pup = aup.
p=1
The reduced system for U is
K Dqlr — OOt + [0k 1, Og ] = oL ((Ok div )9 — (g div 1)k ).
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N=2 (heavenly equation and connected systems)

For N = 2 (the setting connected with the heavenly equation) the general
system reads, &I = u10x + u20,, ¢ = up,

(Ozy + Owx) U + [0y 01, Ox0] = (9y$)Ox — (Ox$) Iy,
(Day + Oux + (8, 0)0x — (9x0)D,)d = 0,

Reduction with k = 0 (volume-preserving) corresponds to Dunajski
generalization of the second heavenly equation,

@WX + ezy + @xx@yy - @)2<y = (bv
(bxw + (byz + eyy¢xx + e><><¢yy - 2@Xy¢xy =0.
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N=2 k=1

The reduction condition for k =1
div & 1= Oxu1 + Oy up = ag.
the reduced system
(Dzy + Owx )it + [0, 01, Ox ] = a1 ((Dy div )y — (O div #1)D,).

The limit o — 0 corresponds to the Dunajski system, while the limit

a — 0o corresponds to the hierarchy characterized by the relation WO = \.
For this hierarchy vector fields of Lax-Sato equations do not contain a
derivative with respect to a spectral variable, and ¢ is equal to zero,

(Day + On) 11 + [0y 1, D] = 0, (1)

This hierarchy is a ‘precursor’ of Plebariski second heavenly equation
hierarchy corresponding to Hamiltonian vector fiels,

eWX + @zy + @XXeyy - @)20/ — O'
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N=2 k=2
Reduction with k = 2 is characterized by the relation
Jo = exp(a(W0)2).
Generating equation for the reduced hierarchy is
(exp(—a(W0)?)dWO A dW! A dW?)_ = 0.
Reduction conditions are
0,6 — (D) — %ax divi =0,
Owd + (0, 1) + %8), div i = 0.

The limit @ — 0 corresponds to Dunajski system, and the limit & — oo —
to the second Gelfand-Dikii reduction (W°)2 = 0 for the general system.
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N=2 k=3
Reduction with k = 3 is characterized by the relation
Jo = exp(a(W0)2).
Generating equation for the reduced hierarchy is
(exp(—a(W0)3)dwO A dw! A dw?)_ =o0.
Reduction conditions are

0. (012)0) = 0 ((2.0)(0.0)0 + 0(0,0) - 5.-Oxciv )

00 ((0,2)0) = -0, ((0,)(0, )0+ 6(3,6) ~ 5.0, v )

The limit o — 0 corresponds to Dunajski system, and the limit a — oo —
to the third Gelfand-Dikii reduction (V°)3 = 0.
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Reductions in terms of the dressing data

Riemann-Hilbert problem on the unit circle S in the complex plane of the
variable A,

luin = F(wout)-
The reduction condition for the dressing data reads
foFof ! cSDiff(N+1) (2)

(a ‘twisted’ volume-preservation condition).
The reduced hierarchy is defined by the generating relation

(dfo(W) A--- Adfy(W))- =0
For the considered class of reductions

fo(W) = Vv°,
fo(W) = exp(—aN~H (WO 1

N
>

N
=
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Two-component generalization of d2DTL hierarchy
Two-component generalization of the dispersionless 2DTL equation

(e_d))tt = MiPyxy — MOy,

mtte_¢ = My, My — Myy, My.

The Lax pair is
0 = (0 90 Ao~ 6.000 ) w.
mg my

—¢ —¢
0, — <1eat+ (e )faA> v

A mg mg
For m = t the system reduces to the dispersionless 2DTL equation
(e_¢)tt = (bxya

Respectively, the reduction ¢ = 0 gives an equation (Pavlov; Shabat and
Martinez Alonso)

Myt = My My — My, M.
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The hierarchy

A =In A+ BEATE AT =InA+ o+ > oAk
k=1 k=1

e} o0
— kAT i i — -
MOt = MU > “mife ¥ N MM = MY+ mo+ Y myeh

k=1 k=1

oo oo
Mo =t + xe™ + ye ™ + Zxke(k+1)A n Zyke—(k-i-l)/\,
k=1 k=1

where \ is a spectral variable.
The generating relation

((Jo) " 2dA A AM)®Ut = ((Jo)"2dA A AM)™,

Jo = {A, M}, the Poisson bracket is {f, g} = A(fgt — ft82),
Bt =140\ 1), =1+ 0emg + O(N).
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Lax-Sato equations

O (AN (e A
<n+1—< {/\,M})\>+ 3t+< (A M) > /\a,\> (/\//)_07

N
0 (AT ety A _
n+1+< A, M) )_a'-‘_< A M) )_MA <M>_O'

Nonlinear Riemann-Hilbert problem on the unit circle S in the complex
plane of the variable ),

/\out — Fl(/\in, /win)7
Mout — ,_—2(/\in7 Min),

L.V. Bogdanov (L.D. Landau ITP RAS) SQS’2011, Dubna 40 / 46



Differential reduction

Generating relation
(exp(—aN)dA A AM)°Ut = (exp(—aN)dA A dM)™.
Implies that
Jo = {\, M} = A% exp(ah),

and Lax-Sato equations for A split out from equations for M.
Nonhomogeneous linear equations for the Jacobian possess a solution

f=—aln\
In terms of the Riemann-Hilbert dressing
foFof! cSDiff(2),

where fi(A, M) = A, (N, M) = exp(—aN)M.
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In terms of the two-component system we get a reduction
e = m,.
This reduction makes it possible to rewrite the system as one equation for
m, 1
mit = (mt)a(mtymx - mxymt)a (*)

or in the form of deformed d2DTL equation,

(e_¢)tt = mtd)xy - mx¢tya

my = ea(b.
Equation (x) is equivalent to the generalization of a dispersionless (1 +
2)-dimensional Harry Dym equation, Blaszak (2002). It is also connected
with an equation describing ASD vacuum metric with conformal symmetry,
Dunajski and Tod (1999), see below.
The limit « — 0 gives the d2DTL equation, the limit & — oo gives the
equation (Pavlov; Shabat and Martinez Alonso)

Myt = My, My — My, M.
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Dunajski-Tod equation

(nFy + Fyr)(nFx = Fir) = (PF = Frr)Fy = 4€77,

Locally describes general ASD vacuum metric with conformal symmetry,
Dunajski and Tod (1999). It can be obtained from eqn. (x), using a
Legendre transformation.
Exterior differential form of equation (x)

B~tdm? Adx Ady = dmy, Adm A dy,
where 5 =1—a~ L.
Legendre type transform (new independent variable 7, new dependent
variable M)

mi=¢e", M=m-—te.
Differential of M
dM = M,dx + M,dy — te"dr.
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Then
B71de’” Adx Ady = dMy, AdM A dy —dM, A dM, A dy,
Transformed equation ()
" = (Myr My — MycMy) — (Myr My — My, M)
Scaling the time 7 — 27, in terms of the function F = e™" M we get

—2a~ 7
(Fy+FyT)(FX_FXT)_(F_FTT)FXy:462 :

1

Considering the scaling x — n~!x, y — n~ 1y, 7 — 17, we obtain

Dunajski-Tod equation
(nFy + Fyr)(nFx — Fxr) — (772F — Frr)Fy = 4e2pT7

where p = —a 11,
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Hamiltonian structure

(In collaboration with S.V.Manakov)
The Lax-Sato equations are Hamiltonian with the bracket

{fvg}, = )\a{fvg} = )‘a+1(ngt - ftg)\)

{N, M} = X" %exp(al) = {A,exp(—aN)M} = 1.
The Lax pair

mg

-9 —¢
o, = <1e o, + )faA> v

A m¢ mg

DW= ((A + ™)p, - A(¢t% - ¢X)ak) v,

with the reduction m; = e®® can be written in Hamiltonian form

W = {He, WY, Hy=(1-a) A\l — g1y
my

1
a—+1

1
)\*aflmtfail.

oW ={H, W}, H, =-
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THANK YOU!
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