Interpolating differential reductions of multidimensional dispersionless integrable hierarchies

L.V. Bogdanov
L.D. Landau ITP RAS

General context

- Lax pairs in terms of vector fields (diff. operators of the first order) Zakharov, Shabat (1979)
- Differential reductions, N-orthogonal coordinate systems - Zakharov (1998). The works of Kyoto school on KP hierarchy reductions (BKP, CKP, etc.)
- Dispersionless limit of integrable systems in $(2+1)$
- Integrable systems of twistor theory, Plebański heavenly equations and generalizations, hyper-Kähler hierarchies - multidimensional integrable models
- Manakov-Santini hierarchy: generalizes dKP, it is a simplest non-degenerate example of the hierarchy for general vector fields. Dressing method, inverse scattering method for vector fields
- Dunajski interpolating system - describes "a symmetry reduction of the anti-self-dual Einstein equations in $(2,2)$ signature by a conformal Killing vector whose selfdual derivative is null". On the other hand, it is a simple differential reduction of the Manakov-Santini system

Outline

1. The Manakov-Santini system and Dunajski interpolating equation
2. d2DTL generalization and Dunajski-Tod equation
3. The Manakov-Santini hierarhy
4. A class of differential reductions of the Manakov-Santini hierarchy
5. Reductions in general (N+2)-dimensional case. Systems connected with Dunajski generalization of the second heavenly equation
6. Two-point case. Reductions for dispersionless 2DTL generalization

The Manakov-Santini system

The Manakov-Santini system - two-component integrable generalization of the dKP equation,

$$
\begin{aligned}
u_{x t} & =u_{y y}+\left(u u_{x}\right)_{x}+v_{x} u_{x y}-u_{x x} v_{y} \\
v_{x t} & =v_{y y}+u v_{x x}+v_{x} v_{x y}-v_{x x} v_{y}
\end{aligned}
$$

Lax pair

$$
\begin{aligned}
& \partial_{y} \boldsymbol{\Psi}=\left(\left(p-v_{x}\right) \partial_{x}-u_{x} \partial_{p}\right) \boldsymbol{\Psi} \\
& \partial_{t} \boldsymbol{\Psi}=\left(\left(p^{2}-v_{x} p+u-v_{y}\right) \partial_{x}-\left(u_{x} p+u_{y}\right) \partial_{p}\right) \boldsymbol{\Psi}
\end{aligned}
$$

where p plays a role of a spectral variable. For $v=0$ reduces to dKP (Khohlov-Zabolotskaya equation)

$$
u_{x t}=u_{y y}+\left(u u_{x}\right)_{x}
$$

reduction $u=0$ gives the equation (Pavlov, Martinez Alonso and Shabat)

$$
v_{x t}=v_{y y}+v_{x} v_{x y}-v_{x x} v_{y}
$$

Dunajski interpolating system

The condition used by Dunajski (JPA 2008) to reduce the Manakov-Santini system to the interpolating system

$$
\alpha u=v_{x}
$$

The reduced MS system can be written as deformed dKP,

$$
\begin{aligned}
u_{x t} & =u_{y y}+\left(u u_{x}\right)_{x}+v_{x} u_{x y}-u_{x x} v_{y} \\
v_{x} & =\alpha u
\end{aligned}
$$

it also implies a single equation for v,

$$
v_{x t}=v_{y y}+\alpha^{-1} v v_{x x}+v_{x} v_{x y}-v_{x x} v_{y} .
$$

The limit $\alpha \rightarrow 0$ corresponds to dKP, $\alpha \rightarrow \infty-$ to equation, introduced by Pavlov, Martinez Alonso and Shabat
Dunajski interpolating system describes "a symmetry reduction of the anti-self-dual Einstein equations in $(2,2)$ signature by a conformal Killing vector whose selfdual derivative is null".

Elementary description of reductions

MS Lax equation

$$
\partial_{y} \boldsymbol{\Psi}=\left(\left(p-v_{x}\right) \partial_{x}-u_{x} \partial_{p}\right) \boldsymbol{\Psi}
$$

Basic solutions Ψ_{1}, Ψ_{2}, general solution $F\left(\Psi_{1}, \Psi_{2}\right)$. Existence of polynomial solution $p^{n}+f_{n-2} p^{n-2}+\ldots$ for L operator defines Gelfand-Dikii reduction (for MS no stationarity with respect to higher time!), the case $n=1$ corresponds to Pavlov equation.
Formally adjoint Lax equation ($u \partial \rightarrow-\partial u$)

$$
\partial_{y} J=\left(\left(p-v_{x}\right) \partial_{x}-u_{x} \partial_{p}\right) J-v_{x x} J
$$

$J=\left\{\Psi_{1}, \Psi_{2}\right\},\{f, g\}=f_{p} g_{x}-f_{x} g_{p}$, general solution $J F\left(\Psi_{1}, \Psi_{2}\right)$. Remark For divergence-free vector fields Lax equations are self-adjoint.

Interpolating reductions

(L.V. Bogdanov, JPA 43 (2010) 115206)

Adjoint Lax equation in terms of $\ln J$

$$
\partial_{y} \ln J=\left(\left(p-v_{x}\right) \partial_{x}-u_{x} \partial_{p}\right) \ln J-v_{x x},
$$

nonhomogeneous linear equation, general solution $\ln J+F\left(\Psi_{1}, \Psi_{2}\right)$. Interpolating reduction - nonhomogeneous Lax equations possess a polynomial solution $f=-\alpha p^{n}+f_{n-2} p^{n-2}+\ldots$.
$\alpha=0$ corresponds to dKP (divergence-free vector fields), $\alpha \rightarrow \infty$ - to MS Gelfand-Dikii reduction of the order n.
For $n=1$, substituting $f=-\alpha p$ to adjoint Lax operator, we obtain

$$
\alpha u=v_{x}
$$

corresponding to Dunajski interpolating system.

One-parametric family of Lax pairs

If we have a Lax pair in terms of vector fields, e.g.

$$
\begin{aligned}
& \partial_{y} \boldsymbol{\Psi}=\hat{u} \boldsymbol{\Psi}, \\
& \partial_{t} \boldsymbol{\Psi}=\hat{v} \boldsymbol{\Psi},
\end{aligned}
$$

in the general (not divergence-free) case we have a one-parametric family of Lax pairs of more general form,

$$
\begin{aligned}
& \partial_{y} \boldsymbol{\Psi}=\hat{U} \boldsymbol{\Psi} \\
& \partial_{t} \boldsymbol{\Psi}=\left(\hat{V}-\alpha^{-1} \operatorname{div} \hat{u}\right) \boldsymbol{\Psi}, \\
&=\left(\hat{v}-\alpha^{-1} \operatorname{div} \hat{v}\right) \boldsymbol{\Psi},
\end{aligned}
$$

having the same compatibility condition because

$$
[\hat{U}, \hat{V}]=[\hat{u}, \hat{v}]-\alpha^{-1} \operatorname{div}[\hat{u}, \hat{v}]
$$

(the Lie algebra of extended vector fields stays the same). The reduction means the existence of solution $\ln \Psi=p^{n}+f_{n-2} p^{n-2}+\ldots$ of Lax equations for some α.

Hamiltonian interpretation of Dunajski interpolating system

Lax equations for the Dunajski interpolating system can be written in Hamiltonian form, but with the modified Poisson bracket $\{-,-\}^{\prime}=e^{\alpha p}\{-,-\}$ (S.V. Manakov). Indeed, the equation

$$
\partial_{y} \boldsymbol{\Psi}=\left((p-\alpha u) \partial_{x}-u_{x} \partial_{p}\right) \boldsymbol{\Psi}
$$

can be written in the form

$$
\begin{aligned}
& \partial_{y} \boldsymbol{\Psi}=\left\{H_{1}, \boldsymbol{\Psi}\right\}^{\prime}=e^{\alpha p}\left\{H_{1}, \boldsymbol{\Psi}\right\}, \\
& H_{1}=e^{-\alpha p}\left(u-\alpha^{-1}\left(p+\alpha^{-1}\right)\right) .
\end{aligned}
$$

The situation with higher reductions is not so transparent, they should probably have some geometric interpretation.

Two-component generalization of d2DTL hierarchy

Two-component generalization of the dispersionless 2DTL equation (L.V. Bogdanov, JPA 43 (2010) 434008)

$$
\begin{aligned}
\left(\mathrm{e}^{-\phi}\right)_{t t} & =m_{t} \phi_{x y}-m_{x} \phi_{t y} \\
m_{t t} \mathrm{e}^{-\phi} & =m_{t y} m_{x}-m_{x y} m_{t} .
\end{aligned}
$$

The Lax pair

$$
\begin{aligned}
\partial_{x} \boldsymbol{\Psi} & =\left(\left(\lambda+\frac{m_{x}}{m_{t}}\right) \partial_{t}-\lambda\left(\phi_{t} \frac{m_{x}}{m_{t}}-\phi_{x}\right) \partial_{\lambda}\right) \boldsymbol{\Psi}, \\
\partial_{y} \boldsymbol{\Psi} & =\left(\frac{1}{\lambda} \frac{\mathrm{e}^{-\phi}}{m_{t}} \partial_{t}+\frac{\left(\mathrm{e}^{-\phi}\right)_{t}}{m_{t}} \partial_{\lambda}\right) \boldsymbol{\Psi}
\end{aligned}
$$

For $m=t$ the system reduces to the dispersionless 2DTL equation

$$
\left(\mathrm{e}^{-\phi}\right)_{t t}=\phi_{x y},
$$

The reduction $\phi=0$ gives an equation (Pavlov; Shabat and Martinez Alonso)

$$
m_{t t}=m_{t y} m_{x}-m_{x y} m_{t}
$$

Interpolating reduction for d2DTL case

Adjoint Lax equations (nonhomogeneous linear equations for the Jacobian) possess a solution $f=-\alpha \ln \lambda$, defining the reduction

$$
\mathrm{e}^{\alpha \phi}=m_{t}
$$

This reduction makes it possible to rewrite the system as one equation for m,

$$
\begin{equation*}
m_{t t}=\left(m_{t}\right)^{\frac{1}{\alpha}}\left(m_{t y} m_{x}-m_{x y} m_{t}\right) \tag{*}
\end{equation*}
$$

Equation (*) is equivalent to the generalization of a dispersionless ($1+$ 2)-dimensional Harry Dym equation, Blaszak (2002). It is also connected with an equation describing ASD vacuum metric with conformal symmetry, Dunajski and Tod (1999)

$$
\left(\eta F_{y}+F_{y \tau}\right)\left(\eta F_{x}-F_{x \tau}\right)-\left(\eta^{2} F-F_{\tau \tau}\right) F_{x y}=4 e^{2 \rho \tau}
$$

The limit $\alpha \rightarrow 0$ gives the d2DTL equation, the limit $\alpha \rightarrow \infty$ gives the equation (Pavlov; Shabat and Martinez Alonso)

$$
m_{t t}=m_{t y} m_{x}-m_{x y} m_{t}
$$

The Manakov-Santini hierarchy

Lax-Sato equations

$$
\frac{\partial}{\partial t_{n}}\binom{L}{M}=\left(\left(\frac{L^{n} L_{p}}{\{L, M\}}\right)_{+} \partial_{x}-\left(\frac{L^{n} L_{x}}{\{L, M\}}\right)_{+} \partial_{p}\right)\binom{L}{M}
$$

where L, M, corresponding to the Lax and Orlov functions of the dispersionless KP hierarchy, are the series

$$
\begin{aligned}
& L=p+\sum_{n=1}^{\infty} u_{n}(\mathbf{t}) p^{-n}, \\
& M=M_{0}+M_{1}, \quad M_{0}=\sum_{n=0}^{\infty} t_{n} L^{n}, \\
& M_{1}=\sum_{n=1}^{\infty} v_{n}(\mathbf{t}) L^{-n}=\sum_{n=1}^{\infty} \tilde{v}_{n}(\mathbf{t}) p^{-n},
\end{aligned}
$$

and $x=t_{0},\left(\sum_{-\infty}^{\infty} u_{n} p^{n}\right)_{+}=\sum_{n=0}^{\infty} u_{n} p^{n},\{L, M\}=L_{p} M_{x}-L_{x} M_{p}$. A more standard choice of times for the dKP hierarchy corresponds to $M_{0}=\sum_{n=1}^{\infty}(n+1) t_{p} L_{\text {Ras }}^{n}$

Lax-Sato equations are equivalent to the generating relation

$$
\left(\frac{\mathrm{d} L \wedge \mathrm{~d} M}{\{L, M\}}\right)_{-}=0
$$

Lax-Sato equations for the first two flows of the hierarchy

$$
\begin{aligned}
& \partial_{y}\binom{L}{M}=\left(\left(p-v_{x}\right) \partial_{x}-u_{x} \partial_{p}\right)\binom{L}{M} \\
& \partial_{t}\binom{L}{M}=\left(\left(p^{2}-v_{x} p+u-v_{y}\right) \partial_{x}-\left(u_{x} p+u_{y}\right) \partial_{p}\right)\binom{L}{M}
\end{aligned}
$$

where $u=u_{1}, v=v_{1}, x=t_{0}, y=t_{1}, t=t_{2}$, correspond to the Lax pair of the Manakov-Santini system

A class of differential reductions of the MS hierarchy

The dynamics of the Poisson bracket $J=\{L, M\}, J=1+v_{x} P^{-1}+\ldots$ is described by the nonhomogeneous equation

$$
\begin{aligned}
& \frac{\partial}{\partial t_{n}} \ln J=\left(A_{n} \partial_{x}-B_{n} \partial_{p}\right) \ln J+\partial_{x} A_{n}-\partial_{p} B_{n} \\
& A_{n}=\left(\frac{L^{n} L_{p}}{J}\right)_{+}, \quad B_{n}=\left(\frac{L^{n} L_{x}}{J}\right)_{+}
\end{aligned}
$$

A_{n}, B_{n} are polynomials in $p . \ln J+F(L, M)$ also satisfies these equations. We define a class of reductions of Manakov-Santini hierarchy by the condition

$$
\left(\ln J-\alpha L^{k}\right)_{-}=0
$$

where α is a constant. Then $\ln J-\alpha L^{k}$ is a polynomial.

Characterization of the reduction

Proposition

The existence of a polynomial solution

$$
f=-\alpha p^{k}+\sum_{0}^{i=k-2} f_{i}(\mathbf{t}) p^{i}
$$

(where the coefficients f_{i} don't contain constants, see below) of equations

$$
\frac{\partial}{\partial t_{n}} f=\left(A_{n} \partial_{x}-B_{n} \partial_{p}\right) f+\partial_{x} A_{n}-\partial_{p} B_{n}
$$

is equivalent to the reduction condition

$$
\left(\ln J-\alpha L^{k}\right)_{-}=0
$$

General k

$$
\left(\ln J-\alpha L^{k}\right)_{-}=0 \Rightarrow\left(\ln J-\alpha L^{k}\right)=\left(\ln J-\alpha L^{k}\right)_{+}=-\alpha\left(L^{k}\right)_{+},
$$

$f=-\alpha\left(L^{k}\right)_{+}$is a solution of nonhomogeneous equation of the Proposition.

$$
J=\exp \alpha\left(L^{k}-\left(L^{k}+\right)\right)=\exp \alpha\left(L^{k}{ }_{-}\right)
$$

and Lax-Sato equations of reduced hierarchy read

$$
\frac{\partial}{\partial t_{n}} L=\left(e^{-\alpha\left(L^{k}-\right)} L^{n} L_{p}\right)_{+} \partial_{x} L-\left(e^{-\alpha\left(L^{k}-\right)} L^{n} L_{x}\right)_{+} \partial_{p} L
$$

Generating relation takes the form

$$
\left(e^{-\alpha L^{k}} \mathrm{~d} L \wedge \mathrm{~d} M\right)_{-}=0
$$

For the first flow $n=1$ we obtain a condition

$$
\partial_{y}\left(\alpha L^{k}\right)=\left(\left(p-v_{x}\right) \partial_{x}-u_{x} \partial_{p}\right)\left(\alpha L^{k}\right)+v_{x x} .
$$

This condition defines a differential reduction of Manakov-Santini system,

The case $k=0$ (or $\alpha=0$) corresponds to Hamiltonian vector fields. Indeed, in this case $J=1$, and from nonhomogeneous equations we have

$$
\partial_{x} A_{n}-\partial_{p} B_{n}=0
$$

This is the case of the dKP hierarchy.

Proposition

The reduction with general k is 'interpolating' between the $d K P$ hierarchy ($\alpha \rightarrow 0$), and the Gelfand-Dikii reduction of the MS hierarchy of the order $k, L_{-}^{k}=0$, for $\alpha \rightarrow \infty$.
(directly follows from the definition of the reduction)

$k=1$. Dunajski interpolating system

In the case $k=1$

$$
\begin{aligned}
& (\ln J-\alpha L)_{-}=0 \Rightarrow(\ln J-\alpha L)=(\ln J-\alpha L)_{+}=-\alpha p, \\
& J=\exp \alpha(L-p)
\end{aligned}
$$

Lax-Sato equations

$$
\frac{\partial}{\partial t_{n}} L=\left(e^{\alpha(p-L)} L^{n} L_{p}\right)_{+} \partial_{x} L-\left(e^{\alpha(p-L)} L^{n} L_{x}\right)_{+} \partial_{p} L
$$

The generating relation for the reduced hierarchy reads

$$
\left(e^{\alpha(p-L)} \mathrm{d} L \wedge \mathrm{~d} M\right)_{-}=0 \Rightarrow\left(e^{-\alpha L} \mathrm{~d} L \wedge \mathrm{~d} M\right)_{-}=0
$$

Differential reduction reads

$$
\alpha u=v_{x}
$$

which is exactly the condition used by Dunajski (JPA 2008) to reduce the Manakov-Santini system to the interpolating system.

The reduced MS system (equivalent to Dunajski interpolating system) can be written as deformed dKP,

$$
\begin{aligned}
u_{x t} & =u_{y y}+\left(u u_{x}\right)_{x}+v_{x} u_{x y}-u_{x x} v_{y} \\
v_{x} & =\alpha u
\end{aligned}
$$

it also implies a single equation for v,

$$
v_{x t}=v_{y y}+\alpha^{-1} v v_{x x}+v_{x} v_{x y}-v_{x x} v_{y} .
$$

The limit $\alpha \rightarrow 0$ corresponds to dKP, $\alpha \rightarrow \infty$ - to equation, introduced by Pavlov.

Differential reductions. Special cases

The case $k=2$.

$$
J=e^{\alpha\left(L^{2}-\right)}
$$

Differential reduction for the MS system

$$
2 \alpha\left(u_{y}+v_{x} u_{x}\right)=v_{x x}
$$

The case $k=3$. Differential reduction

$$
3 \alpha\left(\partial_{y}\left(u_{y}+u_{x} v_{x}\right)+\partial_{x}\left(u_{y} v_{x}+u_{x} v_{x}^{2}+u u_{x}\right)\right)=v_{x x x} .
$$

A pair of reductions with different k - reduction to $(1+1)$

Reductions of interpolating system (i.e., the reduction with $k=1$, together with the reduction of some order $k \neq 1$ with a constant β).
For $k=2$ we obtain a system

$$
\begin{aligned}
& u_{y}+v_{x} u_{x}=(2 \beta)^{-1} v_{x x}, \\
& v_{x}=\alpha u,
\end{aligned}
$$

which implies a hydrodynamic type equation (Hopf type equation) for u,

$$
u_{y}+\alpha u u_{x}=\frac{\alpha}{2 \beta} u_{x} .
$$

The system for $k=3$ read

$$
\begin{aligned}
& \partial_{y}\left(u_{y}+u_{x} v_{x}\right)+\partial_{x}\left(u_{y} v_{x}+u_{x} v_{x}^{2}+u u_{x}\right)=3 \beta^{-1} v_{x x x} \\
& v_{x}=\alpha u
\end{aligned}
$$

it implies an equation for u,

$$
u_{y y}+\partial_{x}\left(2 \alpha u_{y} u+\alpha^{2} u_{x} u^{2}+u u_{x}-\frac{\alpha}{3 \beta} u_{x}\right)=0
$$

which can be rewritten as a system of hydrodynamic type for two functions u, w,

$$
\begin{aligned}
& w_{y}=\left(\frac{\alpha}{3 \beta}-\alpha^{2} u^{2}-u\right) u_{x}-2 \alpha u w_{x}, \\
& u_{y}=w_{x} .
\end{aligned}
$$

A system of equations of hydrodynamic type corresponding to the reduction of interpolating system of arbitrary order $k>3$ can be written explicitly.

Two reductions of higher order

A simple example of a system defined by two reductions of higher order (reductions of the order 2 and 3),

$$
\begin{aligned}
& u_{y}+v_{x} u_{x}=(2 \alpha)^{-1} v_{x x}, \\
& \left(\partial_{y}\left(u_{y}+u_{x} v_{x}\right)+\partial_{x}\left(u_{y} v_{x}+u_{x} v_{x}^{2}+u u_{x}\right)\right)=(3 \beta)^{-1} v_{x x x} .
\end{aligned}
$$

A system of hydrodynamic type for the functions $u, w=v_{x}$,

$$
\begin{aligned}
& u_{y}+w u_{x}=(2 \alpha)^{-1} w_{x} \\
& w_{y}=\frac{2 \alpha}{3 \beta} w_{x}-w w_{x}-2 \alpha u u_{x}
\end{aligned}
$$

The characterization of reductions in terms of the dressing

 dataA dressing scheme for the MS hierarchy

$$
\begin{aligned}
& L_{\text {in }}=F_{1}\left(L_{\text {out }}, M_{\text {out }}\right), \\
& M_{\text {in }}=F_{2}\left(L_{\text {out }}, M_{\text {out }}\right),
\end{aligned}
$$

$L_{\text {in }}(p, \mathbf{t}), M_{\text {in }}(p, \mathbf{t})$ are analytic inside the unit circle, the functions $L_{\text {out }}(p, \mathbf{t}), M_{\text {out }}(p, \mathbf{t})$ are analytic outside the unit circle with a prescribed singulariry defined by the series.
The Riemann problem implies the analyticity of the differential form

$$
\Omega_{0}=\frac{\mathrm{d} L \wedge \mathrm{~d} M}{\{L, M\}}
$$

and the generating relation for the hierarchy.

Let $G_{1}(\lambda, \mu), G_{2}(\lambda, \mu)$ define an area-preserving diffeomorphism, $\mathbf{G} \in \operatorname{SDiff}(2)$,

$$
\left|\frac{D\left(G_{1}, G_{2}\right)}{D(\lambda, \mu)}\right|=1
$$

Let us fix a pair of analytic functions $f_{1}(\lambda, \mu), f_{2}(\lambda, \mu)$ (the reduction data) and consider a problem

$$
\begin{aligned}
f_{1}\left(L_{\text {in }}, M_{\text {in }}\right) & =G_{1}\left(f_{1}\left(L_{\text {out }}, M_{\text {out }}\right), f_{2}\left(L_{\text {out }}, M_{\text {out }}\right)\right), \\
f_{2}\left(L_{\text {in }}, M_{\text {in }}\right) & =G_{2}\left(f_{1}\left(L_{\text {out }}, M_{\text {out }}\right), f_{2}\left(L_{\text {out }}, M_{\text {out }}\right)\right),
\end{aligned}
$$

which defines a reduction of the MS hierarchy. In terms of the Riemann problem for the MS hierarchy, which can be written in the form

$$
\left(L_{\text {in }}, M_{\text {in }}\right)=\mathbf{F}\left(L_{\text {out }}, M_{\text {out }}\right)
$$

the reduction condition for the dressing data reads

$$
\mathbf{f} \circ \mathbf{F} \circ \mathbf{f}^{-1} \in \operatorname{SDiff}(2)
$$

In terms of equations of the MS hierarchy the reduction is characterized by the condition

$$
\left(\mathrm{d} f_{1}(L, M) \wedge \mathrm{d} f_{2}(L, M)\right)_{\text {out }}=\left(\mathrm{d} f_{1}(L, M) \wedge \mathrm{d} f_{2}(L, M)\right)_{\text {in }}
$$

thus the differential form

$$
\Omega_{\mathrm{red}}=\mathrm{d} f_{1}(L, M) \wedge \mathrm{d} f_{2}(L, M)
$$

is analytic in the complex plane, and reduced hierarchy is defined by the generating relation

$$
\left(\mathrm{d} f_{1}(L, M) \wedge \mathrm{d} f_{2}(L, M)\right)_{-}=0
$$

Taking

$$
\begin{aligned}
& f_{1}(L, M)=L \\
& f_{2}(L, M)=e^{-\alpha L^{n}} M
\end{aligned}
$$

we obtain the generating relation

$$
\left(e^{-\alpha L^{k}} \mathrm{~d} L \wedge \mathrm{~d} M\right)_{-}=0
$$

coinciding with the generating relation for k-reduced MS hierarchy,

Thus we come to the following conclusion:

Proposition

In terms of the dressing data for the Riemann problem, the class of reductions (defined above) is characterized by the condition

$$
\mathbf{f} \circ \mathbf{F} \circ \mathbf{f}^{-1} \in \operatorname{SDiff}(2),
$$

where the components of \mathbf{f} are defined as

$$
f_{1}(L, M)=L, \quad f_{2}(L, M)=e^{-\alpha L^{n}} M
$$

For the interpolating equation we have $f_{1}=L, f_{2}=e^{-\alpha L} M$, and the Riemann problem can be written in the form

$$
\begin{aligned}
L_{\text {in }} & =G_{1}\left(L_{\text {out }}, e^{-\alpha L_{\text {out }}} M_{\text {out }}\right) \\
M_{\text {in }} & =e^{\alpha G_{1}\left(L_{\text {out }}, e^{-\alpha L_{\text {out }}} M_{\text {out }}\right)} G_{2}\left(L_{\text {out }}, e^{-\alpha L_{\text {out }}} M_{\text {out }}\right)
\end{aligned}
$$

where $\mathbf{G} \in \operatorname{SDiff}(2)$.

Hamiltonian structure

Lax-Sato equations for the reduction with $k=1$ (Dunajski interpolating equation) can be written in Hamiltonian form, but with the modified Poisson bracket (S.V. Manakov). Indeed,

$$
\{L, M\}=\exp \alpha(L-p) \Rightarrow e^{\alpha p}\left\{L, e^{-\alpha L} M\right\}=1
$$

that indicates that the dynamics is Hamiltonian with the bracket $\{-,-\}^{\prime}=e^{\alpha p}\{-,-\}$. The first flow of reduced hierarchy

$$
\partial_{y} \boldsymbol{\Psi}=\left((p-\alpha u) \partial_{x}-u_{x} \partial_{p}\right) \boldsymbol{\Psi}
$$

can be written in Hamiltonian form

$$
\begin{aligned}
& \partial_{y} \boldsymbol{\Psi}=e^{\alpha p}\left\{H_{1}, \boldsymbol{\Psi}\right\} \\
& H_{1}=e^{-\alpha p}\left(u-\alpha^{-1}\left(p+\alpha^{-1}\right)\right)
\end{aligned}
$$

It is possible to prove that all the flows of the reduced hierarchy are Hamiltonian with the bracket $\{-,-\}^{\prime}=e^{\alpha p}\{-,-\}$, however, we don't have an explicit formula for H_{n}. For higher reductions, there is an anti-symmetric invariant, but the corresponding 'bracket' doesn't satisfy the Jacobi identity.

General (N+2)-dimensional hierarchy

Connection of Jacobian with 'local parameter' is a general type of reduction.
Set of functions

$$
\begin{aligned}
& \Psi^{0}=\lambda+\sum_{n=1}^{\infty} \Psi_{n}^{0}\left(\mathbf{t}^{1}, \ldots, \mathbf{t}^{N}\right) \lambda^{-n}, \\
& \Psi^{k}=\sum_{n=0}^{\infty} t_{n}^{k}\left(\Psi^{0}\right)^{n}+\sum_{n=1}^{\infty} \Psi_{n}^{k}\left(\mathbf{t}^{1}, \ldots, \mathbf{t}^{N}\right)\left(\Psi^{0}\right)^{-n} .
\end{aligned}
$$

where $1 \leqslant k \leqslant N, \mathbf{t}^{k}=\left(t_{0}^{k}, \ldots, t_{n}^{k}, \ldots\right)$.
Generating relation

$$
\left(J_{0}^{-1} \mathrm{~d} \Psi^{0} \wedge \mathrm{~d} \Psi^{1} \wedge \cdots \wedge \mathrm{~d} \Psi^{N}\right)_{-}=0
$$

J_{0} is a determinant of Jacobian matrix J,

$$
J_{i j}=\partial_{i} \Psi^{j}, \quad 0 \leqslant i, j \leqslant N, \quad \partial_{0}=\frac{\partial}{\partial \lambda}, \quad \partial_{k}=\frac{\partial}{\partial x^{k}}, \quad 1 \leqslant k \leqslant N,
$$

where $x^{k}=t_{0}^{k}$.

Lax-Sato equations

$$
\partial_{n}^{k} \boldsymbol{\Psi}=\sum_{i=0}^{N}\left(J_{k i}^{-1}\left(\Psi^{0}\right)^{n}\right)_{+} \partial_{i} \boldsymbol{\Psi}, \quad 0 \leqslant n \leqslant \infty, 1 \leqslant k \leqslant N .
$$

First flows of the hierarchy

$$
\partial_{1}^{k} \boldsymbol{\Psi}=\left(\lambda \partial_{k}-\sum_{p=1}^{N}\left(\partial_{k} u_{p}\right) \partial_{p}-\left(\partial_{k} u_{0}\right) \partial_{\lambda}\right) \boldsymbol{\Psi}, \quad 0<k \leqslant N
$$

where $u_{k}=\Psi_{1}^{k}, 0 \leqslant k \leqslant N$. A compatibility condition for any pair of linear equations (e.g., with ∂_{1}^{k} and $\partial_{1}^{q}, k \neq q$) implies closed nonlinear ($\mathrm{N}+2$)-dimensional system of PDEs for the set of functions u_{k}, u_{0}, which can be written in the form

$$
\begin{aligned}
& \partial_{1}^{k} \partial_{q} \hat{u}-\partial_{1}^{q} \partial_{k} \hat{u}+\left[\partial_{k} \hat{u}, \partial_{q} \hat{u}\right]=\left(\partial_{k} u_{0}\right) \partial_{q}-\left(\partial_{q} u_{0}\right) \partial_{k}, \\
& \partial_{1}^{k} \partial_{q} u_{0}-\partial_{1}^{q} \partial_{k} u_{0}+\left(\partial_{k} \hat{u}\right) \partial_{q} u_{0}-\left(\partial_{q} \hat{u}\right) \partial_{k} u_{0}=0,
\end{aligned}
$$

where \hat{u} is a vector field, $\hat{u}=\sum_{p=1}^{N} u_{k} \partial_{k}$.

Reductions for (N+2)-dimensional hierarchy
(L.V. Bogdanov, TMPh 167(3): 705-713 (2011))

Nonhomogeneous equations for the Jacobian

$$
\partial_{n}^{k} \ln J_{0}=\sum_{i=0}^{N}\left(J_{k i}^{-1}\left(\Psi^{0}\right)^{n}\right)_{+} \partial_{i} \ln J_{0}+\sum_{i=0}^{N} \partial_{i}\left(J_{k i}^{-1}\left(\Psi^{0}\right)^{n}\right)_{+} .
$$

Solution $\left(\ln J_{0}-\alpha\left(\Psi^{0}\right)^{k}\right)$. Reduction

$$
\left(\ln J_{0}-\alpha\left(\Psi^{0}\right)^{k}\right)_{-}=0 .
$$

In terms of the dressing data reductions belong to the class

$$
\mathbf{f} \circ \mathbf{F} \circ \mathbf{f}^{-1} \in \operatorname{SDiff}(N+1) .
$$

Generating relation for the reduced hierarchy

$$
\left(\exp \left(-\alpha\left(\Psi^{0}\right)^{k}\right) \mathrm{d} \Psi^{0} \wedge \mathrm{~d} \Psi^{1} \wedge \cdots \wedge \mathrm{~d} \Psi^{N}\right)_{-}=0 .
$$

Reductions

$\mathbf{k}=\mathbf{0} J_{0}=1$, divergence-free vector field in Lax-Sato equations and vector fields \hat{u}.
On the other hand, volume-preserving reduction can be obtained from the reduction with arbitrary k in the limit $\alpha \rightarrow 0$. Thus the reduction with arbitrary k is an 'interpolating' reduction between the volume-preserving hierarchy and the hierarchy, characterized by the existence of polynomial solution of Lax-Sato equations, $\left(\Psi^{0}\right)_{-}^{k}=0$ (Gelfand-Dikii reduction). $\mathbf{k}=\mathbf{1} J_{0}=\exp \alpha\left(\Psi_{0}-\lambda\right)$. Reduction implies the existence of the solution $-\alpha \lambda$ of equations for $\ln J_{0}$ and leads to the condition

$$
\operatorname{div} \hat{u}:=\sum_{p=1}^{N} \partial_{p} u_{p}=\alpha u_{0}
$$

The reduced system for \hat{u} is

$$
\partial_{1}^{k} \partial_{q} \hat{u}-\partial_{1}^{q} \partial_{k} \hat{u}+\left[\partial_{k} \hat{u}, \partial_{q} \hat{u}\right]=\alpha^{-1}\left(\left(\partial_{k} \operatorname{div} \hat{u}\right) \partial_{q}-\left(\partial_{q} \operatorname{div} \hat{u}\right) \partial_{k}\right) .
$$

$N=2$ (heavenly equation and connected systems)

For $N=2$ (the setting connected with the heavenly equation) the general system reads, $\hat{u}=u_{1} \partial_{x}+u_{2} \partial_{y}, \phi=u_{0}$,

$$
\begin{aligned}
& \left(\partial_{z y}+\partial_{w x}\right) \hat{u}+\left[\partial_{y} \hat{u}, \partial_{x} \hat{u}\right]=\left(\partial_{y} \phi\right) \partial_{x}-\left(\partial_{x} \phi\right) \partial_{y} \\
& \left(\partial_{z y}+\partial_{w x}+\left(\partial_{y} \hat{u}\right) \partial_{x}-\left(\partial_{x} \hat{u}\right) \partial_{y}\right) \phi=0
\end{aligned}
$$

Reduction with $k=0$ (volume-preserving) corresponds to Dunajski generalization of the second heavenly equation,

$$
\begin{aligned}
& \Theta_{w x}+\Theta_{z y}+\Theta_{x x} \Theta_{y y}-\Theta_{x y}^{2}=\phi \\
& \phi_{x w}+\phi_{y z}+\Theta_{y y} \phi_{x x}+\Theta_{x x} \phi_{y y}-2 \Theta_{x y} \phi_{x y}=0 .
\end{aligned}
$$

$N=2, k=1$

The reduction condition for $k=1$

$$
\operatorname{div} \hat{u}:=\partial_{x} u_{1}+\partial_{y} u_{2}=\alpha \phi
$$

the reduced system

$$
\left(\partial_{z y}+\partial_{w x}\right) \hat{u}+\left[\partial_{y} \hat{u}, \partial_{x} \hat{u}\right]=\alpha^{-1}\left(\left(\partial_{y} \operatorname{div} \hat{u}\right) \partial_{x}-\left(\partial_{x} \operatorname{div} \hat{u}\right) \partial_{y}\right) .
$$

The limit $\alpha \rightarrow 0$ corresponds to the Dunajski system, while the limit $\alpha \rightarrow \infty$ corresponds to the hierarchy characterized by the relation $\Psi^{0}=\lambda$. For this hierarchy vector fields of Lax-Sato equations do not contain a derivative with respect to a spectral variable, and ϕ is equal to zero,

$$
\begin{equation*}
\left(\partial_{z y}+\partial_{w x}\right) \hat{u}+\left[\partial_{y} \hat{u}, \partial_{x} \hat{u}\right]=0 \tag{1}
\end{equation*}
$$

This hierarchy is a 'precursor' of Plebański second heavenly equation hierarchy corresponding to Hamiltonian vector fiels,

$$
\Theta_{w x}+\Theta_{z y}+\Theta_{x x} \Theta_{y y}-\Theta_{x y}^{2}=0
$$

$$
N=2, k=2
$$

Reduction with $k=2$ is characterized by the relation

$$
J_{0}=\exp \left(\alpha\left(\Psi^{0}\right)_{-}^{2}\right) .
$$

Generating equation for the reduced hierarchy is

$$
\left(\exp \left(-\alpha\left(\Psi^{0}\right)^{2}\right) \mathrm{d} \Psi^{0} \wedge \mathrm{~d} \Psi^{1} \wedge \mathrm{~d} \Psi^{2}\right)_{-}=0
$$

Reduction conditions are

$$
\begin{aligned}
& \partial_{z} \phi-\left(\partial_{x} \hat{u}\right) \phi-\frac{1}{2 \alpha} \partial_{x} \operatorname{div} \hat{u}=0, \\
& \partial_{w} \phi+\left(\partial_{y} \hat{u}\right) \phi+\frac{1}{2 \alpha} \partial_{y} \operatorname{div} \hat{u}=0 .
\end{aligned}
$$

The limit $\alpha \rightarrow 0$ corresponds to Dunajski system, and the limit $\alpha \rightarrow \infty-$ to the second Gelfand-Dikii reduction $\left(\Psi^{0}\right)_{-}^{2}=0$ for the general system.

$$
N=2, k=3
$$

Reduction with $k=3$ is characterized by the relation

$$
J_{0}=\exp \left(\alpha\left(\Psi^{0}\right)_{-}^{3}\right)
$$

Generating equation for the reduced hierarchy is

$$
\left(\exp \left(-\alpha\left(\Psi^{0}\right)^{3}\right) \mathrm{d} \Psi^{0} \wedge \mathrm{~d} \Psi^{1} \wedge \mathrm{~d} \Psi^{2}\right)_{-}=0
$$

Reduction conditions are

$$
\begin{aligned}
& \partial_{z}\left(\left(\partial_{x} \hat{u}\right) \phi\right)=\partial_{x}\left(\left(\partial_{x} \hat{u}\right)\left(\partial_{x} \hat{u}\right) \phi+\phi\left(\partial_{x} \phi\right)-\frac{1}{3 \alpha} \partial_{x} \operatorname{div} \hat{u}\right), \\
& \partial_{w}\left(\left(\partial_{y} \hat{u}\right) \phi\right)=-\partial_{y}\left(\left(\partial_{y} \hat{u}\right)\left(\partial_{y} \hat{u}\right) \phi+\phi\left(\partial_{y} \phi\right)-\frac{1}{3 \alpha} \partial_{y} \operatorname{div} \hat{u}\right) .
\end{aligned}
$$

The limit $\alpha \rightarrow 0$ corresponds to Dunajski system, and the limit $\alpha \rightarrow \infty-$ to the third Gelfand-Dikii reduction $\left(\Psi^{0}\right)_{-}^{3}=0$.

Reductions in terms of the dressing data

Riemann-Hilbert problem on the unit circle S in the complex plane of the variable λ,

$$
\boldsymbol{\Psi}_{\text {in }}=\mathbf{F}\left(\boldsymbol{\Psi}_{\text {out }}\right)
$$

The reduction condition for the dressing data reads

$$
\begin{equation*}
\mathbf{f} \circ \mathbf{F} \circ \mathbf{f}^{-1} \in \operatorname{SDiff}(\mathrm{~N}+1) \tag{2}
\end{equation*}
$$

(a 'twisted' volume-preservation condition).
The reduced hierarchy is defined by the generating relation

$$
\left(\mathrm{d} f_{0}(\boldsymbol{\Psi}) \wedge \cdots \wedge \mathrm{d} f_{N}(\boldsymbol{\Psi})\right)_{-}=0
$$

For the considered class of reductions

$$
\begin{aligned}
& f_{0}(\boldsymbol{\Psi})=\Psi^{0} \\
& f_{n}(\boldsymbol{\Psi})=\exp \left(-\alpha N^{-1}\left(\Psi^{0}\right)^{k}\right) \Psi^{n}, \quad 1 \leqslant n \leqslant N
\end{aligned}
$$

Two-component generalization of d2DTL hierarchy

Two-component generalization of the dispersionless 2DTL equation

$$
\begin{aligned}
\left(\mathrm{e}^{-\phi}\right)_{t t} & =m_{t} \phi_{x y}-m_{x} \phi_{t y} \\
m_{t t} \mathrm{e}^{-\phi} & =m_{t y} m_{x}-m_{x y} m_{t} .
\end{aligned}
$$

The Lax pair is

$$
\begin{aligned}
\partial_{x} \boldsymbol{\Psi} & =\left(\left(\lambda+\frac{m_{x}}{m_{t}}\right) \partial_{t}-\lambda\left(\phi_{t} \frac{m_{x}}{m_{t}}-\phi_{x}\right) \partial_{\lambda}\right) \boldsymbol{\Psi}, \\
\partial_{y} \boldsymbol{\Psi} & =\left(\frac{1}{\lambda} \frac{\mathrm{e}^{-\phi}}{m_{t}} \partial_{t}+\frac{\left(\mathrm{e}^{-\phi}\right)_{t}}{m_{t}} \partial_{\lambda}\right) \boldsymbol{\Psi}
\end{aligned}
$$

For $m=t$ the system reduces to the dispersionless 2DTL equation

$$
\left(\mathrm{e}^{-\phi}\right)_{t t}=\phi_{x y},
$$

Respectively, the reduction $\phi=0$ gives an equation (Pavlov; Shabat and Martinez Alonso)

$$
m_{t t}=m_{t y} m_{x}-m_{x y} m_{t}
$$

The hierarchy

$$
\begin{aligned}
& \Lambda^{\text {out }}=\ln \lambda+\sum_{k=1}^{\infty} I_{k}^{+} \lambda^{-k}, \quad \Lambda^{\text {in }}=\ln \lambda+\phi+\sum_{k=1}^{\infty} I_{k}^{-} \lambda^{k} \\
& M^{\text {out }}=M_{0}^{\text {out }}+\sum_{k=1}^{\infty} m_{k}^{+} \mathrm{e}^{-k \Lambda^{+}}, \quad M^{\text {in }}=M_{0}^{\text {in }}+m_{0}+\sum_{k=1}^{\infty} m_{k}^{-} \mathrm{e}^{k \Lambda^{-}} \\
& M_{0}=t+x \mathrm{e}^{\Lambda}+y \mathrm{e}^{-\Lambda}+\sum_{k=1}^{\infty} x_{k} \mathrm{e}^{(k+1) \Lambda}+\sum_{k=1}^{\infty} y_{k} \mathrm{e}^{-(k+1) \Lambda}
\end{aligned}
$$

where λ is a spectral variable.
The generating relation

$$
\left(\left(J_{0}\right)^{-1} \mathrm{~d} \wedge \wedge \mathrm{~d} M\right)^{\text {out }}=\left(\left(J_{0}\right)^{-1} \mathrm{~d} \wedge \wedge \mathrm{~d} M\right)^{\text {in }}
$$

$J_{0}=\{\Lambda, M\}$, the Poisson bracket is $\{f, g\}=\lambda\left(f_{\lambda} g_{t}-f_{t} g_{\lambda}\right)$, $J_{0}^{\text {out }}=1+O\left(\lambda^{-1}\right), J_{0}^{\text {in }}=1+\partial_{t} m_{0}+O(\lambda)$.

Lax-Sato equations

$$
\begin{aligned}
& \left(\frac{\partial_{n}^{+}}{n+1}-\left(\frac{\lambda\left(\mathrm{e}^{(n+1) \Lambda}\right)_{\lambda}}{\{\Lambda, M\}}\right)_{+}^{\text {out }} \partial_{t}+\left(\frac{\left(\mathrm{e}^{(n+1) \Lambda}\right)_{t}}{\{\Lambda, M\}}\right)_{+}^{\text {out }} \lambda \partial_{\lambda}\right)\binom{\Lambda}{M}=0 \\
& \left(\frac{\partial_{n}^{-}}{n+1}+\left(\frac{\lambda\left(\mathrm{e}^{-(n+1) \Lambda}\right)_{\lambda}}{\{\Lambda, M\}}\right)_{-}^{\text {in }} \partial_{t}-\left(\frac{\left(\mathrm{e}^{-(n+1) \Lambda}\right)_{t}}{\{\Lambda, M\}}\right)_{-}^{\text {in }} \lambda \partial_{\lambda}\right)\binom{\Lambda}{M}=0
\end{aligned}
$$

Nonlinear Riemann-Hilbert problem on the unit circle S in the complex plane of the variable λ,

$$
\begin{aligned}
& \Lambda^{\text {out }}=F_{1}\left(\Lambda^{\text {in }}, M^{\text {in }}\right) \\
& M^{\text {out }}=F_{2}\left(\Lambda^{\text {in }}, M^{\text {in }}\right)
\end{aligned}
$$

Differential reduction

Generating relation

$$
(\exp (-\alpha \Lambda) \mathrm{d} \wedge \wedge \mathrm{~d} M)^{\text {out }}=(\exp (-\alpha \Lambda) \mathrm{d} \Lambda \wedge \mathrm{~d} M)^{\text {in }}
$$

Implies that

$$
J_{0}=\{\Lambda, M\}=\lambda^{-\alpha} \exp (\alpha \Lambda)
$$

and Lax-Sato equations for Λ split out from equations for M. Nonhomogeneous linear equations for the Jacobian possess a solution

$$
f=-\alpha \ln \lambda .
$$

In terms of the Riemann-Hilbert dressing

$$
\mathbf{f} \circ \mathbf{F} \circ \mathbf{f}^{-1} \in \operatorname{SDiff}(2),
$$

where $f_{1}(\Lambda, M)=\Lambda, f_{2}(\Lambda, M)=\exp (-\alpha \Lambda) M$.

In terms of the two-component system we get a reduction

$$
\mathrm{e}^{\alpha \phi}=m_{t} .
$$

This reduction makes it possible to rewrite the system as one equation for m,

$$
\begin{equation*}
m_{t t}=\left(m_{t}\right)^{\frac{1}{\alpha}}\left(m_{t y} m_{x}-m_{x y} m_{t}\right) \tag{*}
\end{equation*}
$$

or in the form of deformed d2DTL equation,

$$
\begin{aligned}
& \left(\mathrm{e}^{-\phi}\right)_{t t}=m_{t} \phi_{x y}-m_{x} \phi_{t y} \\
& m_{t}=\mathrm{e}^{\alpha \phi}
\end{aligned}
$$

Equation $(*)$ is equivalent to the generalization of a dispersionless $(1+$ 2)-dimensional Harry Dym equation, Blaszak (2002). It is also connected with an equation describing ASD vacuum metric with conformal symmetry, Dunajski and Tod (1999), see below.
The limit $\alpha \rightarrow 0$ gives the d2DTL equation, the limit $\alpha \rightarrow \infty$ gives the equation (Pavlov; Shabat and Martinez Alonso)

$$
m_{t t}=m_{t y} m_{x}-m_{x y} m_{t}
$$

Dunajski-Tod equation

$$
\left(\eta F_{y}+F_{y \tau}\right)\left(\eta F_{x}-F_{x \tau}\right)-\left(\eta^{2} F-F_{\tau \tau}\right) F_{x y}=4 e^{2 \rho \tau}
$$

Locally describes general ASD vacuum metric with conformal symmetry, Dunajski and Tod (1999). It can be obtained from eqn. (*), using a Legendre transformation.
Exterior differential form of equation (*)

$$
\beta^{-1} \mathrm{~d} m_{t}^{\beta} \wedge \mathrm{d} x \wedge \mathrm{~d} y=\mathrm{d} m_{y} \wedge \mathrm{~d} m \wedge \mathrm{~d} y
$$

where $\beta=1-\alpha^{-1}$.
Legendre type transform (new independent variable τ, new dependent variable M)

$$
m_{t}=e^{\tau}, \quad M=m-t e^{\tau} .
$$

Differential of M

$$
\mathrm{d} M=M_{x} \mathrm{~d} x+M_{y} \mathrm{~d} y-t e^{\tau} \mathrm{d} \tau .
$$

Then

$$
\beta^{-1} \mathrm{~d} e^{\beta \tau} \wedge \mathrm{d} x \wedge \mathrm{~d} y=\mathrm{d} M_{y} \wedge \mathrm{~d} M \wedge \mathrm{~d} y-\mathrm{d} M_{y} \wedge \mathrm{~d} M_{\tau} \wedge \mathrm{d} y
$$

Transformed equation (*)

$$
\begin{equation*}
e^{\beta \tau}=\left(M_{y \tau} M_{x}-M_{y x} M_{\tau}\right)-\left(M_{y \tau} M_{x \tau}-M_{y x} M_{\tau \tau}\right) \tag{3}
\end{equation*}
$$

Scaling the time $\tau \rightarrow 2 \tau$, in terms of the function $F=e^{-\tau} M$ we get

$$
\left(F_{y}+F_{y \tau}\right)\left(F_{x}-F_{x \tau}\right)-\left(F-F_{\tau \tau}\right) F_{x y}=4 e^{-2 \alpha^{-1} \tau}
$$

Considering the scaling $x \rightarrow \eta^{-1} x, y \rightarrow \eta^{-1} y, \tau \rightarrow \eta \tau$, we obtain Dunajski-Tod equation

$$
\begin{equation*}
\left(\eta F_{y}+F_{y \tau}\right)\left(\eta F_{x}-F_{x \tau}\right)-\left(\eta^{2} F-F_{\tau \tau}\right) F_{x y}=4 e^{2 \rho \tau} \tag{4}
\end{equation*}
$$

where $\rho=-\alpha^{-1} \eta$.

Hamiltonian structure

(In collaboration with S.V.Manakov)
The Lax-Sato equations are Hamiltonian with the bracket

$$
\begin{aligned}
\{f, g\}^{\prime}=\lambda^{\alpha}\{f, g\} & =\lambda^{\alpha+1}\left(f_{\lambda} g_{t}-f_{t} g_{\lambda}\right) \\
\{\Lambda, M\}=\lambda^{-\alpha} \exp (\alpha \Lambda) & \Rightarrow\{\Lambda, \exp (-\alpha \Lambda) M\}^{\prime}=1
\end{aligned}
$$

The Lax pair

$$
\begin{aligned}
\partial_{x} \boldsymbol{\Psi} & =\left(\left(\lambda+\frac{m_{x}}{m_{t}}\right) \partial_{t}-\lambda\left(\phi_{t} \frac{m_{x}}{m_{t}}-\phi_{x}\right) \partial_{\lambda}\right) \boldsymbol{\Psi}, \\
\partial_{y} \boldsymbol{\Psi} & =\left(\frac{1}{\lambda} \frac{\mathrm{e}^{-\phi}}{m_{t}} \partial_{t}+\frac{\left(\mathrm{e}^{-\phi}\right)_{t}}{m_{t}} \partial_{\lambda}\right) \boldsymbol{\Psi}
\end{aligned}
$$

with the reduction $m_{t}=\mathrm{e}^{\alpha \phi}$ can be written in Hamiltonian form

$$
\begin{aligned}
& \partial_{x} \boldsymbol{\Psi}=\left\{H_{x}, \boldsymbol{\Psi}\right\}^{\prime}, \quad H_{x}=(1-\alpha)^{-1} \lambda^{1-\alpha}-\alpha^{-1} \lambda^{-\alpha} \frac{m_{x}}{m_{t}} \\
& \partial_{y} \boldsymbol{\Psi}=\left\{H_{y}, \boldsymbol{\Psi}\right\}^{\prime}, \quad H_{y}=-\frac{1}{\alpha+1} \lambda^{-\alpha-1} m_{t}^{-\frac{1}{\alpha}-1}
\end{aligned}
$$

THANK YOU!

