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SUSY extended objects

Supersymmetric extended objects, super–p-branes and their description

Supersymmetric extended objects- especially 10D and 11D
super–p–branes, play an important role in String/M-theory and ADS/CFT.

They can be described by worldvolume actions, by supersymmetric
solutions of supergravity and also in the frame of superembedding
approach (which we will be using in this talk).
The worldvolume actions are presently known for majority of
super-p-branes, including fundamental strings
D=10, string =F1-brane← Green, Schwarz, 1984
all the M-brane M2← 1987: Bergshoeff, Sezgin, Townsend 1987,
M0← 1996: BT:= Bergshoeff, Townsend,
M5← 1997: BPSTV:= I.B., Lechner, Nurmagambetov, Pasti, Sorokin,
Tonin; APSch :=Aganagic, Popescu, Schwarz)
and D=10 Dirichlet p–branes, Dp-branes← 1996 CNWSG:= Cederwall,
Nilsson, Westengerg, Sundell, Gussich; 1996 APSch; 1996 BT
The superembedding approach was proposed and developed for 10D F1
and M2 in [1995 BPSTV:= I.B., Pasti, Sorokin, Tonin, Volkov].
It uses the worldvolume superfields, developing the STV:= Sorokin,
Tkach, Volkov [1988] to D=3,4 particles and strings
[STV formalism was further developed in 90-94 by Delduc, Galperin,
Ivanov, Sokatchev, Howe, Pasti, Tonin, Bergshoeff, Sezgin, Townsend ...]
related approach: VZ=Volkov, Zheltukhin 1988; Uvarov 2000-08
Superembedding approach to M5-brane: 1996 HS:= Howe and Sezgin
S-emb. app. to Dp-branes: 1996 HS; 1997 BST:=I.B., Sorokin, Tonin.
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SUSY extended objects

super-p-branes and their description

Notice that the M5-brane equations of motion were obtained in [HS
1996] in the frame of superembedding approach some months before
the covariant action was found in [1997 BLNPST, 1997 APSch]
When the action for a p–brane is known, the superembedding approach
can be deduced from that (through GAP:= generalized action principle
[1995 BSV:= I.B., Sorokin, Volkov]).
The way from superembedding approach to the covariant action also
exists [1998 Howe, Raetzel, Sezgin] [this can be considered as bootom-up
version of GAP and is also related with Ectoplasm method by Gates et al]
The way from BPS solution of supergravity equations to the worldvolume
actions is not so straightforward. Examples:
M5-solution: 1992 Güven (equations 1996, action 1997)
Dp-branes: solutions are known from early 90th and action in 1996
Still there exist some BPS solutions of SUGRA equations describing
some p-branes for which neither worldvolume action nor eqs. of motion
are known.
In particular these are D=10 Heterotic 5-branes:
SO(32) Heterotic 5-brane
E8 × E8 heterotic 5-brane
This talk is devoted to the search for SO(32) Heterotic 5-brane equation
in the frame of superembedding approach.
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10D N=1 5-branes

string — 5-brane duality and heterotic 5-brane

In D = 10 supergravity there exists a (BPS) string solution
and also 5-brane solution which is dual to the string in the same sense
as the magnetic monopole is dual to electric charge in D=4.
What is the worldvolume action for this 5-brane?
Is it the ’simple’ 5-brane from the first ’brane scan’ by Achucarro, Evan,
Townsend and Wiltshire [AETW 1987]?
No. This one is anomalous.
The non-anomolous five branes should be dual to the consistent N = 1,
D = 10 heterotic strings.
As far as there are two anomaly–free heterotic strings, carrying charges
of SO(32) and of E8 × E8 gauge theories, respectively,
there should be two anomaly-free 5-branes:
SO(32) 5-brane and
E8 × E8 5-branes
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’Simple’ 5-brane [AETW 1987]

The ’simple’ (and anomalous) D = 10 N = 1 5-brane from [AETW 1987]
is described by

S = SDNG + SWZ =

∫
d6ξ
√

g +

∫
B̂6 ,

g = det(gmn) , gmn = Êa
mÊna , Êa

m = ∂mẐMEMa(Ẑ )

ẐM(ξ) = (x̂m(ξ) , θ̂µ(ξ)) are supercoordinate functions describing
embedding of the worldvolume to the target superspace

W 6 ⊂ Σ(10|16) : ZM = ẐM(ξ) = (x̂m(ξ) , θ̂µ(ξ))

Ea(Z ) = dZ MEa
M (Z ) is bosonic vielbein of the 10D N = 1 SUGRA

Êa is its pull–back to W 6, i.e. Êa = Ea(Ẑ ) = dẐ MEa
M (Ẑ ).

B̂6 = B6(Ẑ ) is the pull–back to W 6 of
B6 = 1

6!
dZ M6 ∧ ... ∧ dZ M1 BM1...M6 (Z ).

Ea(Z ) and B6(Z ) obey the superspace supergravity constraints⇒ the
action possesses local fermionic κ–symmetry.



Intro N=1 5-brane superembedding ’Simple’ 5-brane equations SO(32) heterotic 5-brane Conclusions

10D N=1 5-branes

’Simple’ 5-brane [AETW 1987]

The ’simple’ (and anomalous) D = 10 N = 1 5-brane from [AETW 1987]
is described by

S = SDNG + SWZ =

∫
d6ξ
√

g +

∫
B̂6 ,

g = det(gmn) , gmn = Êa
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M (Ẑ ).
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Êa is its pull–back to W 6, i.e. Êa = Ea(Ẑ ) = dẐ MEa
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M (Ẑ ).
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B̂6 = B6(Ẑ ) is the pull–back to W 6 of
B6 = 1

6!
dZ M6 ∧ ... ∧ dZ M1 BM1...M6 (Z ).

Ea(Z ) and B6(Z ) obey the superspace supergravity constraints⇒ the
action possesses local fermionic κ–symmetry.



Intro N=1 5-brane superembedding ’Simple’ 5-brane equations SO(32) heterotic 5-brane Conclusions

10D N=1 5-branes

’Simple’ 5-brane [AETW 1987]

The ’simple’ (and anomalous) D = 10 N = 1 5-brane from [AETW 1987]
is described by

S = SDNG + SWZ =

∫
d6ξ
√

g +

∫
B̂6 ,

g = det(gmn) , gmn = Êa
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SO(32) heterotic 5-brane

In 1995 Witten argued that the spectrum of SO(32) heterotic five-brane
contains, besides the ’geometrical sector’ ẐM(ξ) = (x̂m(ξ) , θ̂µ(ξ)),
d = 6, N = 2 SU(2) SYM multiplet: a traceless 2× 2 matrix connection
AB̃

Ã = dξmAmB̃
Ã (AB̃

B̃ = 0, Ã, B̃ = 1, 2) and its superpartner (Wβ
B )B̃

Ã

hypermultiplet in (2,32) of SU(2)× SO(32) :

bosonic and fermionic fields (HAB̃J (ξ), ψB̃J
α (ξ)) related by susy

δsusy HAB̃J = 4iεαAψB̃J
α ,

A,B = 1, 2 , J = 1, ..., 32 Ã, B̃ = 1, 2 , α = 1, 2, 3, 4 .

Neither action nor equations of motion of the SO(32) heterotic 5-brane
are known.
For E8 × E8 even the field content is not clear.

Then the natural proposition is

Then the natural proposition is to use superembedding approach to
search for the SO(32) heterotic 5-brane equations of motion.

This talk is a progress report on elaboration of this program.
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Ã = dξmAmB̃
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Ã (AB̃
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Then the natural proposition is

The presence of non–geometrical sector makes the heterotic 5-brane
similar to multiple (D)p–brane systems (mDp) the superembedding
approach for which was proposed and elaborated for the case of mD0
and mM0 system in [I.B. 2009, I.B. 2010].

The basic proposition is similar to the one in [I.B. 2009, I.B. 2010].
Schematically it is: to describe the heterotic 5-brane by the superspace
constraints of SU(2) SYM and of the (2, 32) hypermultiplet on the
curved superspace W (6|8) of a ’simple’ 5-brane.

We can consider a more general framework, e.g. trying to make the
basic superspace W (6|8) different from the worldvolume superspace of
the ’simple’ 5-brane.

But anyway, the natural first step is to discuss the superembedding
approach on the relatively simple example of ’simple’ 5-brane.
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Superembedding equation

Worldvolume superspace

Superembedding approach provides the superfield description of the
worldvolume dynamics of supersymmetric extended objects, p-branes.

The worldvolume W p+1 is extended in it till the worldvolume superspace
W(p+1| n2 ) with n

2 fermionic dimensions, where the target superspace is
Σ(D|n) (n = 32 for 11D and type II 10D, n = 16 for 10D, N = 1 branes).
Hence for simple and heterotic D = 10, N = 1 five-brane, we have to
considerW(6|8) with local coordinates
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coordinate functions ẐM(ζ) = (x̂m(ζ) , θ̂µ(ζ)),
(m = 0, 1, ..., 9 , µ = 1, ..., 16) which are worldvolume superfields

W(6|8) ∈ Σ(10|16) : ZM = ẐM(ζ) ⇔
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determined by the superembedding equation

(= are the solutions of the superembedding equations)



Intro N=1 5-brane superembedding ’Simple’ 5-brane equations SO(32) heterotic 5-brane Conclusions

Superembedding equation

Worldvolume superspace

Superembedding approach provides the superfield description of the
worldvolume dynamics of supersymmetric extended objects, p-branes.

The worldvolume W p+1 is extended in it till the worldvolume superspace
W(p+1| n2 ) with n

2 fermionic dimensions, where the target superspace is
Σ(D|n) (n = 32 for 11D and type II 10D, n = 16 for 10D, N = 1 branes).
Hence for simple and heterotic D = 10, N = 1 five-brane, we have to
considerW(6|8) with local coordinates

ζM = (ξm , ηµ) , ηµην = −ηνηµ ,
{

m = 0, 1, ..., 5 ,
µ = 1, ..., 8 ,

The embedding ofW(6|8) into Σ(10|16) can be described in terms of
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determined by the superembedding equation
(= are the solutions of the superembedding equations)



Intro N=1 5-brane superembedding ’Simple’ 5-brane equations SO(32) heterotic 5-brane Conclusions

Superembedding equation

Superembedding equation

Let us introduce the supervielbein forms ofW(6|8)

eA := (ea , eαA) := dζMeMA(ζ) , a = 0, 1, ..., 5 ,

{
α = 1, 2, 3, 4 ,
A = 1, 2 :

6-vector one-form ea = dζMeMa(ζ) and the SU(2) doublet of SO(1, 5)-
spinor fermionic forms eαA.

The pull–back ÊA := dẐMEMA(Ẑ ) of the supervielbein forms of the
target superspace Σ(10|16)

EA := dZMEMA(Z ) = (Ea,Eα) , a = 0, 1, ..., 9 , α = 1, 2, ..., 16 .

can be decomposed on the basis of eA

ÊA := dẐMEMA(Ẑ ) = eBDBẐMEMA(Ẑ ) = eβBÊβB
A + ebÊb

A .

The superembedding equation states that the pull–back of the
bosonic supervielbein of Σ(10|16) toW(6|8) has no fermionic
projection

ÊβB
a := DβBẐM EMa(Ẑ ) = 0 .
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Intro N=1 5-brane superembedding ’Simple’ 5-brane equations SO(32) heterotic 5-brane Conclusions

Superembedding equation

Superembedding equation

Let us introduce the supervielbein forms ofW(6|8)

eA := (ea , eαA) := dζMeMA(ζ) , a = 0, 1, ..., 5 ,

{
α = 1, 2, 3, 4 ,
A = 1, 2 :

6-vector one-form ea = dζMeMa(ζ) and the SU(2) doublet of SO(1, 5)-
spinor fermionic forms eαA.
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Superembedding equation

Superembedding equation and moving frame

ÊA := dẐMEMA(Ẑ ) = eBDBẐMEMA(Ẑ ) = eβBÊβB
A + ebÊb

A .
The superembedding equation states that the pull–back of the bosonic
supervielbein of Σ(10|16) toW(6|8) has no fermionic projection

ÊβB
a := DβBẐM EMa(Ẑ ) = 0 .

Equivalently we can write the superembedding equation as Êa = ebÊa
b .

6 ten-vectors ua
b = Êa

b are linearly independent and can be chosen
orthogonal and normalized,

Êa = ebua
b , ua aua

b = ηab = diag(+,−,−,−,−,−) .

⇒ the worldvolume vielbein is induced by (super)embedding

ea = Êaua
a .

⇒ 6 vectors ua
b are tangential to the worldvolume superspaceW(6|8).
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Equivalently we can write the superembedding equation as Êa = ebÊa
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Moving frame and induced geometry

Moving frame and superembedding equation

Equivalent form of the superembedding equation

Êa = ebua
b , ua aua

b = ηab = diag(+,−,−,−,−,−) .

⇒ 6 vectors ua
b are tangential to the worldvolume superspaceW(6|8).

Actually, it is convenient to complete their set till moving frame by
introducing four spatial 10-vectors ua

BB̌
orthogonal to them and

normalized (SO(4) = SU(2)× SU(2)),

δb
a = ub

cuc
a − 1

2
uAB̌

b uAB̌
a , uc

auBB̌a = 0 , uAǍ
a uBB̌a = −2εABεǍB̌ .

These vectors can be used to write one more equivalent form of the
superembedding equation,

ÊAǍ := ÊauAǍ
a = 0 .
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Moving frame and induced geometry

Spinor moving frame and fermionic superveilbein

We can also define the fermionic supervielbein eαA induced by
superembedding,

eαA = ÊαvααA .

Then consistency requires to identify vααA with one of the auxiliary
spinor moving frame superfields (or spinorial Lorentz harmonics).

These are two rectangular blocks of a Spin(1, 9) valued matrix (spinor
moving frame matrix)

Vα(β) = (vαβB, vαB̌
β) ∈ Spin(1, 9) , β = 1, ..., 4 , B = 1, 2 , B̌ = 1, 2

which are related to the moving frame vectors by the following
square–root–type relations

vαAσ̃avβB = εAB γ̃αβb ua
b , v Ǎ

ασ̃av B̌
β = −εǍB̌γbαβua

b ,

vαAσ̃av B̌
β = δαβuAB̌

a , etc. .

where γa
γδ = −γa

δγ and γ̃bγδ = 1
2 ε
αβγδγaγδ are d = 6 Pauli matrices,

while σa
αβ = σ

a
βα, σ̃aαβ = σ̃aβα are D = 10 Pauli matrices, σ(aσ̃b) = η(ab).
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Then consistency requires to identify vααA with one of the auxiliary
spinor moving frame superfields (or spinorial Lorentz harmonics).

These are two rectangular blocks of a Spin(1, 9) valued matrix (spinor
moving frame matrix)

Vα(β) = (vαβB, vαB̌
β) ∈ Spin(1, 9) , β = 1, ..., 4 , B = 1, 2 , B̌ = 1, 2

which are related to the moving frame vectors by the following
square–root–type relations

vαAσ̃avβB = εAB γ̃αβb ua
b , v Ǎ

ασ̃av B̌
β = −εǍB̌γbαβua

b ,

vαAσ̃av B̌
β = δαβuAB̌

a , etc. .

where γa
γδ = −γa

δγ and γ̃bγδ = 1
2 ε
αβγδγaγδ are d = 6 Pauli matrices,

while σa
αβ = σ

a
βα, σ̃aαβ = σ̃aβα are D = 10 Pauli matrices, σ(aσ̃b) = η(ab).
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Moving frame and induced geometry

Connections induced by superembedding.

We can define the SO(1, 5) and SO(4) connections onW(6|8):

Du a
b =

1
2

ubAǍΩa AǍ , DuAǍ
b =

1
2

ubaΩa AǍ . (∗)

Ωa AǍ is the generalization of the SO(1,9)
SO(1,5)⊗SO(4)

Cartan forms.

The derivatives of spinor moving frame variables read

DvβB
α =

1
2

vαǍ
γ γ̃

γβ
a εǍB̌Ωa BB̌ , DvαB̌

β =
1
2

vγA
α γa

γβεABΩa BB̌ .

The worldvolume curvature two form, r ab = −r ba and the curvature of
normal bundle FB

A and FB̌
Ǎ (SO(4) = SU(2)⊗ SU(2)), can be now

defined by Ricci identities

DDu a
b = R̂b

au a
a − u b

a r a
b , DDuAǍ

b = R̂b
auAǍ

a − uBǍ
a FB

A − uAB̌
a FB̌

Ǎ ,

where R̂b
a is the pull–back of the SO(1,9) curvature of Σ(10|16).
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Moving frame and induced geometry

Curvatures of the worldvolume superspace and of the normal bundle

The worldvolume curvature two form, r ab = −r ba and the curvature of
normal bundle FB

A and FB̌
Ǎ (SO(4) = SU(2)⊗ SU(2)), can be now

defined by Ricci identities
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a r a
b , DDuAǍ

b = R̂b
auAǍ

a − uBǍ
a FB

A − uAB̌
a FB̌
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where R̂b
a is the pull–back of the SO(1,9) curvature of Σ(10|16).

Substituting Du a
b = 1

2 ubAǍΩa AǍ and DuAǍ
b = 1

2 ubaΩa AǍ, we find the
following superfield generalization of the Peterson–Codazzi, Gauss and
Ricci equations [BPSTV:= I.B., Pasti, Sorokin, Tonin, Volkov, 1995]

DΩa AǍ = R̂a AǍ , r ab = R̂ab + 1
2 Ωa

AǍ ∧ Ωb AǍ ,

FB
A = 1

4 R̂ AB̌
BB̌ + 1

4 ΩBB̌ ∧ Ωb AB̌ , FB̌
Ǎ = 1

4 R̂ BǍ
BB̌ + 1

4 ΩbBB̌ ∧ Ωb BǍ ,

where R̂a AǍ := R̂abua
auAǍ

b , R̂a b := R̂abua
aub

b and R̂ AǍ
BB̌ := R̂abuaBB̌uAǍ

b .
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The selfconsistency conditions for the superembedding equation ÊAǍ = ÊauAȦ
a = 0

can be collected in the differential form equation

0 = DÊAǍ = T̂ auAȦ
a + Êa ∧ DuAǍ

a ,

where T̂ a is the pull–back toW(6|8) of T a := DEa := dEa − Eb ∧ ωb
a

The D = 10, N = 1 supergravity constraints imply that

T a := DEa = −iEα ∧ Eβσ
a
αβ ,

and also [Nilsson, Tollsen 86, ... , Tonin, Lechner, Bonora, ... 1988]

Tα := DEα = i
4 Eb ∧ Eβ(σa1a2a3σb)β

αha1a2a3 + 1
2 Eb ∧ EaTab

α ,

Rab := dωab − ω[a|c ∧ ωc
|b] = 1

2 Eα ∧ Eβ
(
σa1a2a3abha1a2a3 − 6habcσc

)
αβ

+

+Ec ∧ Eβ
[
− iT abβσcβα + 2iTc

[a βσb]
βα

]
+ 1

2 Ed ∧ EcRcd
ab

ha1a2a3 = h[a1a2a3] is related to the field strength of the 2-form
(Ogievetsky–Polubarinov—Kalb-Ramond) gauge field Bab = B[ab].
The modifications of the constraints to account for anomalies/
modifications of the BIs for H3 and H7 were studied during 25 years by
many groups [B.E.W. Nilsson 86, ... Tonin, Lechner 2008, Howe 2008].
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a + Êa ∧ DuAǍ
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Simple 5-brane equations from superembedding equation ÊAǍ = ÊauAȦ
a = 0

Studying

0 = DÊAǍ = T̂ auAȦ
a + Êa ∧ DuAǍ

a =

= −iEα ∧ Eβσ
a
αβuAȦ

a + Êauab ∧ ΩbAǍ =

= −4ieαA ∧ Ê Ǎ
α + eb ∧ Ωb AȦ = 0 ,

we find (eαA = ÊαvααA)

Ê Ǎ
α := ÊαvαǍ

α = eaχa
Ǎ
α ,

Ωb AȦ = 4ieαAχa
Ǎ
α + ebKb

a AǍ ,

with symmetric Kab
AǍ := −DaEa

b uAǍ
a = Kba

AǍ generalizing the second
fundamental form of the Surface Theory.

Linearized and gauge fixed version Ea
b 7→ ∂bx̂a, Ka

a AǍ 7→ ∂a∂bx̂AǍ

indicates that the dynamical bosonic equations for the super-5-brane
can be formulated as an expression for the trace of K AǍ

ab , mean
curvature, HAǍ := K aAǍ

a 7→ ∂a∂
ax̂AǍ.
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a = Kba
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b uAǍ
a = Kba

AǍ generalizing the second
fundamental form of the Surface Theory.
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ab , mean
curvature, HAǍ := K aAǍ

a 7→ ∂a∂
ax̂AǍ.
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a = 0

0 = DÊAǍ ⇒ ,
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α − eaχa
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α) = 0⇒

⇒ fermionic equations of motion (free linearized limit: γ̃aαβ∂aθ̂
Ǎ
β = 0)

γ̃aαβχa
Ǎ
β = 0 ⇔ γ̃aαβÊa

αvαǍ
α = 0

⇒ bosonic equation of motion (free lin. limit: ∂a∂
ax̂AǍ = 0)

ηbcKbc BǍ := −DcÊc
auaBǍ = 3i

2 habc(Ẑ ) ua
BČ

ubCČuc
CǍ
,

⇒ the restriction on the Ogievetsky–Polubarinov–Kalb–Ramond flux,

habc(Ẑ )ua
aub

b uc
AǍ

= 0 .
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Ǎ
α) = D(ÊαvαǍ

α − eaχa
Ǎ
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αvαǍ
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Ǎ
α ,
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α = 0

⇒ bosonic equation of motion (free lin. limit: ∂a∂
ax̂AǍ = 0)
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ubCČuc
CǍ
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Ǎ
α) = D(ÊαvαǍ
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α − eaχa

Ǎ
α) = D(ÊαvαǍ
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SO(32) H5-brane superfield eqs

Our basic proposition is

Our basic proposition is to describe the SO(32) heterotic 5-brane by

superfield equations of supermultiplet in (2,32) of SU(2)× SO(32)

and by the constraints of the d=6, SU(2) SYM

on the worldvolume superspace of ’simple’ 5-braneW(6|8).

This latter assumption in practical term implies that the embedding of
W(6|8) into the curved superspace of SUGRA+SO(32) SYM theory is
defined by the superembedding equation ÊαA

a = 0⇔ ÊAǍ = ÊauAȦ
a = 0

This item can be modified ÊαA
a = 0 7→ ÊαA

a = ... (although it is not
easy to modify superembedding eq. and to get a manageable system)

But it is natural to begin from superspaceW(6|8) ⊂ Σ(10|16) obeying
ÊαA

a = 0, at least as an approximation

The geometry of such a superspace has been completely described by
the above study:

Dea = T aua
a = −ieαA ∧ eβBεABγ

a
αβ + iec ∧ ebεǍB̌χ

Ǎ
b γ̃

aχB̌
c .
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a = ... (although it is not
easy to modify superembedding eq. and to get a manageable system)

But it is natural to begin from superspaceW(6|8) ⊂ Σ(10|16) obeying
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a = ... (although it is not
easy to modify superembedding eq. and to get a manageable system)

But it is natural to begin from superspaceW(6|8) ⊂ Σ(10|16) obeying
ÊαA

a = 0, at least as an approximation

The geometry of such a superspace has been completely described by
the above study:

Dea = T aua
a = −ieαA ∧ eβBεABγ

a
αβ + iec ∧ ebεǍB̌χ

Ǎ
b γ̃

aχB̌
c .



Intro N=1 5-brane superembedding ’Simple’ 5-brane equations SO(32) heterotic 5-brane Conclusions

SO(32) H5-brane superfield eqs

Our basic proposition is

Our basic proposition is to describe the SO(32) heterotic 5-brane by

superfield equations of supermultiplet in (2,32) of SU(2)× SO(32)

and by the constraints of the d=6, SU(2) SYM

on the worldvolume superspace of ’simple’ 5-braneW(6|8).

This latter assumption in practical term implies that the embedding of
W(6|8) into the curved superspace of SUGRA+SO(32) SYM theory is
defined by the superembedding equation ÊαA
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αA + 1

2 eb ∧ eatab
αA ,

tβB b
αA = 2iχaβB̌χbγ

B̌ γ̃aγα − i
4 ĥc1c2c3 (γc1c2c3γb)β

αδB
A − 3i

4 ĥb BB̌
AB̌(γaγb)β

αδB
A ,

tab
αA = εB̌Č(χ[a|
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AB̌ + i

2 ĥDČ
DǍ AČεǍB̌(χB̌

[aγ̃b])
α +

+ 3i
2 ε

AB ĥcd BB̌(γ̃[aγ
cdχB̌

b]
)α + T̂ ab

αA ,

rab = R̂ab + 8eαA ∧ eβBεABεǍB̌χ
aǍ
α χ

bB̌
β − 4iec ∧ eαAχ

[a|B̌
α Kc

|b]
AǍ +
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2 ec ∧ ed Kc

a
AǍKd

b AǍ ,

FB
A = R̂ab + 8eαA ∧ eβBεABεǍB̌χ
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α χ

bB̌
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α Kc
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Ǎ
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SO(32) H5-brane superfield eqs

Superfield description of heterotic d.o.f.s

The heterotic degrees of freedom of the SO(32) heterotic 5-branes are
described by superfields on the superspaceW(6|8) ⊂ Σ(10|16)
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Ã ,

heterotic hypermultiplet(s) are defined by superfield HAB̃J (ζ) in (2,32)
representation of SU(2)× SO(32) which obeys

DγCHAB̃J = 4iδC
AψB̃J
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a = 0 (good point to

begin)

or by some its generalization ÊαA
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SO(32) H5-brane superfield eqs

Superfield description of heterotic degrees of freedom: basic superfield eqs.

The SU(2) SYM is described by SU(2) connection one form onW(6|8)

AB̃
Ã = eαCAαC B̃

Ã(ζ) + eaAa B̃
Ã(ζ) , (AB̃

Ã)∗ = −AÃ
B̃ (⇒ AÃ

Ã = 0) ,
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Ã ,

heterotic hypermultiplet(s) are defined by superfield HAB̃J (ζ) in (2,32)
representation of SU(2)× SO(32)which obeys

DγCHAB̃J = 4iδC
AψB̃J

γ

DγC is SO(1, 5)⊗ SO(4)⊗ SU(2) = SU(4)∗ ⊗ SU(2)⊗ SU(2)⊗ SU(2)
covariant derivative onW(6|8) ⊂ Σ(10|16) defined by superembedding
equation ÊαA

a = 0 (or by some its generalization ÊαA
a = ...) and by the

constraints on the SUGRA+SYM background.
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Ã = 0) ,

which obeys the constraints

FB̃
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SO(32) H5-brane equations.

SO(32) H5-brane equations of motion: SU(2) SYM

The SYM constraints are on-shell: they result in equations of motion.
their consistency result in the fermionic equation

γa
αβDaWβA = W γCJγC α

A .

and bosonic equations plus Binachi identities

DbFbcγ
c
αβδB

A +
1
2
D[aFbc]γ

abc
αβ δB

A − iεαβγδ{W γ
C , W δC}δB

A −

−1
2

FabJab A
βαB + iW γCJβγα BC

A ,

with contributions of the ’geometric’ degrees of freedom and fluxes of
background SUGRA + SO(32) SYM enclosed inside Jβγα BC

A , Jab A
βαB and

JγC α
A.
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SO(32) H5-brane equations.

SO(32) H5-brane equations of motion: hypermultiplet in (2,32)

The hypermultiplet equations are also on-shell: DγCHAB̃J = 4iδC
AψB̃J

γ ⇒

γ̃aαβDaψ
B̃J
β =

1
2

(
HAÃJWα

A Ã
B̃ + HAB̃IŴα

A
IJ
)
−

− i
12

HAB̃J γ̃bαβ
(

4DB
β fbAB −FB

β b BA

)
−

+
1

24
γ̃bαβ

(
8tβA b

γA − rb cdγ
cd
β
γ
)
ψB̃J
γ .

and also bosonic equation.

These describe interaction with SUGRA, SO(32) gauge fields (Ŵα
A

IJ ),
geometric d-o-f.s (also given by hypermultiplet) and SU(2) SYM.

Here we have a problem indicating that our present description of
H5-brane is approximate.
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A
IJ
)
−

− i
12

HAB̃J γ̃bαβ
(

4DB
β fbAB −FB

β b BA

)
−

+
1

24
γ̃bαβ

(
8tβA b

γA − rb cdγ
cd
β
γ
)
ψB̃J
γ .

and also bosonic equation.

These describe interaction with SUGRA, SO(32) gauge fields (Ŵα
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A
IJ
)
−

− i
12

HAB̃J γ̃bαβ
(

4DB
β fbAB −FB

β b BA

)
−

+
1

24
γ̃bαβ

(
8tβA b

γA − rb cdγ
cd
β
γ
)
ψB̃J
γ .

and also bosonic equation.

These describe interaction with SUGRA, SO(32) gauge fields (Ŵα
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SO(32) H5-brane equations.

Our SO(32) H5-brane equations of motion are approximate

Here we have a problem indicating that our present description of
H5-brane is approximate.

As hypermultiplet is minimally coupled to SU(2) SYM (’charged’),
(γ̃aαβDaψ

B̃J
β = 1

2

(
HAÃJWα

A Ã
B̃ + HAB̃IŴα

A
IJ
)
− ....

But: the SYM constraints are on-shell. And they produce eqs.

DbFbcγ
c
αβδB

A +
1
2
D[aFbc]γ

abc
αβ δB

A − iεαβγδ{W γ
C , W δC}δB

A −

−1
2

FabJab A
βαB + iW γCJβγα BC

A ,

with no hypermultiplet contributions.

Such an approximate description may be useful as it is (it is certainly
approximate in the SU(2) SYM sector)

but it is tempting to speculate that the use of the GIKOS harmonic
superfield formalism might help to make the SYM constraints ’off-shell’ -
or, at least, ’on-any-shell’ - allowing for incorporation of the terms
describing the hypermultiplet contributions.
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HAÃJWα

A Ã
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Our SO(32) H5-brane equations of motion are approximate

Here we have a problem indicating that our present description of
H5-brane is approximate.

As hypermultiplet is minimally coupled to SU(2) SYM (’charged’),
(γ̃aαβDaψ

B̃J
β = 1
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A ,

with no hypermultiplet contributions.

Such an approximate description may be useful as it is (it is certainly
approximate in the SU(2) SYM sector)

but it is tempting to speculate that the use of the GIKOS harmonic
superfield formalism might help to make the SYM constraints ’off-shell’ -
or, at least, ’on-any-shell’ - allowing for incorporation of the terms
describing the hypermultiplet contributions.
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Worldvolume superspace and superembedding equation
Moving, and spinor moving frame and geometry induced by
superembedding

3 ’Simple’ 5-brane equations of motion from superembedding approach

4 Superembedding description of the SO(32) heterotic 5-brane
Basic superfield equations of the SO(32) heterotic 5-brane
From basic superfield equations for SO(32) heterotic 5-brane to
equations of motion.
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Conclusions and outlook

We are studying the possibility to search for equations of motion of the
SO(32) heterotic 5-brane (H5-brane) in the framework of
superembedding approach
We have proposed the basic superfield equations of SO(32) H5-brane.
These are the constraints of SU(2) SYM and superfield eqs. for
hypermultiplet in (2,32) of SU(2)× SO(32) on curved superspaceW(6|8)

identical or similar to the w/v SSP of simple 5-brane

(at least as the first stage) the embeddingW(6|8) ⊂ Σ(8|16) is defined by
superembedding equation (the same as for ’simple’ 5-brane)

and Σ(8|16) is characterized by the standard N=1 10D SUGRA
constraints (+10D SYM).
Then, after studying the simplest possibility, the modification of both
superembedding equations and supergravity constraints.
Our approach is able to describe the interaction of heterotic 5-brane with
background D=10 SUGRA and SO(32) SYM fluxes.
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Outlook

On the other hand, as it is formulated now, our approach provides an
approximate description of H5-brane:
The hypermultiplet equations describe its coupling to SU(2) SYM but the
SYM equations remain ’free’.
This is because the SYM constraints are on-shell.
The possible way out might lay through reformulating our approach with
the use of GIKOS harmonic superspace formalism
Some kind of superembedding of harmonic superspaces?
The properties of the SO(32) H5-brane equations as they follow from the
present superembedding approach as well as search for their possible
generalizations are under study now.
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