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@ The worldvolume actions are presently known for majority of
super-p-branes, including fundamental strings
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MO« 1996: BT:= Bergshoeff, Townsend,
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@ The superembedding approach was proposed and developed for 10D F1
and M2 in [1995 BPSTV:= [.B., Pasti, Sorokin, Tonin, Volkov].
It uses the worldvolume superfields, developing the STV:= Sorokin,
Tkach, Volkov [1988] to D=3,4 particles and strings
[STV formalism was further developed in 90-94 by Delduc, Galperin,
Ivanov, Sokatchev, Howe, Pasti, Tonin, Bergshoeff, Sezgin, Townsend ...]
related approach: VZ=Volkov, Zheltukhin 1988; Uvarov 2000-08
Superembedding approach to M5-brane: 1996 HS:= Howe and Sezgin
S-emb. anbp to Dp-branes: 1996 HS: 1997 BST'=/ B Sorokin Tonin.
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@ Notice that the M5-brane equations of motion were obtained in [HS
1996] in the frame of superembedding approach some months before
the covariant action was found in [1997 BLNPST, 1997 APSch]

@ When the action for a p—brane is known, the superembedding approach
can be deduced from that (through GAP:= generalized action principle
[1995 BSV:= [.B., Sorokin, Volkov]).

@ The way from superembedding approach to the covariant action also
exists [1998 Howe, Raetzel, Sezgin] [this can be considered as bootom-up
version of GAP and is also related with Ectoplasm method by Gates et al]

@ The way from BPS solution of supergravity equations to the worldvolume
actions is not so straightforward. Examples:

M5-solution: 1992 Gliven (equations 1996, action 1997)
Dp-branes: solutions are known from early 90th and action in 1996

Still there exist some BPS solutions of SUGRA equations describing
some p-branes for which neither worldvolume action nor egs. of motion
are known.

In particular these are D=10 Heterotic 5-branes:
SO(32) Heterotic 5-brane
Eg x Eg heterotic 5-brane

This talk is devoted to the search for SO(32) Heterotic 5-brane equation
in the frame of superembedding approach.
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In D = 10 supergravity there exists a (BPS) string solution

and also 5-brane solution which is dual to the string in the same sense
as the magnetic monopole is dual to electric charge in D=4.

What is the worldvolume action for this 5-brane?

Is it the 'simple’ 5-brane from the first ‘brane scan’ by Achucarro, Evan,
Townsend and Wiltshire [AETW 1987]?

No. This one is anomalous.

The non-anomolous five branes should be dual to the consistent N = 1,
D = 10 heterotic strings.

As far as there are two anomaly—free heterotic strings, carrying charges
of SO(32) and of Eg x Eg gauge theories, respectively,

there should be two anomaly-free 5-branes:

SO(32) 5-brane and
Eg x Eg 5-branes
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@ E3(Z) = dZMEZ(Z) is bosonic vielbein of the 10D /' = 1 SUGRA
e E?isits pull-back to W®,i.e. E? = E3(Z) = dZVE}(2).
@ Bs = Bs(2) is the pull-back to W?® of

Bs = &dZ" A ... A dZ™ By, .us(2).

@ E?4(Z) and Bs(Z) obey the superspace supergravity constraints = the
action possesses local fermionic k—symmetry.
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@ Then the natural proposition is to use superembedding approach to
search for the SO(32) heterotic 5-brane equations of motion.

@ This talk is a progress report on elaboration of this program.
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Then the natural proposition is

@ The presence of non—geometrical sector makes the heterotic 5-brane
similar to multiple (D)p—brane systems (mDp) the superembedding
approach for which was proposed and elaborated for the case of mDO
and mMO system in [/.B. 2009, /.B. 2010].

@ The basic proposition is similar to the one in [/.B. 2009, /.B. 2010].
Schematically it is: to describe the heterotic 5-brane by the superspace
constraints of SU(2) SYM and of the (2, 32) hypermultiplet on the
curved superspace W®!®) of a 'simple’ 5-brane.

@ We can consider a more general framework, e.g. trying to make the
basic superspace W8 different from the worldvolume superspace of
the 'simple’ 5-brane.

@ But anyway, the natural first step is to discuss the superembedding
approach on the relatively simple example of 'simple’ 5-brane.
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e Superembedding approach for 'simple’ N=1, D=10 5-brane
@ Worldvolume superspace and superembedding equation
@ Moving, and spinor moving frame and geometry induced by
superembedding



N=1 5-brane superembedding
®00

Superembedding equation

Worldvolume superspace




ne superembedding
o

Superembedding equation

Worldvolume superspace

@ Superembedding approach provides the superfield description of the
worldvolume dynamics of supersymmetric extended objects, p-branes.
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Worldvolume superspace

@ Superembedding approach provides the superfield description of the
worldvolume dynamics of supersymmetric extended objects, p-branes.

@ The worldvolume WP*' is extended in it till the worldvolume superspace
WP112) with 2 fermionic dimensions, where the target superspace is
¥(PIM (n = 32 for 11D and type Il 10D, n = 16 for 10D, N = 1 branes).
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Superembedding equation

Worldvolume superspace

@ Superembedding approach provides the superfield description of the
worldvolume dynamics of supersymmetric extended objects, p-branes.

@ The worldvolume WP*' is extended in it till the worldvolume superspace
WP112) with 2 fermionic dimensions, where the target superspace is
¥(PIM (n = 32 for 11D and type Il 10D, n = 16 for 10D, N = 1 branes).

@ Hence for simple and heterotic D = 10, V' = 1 five-brane, we have to
consider W®I8) with local coordinates

M=), 0=t {/T::1o,’..1.’, 5
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Superembedding equation

Worldvolume superspace

@ Superembedding approach provides the superfield description of the
worldvolume dynamics of supersymmetric extended objects, p-branes.
@ The worldvolume WP*' is extended in it till the worldvolume superspace
WP112) with 2 fermionic dimensions, where the target superspace is
¥(PIM (n = 32 for 11D and type Il 10D, n = 16 for 10D, N = 1 branes).
@ Hence for simple and heterotic D = 10, V' = 1 five-brane, we have to
consider W8 with local coordinates
M m v Vo m:0,1,...,5,
=" "), 't =-n"n", {#:17.”787
@ The embedding of W8 into (1°1'®) can be described in terms of

coordinate functions Z24(¢) = (X2(¢) , 64(¢)),
(m=0,1,...,9, u=1,...,16) which are worldvolume superfields

WO ¢ T8 . ZM _ M) o {Xf = %"(¢),
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Superembedding equation

Worldvolume superspace

@ Superembedding approach provides the superfield description of the
worldvolume dynamics of supersymmetric extended objects, p-branes.
@ The worldvolume WP*' is extended in it till the worldvolume superspace
WP112) with 2 fermionic dimensions, where the target superspace is
¥(PIM (n = 32 for 11D and type Il 10D, n = 16 for 10D, N = 1 branes).
@ Hence for simple and heterotic D = 10, V' = 1 five-brane, we have to
consider W®I8) with local coordinates
M m v Vo m:0,1,...,5,
=" "), 't =-n"n", {#:17.”787
@ The embedding of W8 into £(1°1"®) can be described in terms of

coordinate functions Z24(¢) = (X2(¢) , 64(¢)),
(m=0,1,...,9, u=1,...,16) which are worldvolume superfields

WEIE) ¢ $0018) . zM _ M) o { -

@ In the case of 'simple’ five—brane (and all known p-branes!), Z24(¢) is
determined by the superembedding equation
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Superembedding equation

Worldvolume superspace

@ Superembedding approach provides the superfield description of the
worldvolume dynamics of supersymmetric extended objects, p-branes.
@ The worldvolume WP*' is extended in it till the worldvolume superspace
WP112) with 2 fermionic dimensions, where the target superspace is
¥(PIM (n = 32 for 11D and type Il 10D, n = 16 for 10D, N = 1 branes).
@ Hence for simple and heterotic D = 10, V' = 1 five-brane, we have to
consider W®I8) with local coordinates
M m v Vo m:0,1,...,5,
=" "), 't =-n"n", {#:17.”787
@ The embedding of W8 into £(1°1"®) can be described in terms of

coordinate functions Z24(¢) = (X2(¢) , 64(¢)),
(m=0,1,...,9, u=1,...,16) which are worldvolume superfields

WEIE) ¢ $0018) . zM _ M) o { -

@ In the case of 'simple’ five—brane (and all known p-branes!), Z24(¢) is
determined by the superembedding equation

@ (= are the solutions of the superembedding equations)
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Superembedding equation

@ Let us introduce the supervielbein forms of 14(¢18)

a=1,2,3,4,

A a oA M, A
= , = d , =0,1,...,5,
e” = (e", &) :=d("em” (), a {A1,2:

6-vector one-form e? = d¢Men?(¢) and the SU(2) doublet of SO(1, 5)-
spinor fermionic forms e*.
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Superembedding equation

@ Let us introduce the supervielbein forms of 14(¢18)

a=1,2,3,4,

A a oA M, A
= , =d , =0,1,...,5,
e” = (e", &) :=d("em” (), a {A1,2:

6-vector one-form e? = d¢Men?(¢) and the SU(2) doublet of SO(1, 5)-
spinor fermionic forms e*.

@ The pull-back E4 := dZ*E4(Z2) of the supervielbein forms of the
target superspace (10/16)

EA .= dZMEA(Z) = (B4 EY), a=0,1,..,9, a=1,2..,16|

can be decomposed on the basis of e
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Superembedding equation

Superembedding equation

@ Let us introduce the supervielbein forms of 14(¢18)

=1,2,3,4
et = (e, e :=dMem?(¢), a=0,1,...,5, {21’2’?’ ’

6-vector one-form e? = d¢Men?(¢) and the SU(2) doublet of SO(1, 5)-
spinor fermionic forms e*.
@ The pull-back E4 := dZ*E4(Z2) of the supervielbein forms of the

target superspace (10/16)

EA .= dZMEA(Z) = (B4 EY), a=0,1,..,9, a=1,2..,16|

can be decomposed on the basis of e
o EA = dzMEMA(z) = eBDz;?MEMA(?) = eﬁBEgsA—F ebEbA .
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Superembedding equation

@ Let us introduce the supervielbein forms of 14(¢18)

a=1,2,3,4,

A a oA M, A
= , =d , =0,1,...,5,
e” = (e", &) :=d("em” (), a {A1,2:

6-vector one-form e = d¢Men?(¢) and the SU(2) doublet of SO(1, 5)-
spinor fermionic forms e/

@ The pull-back E4 := dZ*E#(Z) of the supervielbein forms of the
target superspace (10/16)

EA .= dZMEA(Z) = (B4 EY), a=0,1,..,9, a=1,2..,16|

can be decomposed on the basis of e

EA = dzMEMA(z) = eBDz;?MEMA(?) = eﬁBEgsA—O— ebEbA .
@ The superembedding equation states that the pull-back of the

bosonic supervielbein of ¥(1°!'®) to 1/¢/®) has no fermionic

projection

A

Esg? = DpaZ® Ep?(2) =
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Superembedding equation

Superembedding equation and moving frame
@ EA .= dZMELA(Z) = €8 DpZMEMA(Z) = €°BEsp? + ePE2 .
@ The superembedding equation states that the pull-back of the bosonic
supervielbein of (%119 to )4(1®) has no fermionic projection

Esp? .= DppZ* EM¥(2) = 0.
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Superembedding equation

Superembedding equation and moving frame
@ EA .= dZMELA(Z) = €8 DpZMEMA(Z) = €°BEsp? + ePE2 .
@ The superembedding equation states that the pull-back of the bosonic
supervielbein of (%119 to )4(1®) has no fermionic projection

Esp? .= DppZ* EM¥(2) = 0.

@ Equivalently we can write the superembedding equation as £2 = ebl?f.
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Superembedding equation

Superembedding equation and moving frame
@ EA .= dZMELA(Z) = €8 DpZMEMA(Z) = €°BEsp? + ePE2 .
@ The superembedding equation states that the pull-back of the bosonic
supervielbein of (%119 to )4(1®) has no fermionic projection

Esp? .= DppZ* EM¥(2) = 0.

@ Equivalently we can write the superembedding equation as £2 = ebl?f.

@ 6 ten-vectors u = EZ are linearly independent and can be chosen
orthogonal and normalized,
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Superembedding equation

Superembedding equation and moving frame
@ EA .= dZMELA(Z) = €8 DpZMEMA(Z) = €°BEsp? + ePE2 .
@ The superembedding equation states that the pull-back of the bosonic
supervielbein of (%119 to )4(1®) has no fermionic projection

Esp? .= DppZ* EM¥(2) = 0.

@ Equivalently we can write the superembedding equation as £2 = ebl?f.
@ 6 ten-vectors u = EZ are linearly independent and can be chosen
orthogonal and normalized,
Eéz ebui, Uagufzﬂab: diag(+7_7_7_7_7_) .

@ = the worldvolume vielbein is induced by (super)embedding

e = E&j .
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Superembedding equation

Superembedding equation and moving frame
@ EA .= dZMELA(Z) = €8 DpZMEMA(Z) = €°BEsp? + ePE2 .
@ The superembedding equation states that the pull-back of the bosonic
supervielbein of (%119 to )4(1®) has no fermionic projection

Esp? .= DppZ* EM¥(2) = 0.

Equivalently we can write the superembedding equation as £2 = ebl?f.

6 ten-vectors uZ = EZ are linearly independent and can be chosen
orthogonal and normalized,

Eéz ebui, Uagufzﬂab: diag(+7_7_7_7_7_) .
@ = the worldvolume vielbein is induced by (super)embedding
e = B4y .

@ = 6 vectors uZ are tangential to the worldvolume superspace W©®).
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Moving frame and induced geometry

Moving frame and superembedding equation

@ Equivalent form of the superembedding equation

[ b a a .
éze UE7 uaguE:nab:dlag(+7757777777) .

@ = 6 vectors uZ are tangential to the worldvolume superspace W©®).
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Moving frame and induced geometry

Moving frame and superembedding equation

@ Equivalent form of the superembedding equation
EQZ ebu[%; Uagugz"]ab: diag(+7757777777) .

@ = 6 vectors uZ are tangential to the worldvolume superspace W©®).

@ Actually, it is convenient to complete their set till moving frame by
introducing four spatial 10-vectors ugé orthogonal to them and
normalized (SO(4) = SU(2) x SU(2)),

u;\A UBBg _ _2€AB€AB )

1
0% = up’uc? — EUEBUABQ . uuPPE=o,
These vectors can be used to write one more equivalent form of the
superembedding equation,

EM—EafM=0.
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Moving frame and induced geometry

Spinor moving frame and fermionic superveilbein
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Moving frame and i d geometry

Spinor moving frame and fermionic superveilbein

@ We can also define the fermionic supervielbein e induced by
superembedding,

e = EQVQO‘A .

Then consistency requires to identify v,,** with one of the auxiliary
spinor moving frame superfields (or spinorial Lorentz harmonics).
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Moving frame and induced geometry

Spinor moving frame and fermionic superveilbein

@ We can also define the fermionic supervielbein e induced by
superembedding,

e = EQVQO‘A .

Then consistency requires to identify v,,** with one of the auxiliary
spinor moving frame superfields (or spinorial Lorentz harmonics).

@ These are two rectangular blocks of a Spin(1,9) valued matrix (spinor
moving frame matrix)

Vo®@ = (va”®,vaB) € Spin(1,9), B=1,...4, B=12, B=12
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Moving frame and induced geometry

Spinor moving frame and fermionic superveilbein

@ We can also define the fermionic supervielbein e induced by
superembedding,

eaA _ EgVQaA

Then consistency requires to identify v,,** with one of the auxiliary
spinor moving frame superfields (or spinorial Lorentz harmonics).

@ These are two rectangular blocks of a Spin(1,9) valued matrix (spinor
moving frame matrix)

Vo®@ = (va”®,vaB) € Spin(1,9), B=1,...4, B=12, B=12

@ which are related to the moving frame vectors by the following
square—root-type relations

A~ B AB~ A~ B AB b
VA58 = BByl VadaVg = —€ pasla”
v*4Gavg = d5us°,  etc. .
a xbyo _ 1 é i i
where w = 757 and 47 €*P7%, 5 are d = 6 Pauli matrices,

while 05, = 0,, 5222 = 5222 are D = 10 Pauli matrices, o852 = p(@).
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Connections induced by superembedding.
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Moving frame and induced geometry

Connections induced by superembedding.

@ We can define the SO(1,5) and SO(4) connections on W®/®:

1 - - -
Duy = EUQAAQ"’AA , Dup? = %UQaQaAA )

Q24 is the generalization of the 5522~ Cartan forms.
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Moving frame and induced geometry

Connections induced by superembedding.

@ We can define the SO(1,5) and SO(4) connections on W®/®:

1 A a1 :
DUga = EUQAAQaAA 9 DUEA = EUQaQaAA . (*)
Q2" is the generalization of the soT 8 e Cartan forms.

@ The derivatives of spinor moving frame variables read

1 4. BB B 1 .4 BB
Dvgf = EVaw’Y;ﬂﬁABQa ) DVap = EVJ VypeasQ "
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Moving frame and induced geometry

Connections induced by superembedding.

@ We can define the SO(1,5) and SO(4) connections on W®/®:

1 A a1 A
SUpm@ ™, DU = Su . ()

DUga = >

Q2" is the generalization of the soT 8 e Cartan forms.

@ The derivatives of spinor moving frame variables read

B 1 A~ BB B L BB
Dvﬁ EVQW'Y;ﬂEABQa ) DVap = EV; VypeasQ "
@ The worldvolume curvature two form, r#® = —rb2 and the curvature of

normal bundle Fg* and F5* (SO(4) = SU(2) ® SU(2)), can be now
defined by Ricci identities

DDuy = Rulus — uéb e, DDuﬁA F?ba o ugAfBA = ungBA ,

(10116)

where Rbf is the pull-back of the SO(1,9) curvature of &
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Moving frame and induced geometry

Curvatures of the worldvolume superspace and of the normal bundle

@ The worldvolume curvature two form, r#® = —rb2 and the curvature of
normal bundle Fs* and F5* (SO(4) = SU(2) ® SU(2)), can be now
defined by Ricci identities

DDuf = R2uf — ulr?,  DDup = RPuM — uB Fe" — ufB R

where Ry? is the pull-back of the SO(1,9) curvature of £(1°/19),
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Moving frame and induced geometry

Curvatures of the worldvolume superspace and of the normal bundle

@ The worldvolume curvature two form, r#® = —rb2 and the curvature of
normal bundle Fs* and F5* (SO(4) = SU(2) ® SU(2)), can be now
defined by Ricci identities

DDuf = R2uf — ulr?,  DDup = RPuM — uB Fe" — ufB R

where Ry? is the pull-back of the SO(1, 9) curvature of x(10/16),

o Substituting Dugd = 1 upux2°** and Dup* = Fup224, we find the
following superfield generalization of the Peterson Codazzi, Gauss and
Ricci equations [BPSTV:= [.B., Pasti, Sorokin, Tonin, Volkov, 1995]

DQarA _ RarA , rb — Rab 4 QQf\A A QbAA
AB bAB A B BA bBA
Fg' = 1RS + 105, A QP45 Fg' = IR + 1Ques A QPP

where R .= R&y2ufA, R2P .= R2yaup and R = R%u gsuf’.
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Outline

e "Simple’ 5-brane equations of motion from superembedding approach
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The selfconsistency conditions for the superembedding equation EAA = l::éué*" =0

@ can be collected in the differential form equation

_ DEM = Fayfh 4 B2 p DU
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The selfconsistency conditions for the superembedding equation EAA = l::éué*" =0

@ can be collected in the differential form equation
— pEA — Fayfh | Ea Dyt

@ where T2 is the pull-back to W®® of T2 .= DE2 .= dE2 — E2 A wp?
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The selfconsistency conditions for the superembedding equation EAA = l::éué*" =0

@ can be collected in the differential form equation
0=DEM = 24 L E2 A DU,

@ where T2 is the pull-back to W®® of T2 .= DE2 .= dE2 — E2 A wp?
@ The D =10, N' = 1 supergravity constraints imply that

T2 .= DE2 = —iE* N EEo2
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The selfconsistency conditions for the superembedding equation EAA = l::éuéA =0

@ can be collected in the differential form equation
— pEA — Fayfh | Ea Dyt

@ where T2 is the pull-back to W®® of T2 .= DE2 .= dE2 — E2 A wp?
@ The D =10, N' = 1 supergravity constraints imply that

T2 .= DE2 = —iE* N EEo2

@ and also [Nilsson, Tollsen 86, ... , Tonin, Lechner, Bonora, ... 1988]
T2 = DE® = {EO A\ E2(0#12350p) 5%y, ay0, + 3 E2 A E2T 2
RED := dwib — wl8le A weltl = JEx A EL (02128280h, 50 — 6h8C0g) o +

+ESNER[ - iT&Bos5, + 2iTB8c8 5, | + L EL A ECR 42
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The selfconsistency conditions for the superembedding equation EAA = EEUQA =0

@ can be collected in the differential form equation
— pEA — Fayfh | Ea Dyt

@ where T2 is the pull-back to W®® of T2 .= DE2 .= dE2 — E2 A wp?
@ The D =10, N' = 1 supergravity constraints imply that

T2 .= DE2 = —iE* N EEo2

@ and also [Nilsson, Tollsen 86, ... , Tonin, Lechner, Bonora, ... 1988]
T2 = DE® = {EO A\ E2(0#12350p) 5%y, ay0, + 3 E2 A E2T 2
A2 := dw — wlale p weltl = B p B2 (021%2%28 g, 54, — 6h%0y)  , +

+ESNER[ - iT&Bos5, + 2iTB8c8 5, | + L EL A ECR 42

@ Ng, 8,8, = Mg, a,4,) IS related to the field strength of the 2-form
(Ogievetsky—Polubarinov—Kalb-Ramond) gauge field Bz = Bjap)-
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The selfconsistency conditions for the superembedding equation EAA = EEUQA =0

@ can be collected in the differential form equation
0=DEM = 24 L E2 A DU,

@ where T2 is the pull-back to W®® of T2 .= DE2 .= dE2 — E2 A wp?
@ The D =10, N' = 1 supergravity constraints imply that

T2 .= DE2 = —iE* N EEo2

@ and also [Nilsson, Tollsen 86, ... , Tonin, Lechner, Bonora, ... 1988]
Te .= DE® = JEb A EB(081220)) 5%y, 55, + SE2 A E2Tgpe

Rab .= duwa — lale Al = 1Ea A EB (ot122s2bp, o o — 6HEDCG) i

+ESNER[ - iT&Bos5, + 2iTB8c8 5, | + L EL A ECR 42

@ Na a,a, = Nia .2, iS related to the field strength of the 2-form
(Ogievetsky—Polubarinov—Kalb-Ramond) gauge field Bz = Bjap)-

@ The modifications of the constraints to account for anomalies/
modifications of the Bls for H; and H; were studied during 25 years by

many groups [B.E.W. Nilsson 86, ... Tonin, Lechner 2008, Howe 2008].
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Simple 5-brane equations from superembedding equation EAA — l::iuéA =0
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Simple 5-brane equations from superembedding equation A4 = Eauf AA — 0

@ Studying
0="DEM = T2 + Ea A DUl =
—iE2 A Eﬁrﬁua + E2ug A QM =

= die®  NEP L ep AP =0,
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Simple 5-brane equations from superembedding equation EAA — l::iuéA =0

@ Studying
0= DEM = Faut 4 B2 p Dy —

= —iE* A B2 jup? + EPugy A QP =

= die®  NEP L ep AP =0,

o we find (e°* = E2v, )

£A fa A A
Ea = Egvga = eaXaa )
QbAA _ 4I-eo¢AXa/O4( + ebea AA ,
with symmetric K := —DLEZ uf? = Kia ** generalizing the second

fundamental form of the Surface Theory.
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Simple 5-brane equations from superembedding equation A4 = Eauf AA — 0

@ Studying

0=DEM = Tay 4 E2 A Dup’ =

—iEX A Eﬁrﬁua + E2ug A QM =

— —4ie" NEM + e n QP =0,

o we find (e°* = E2v, )

B = Evah=exan,

QbAA 4I-eaAXa,§ + ebea AA 7

with symmetric Kab 3 D,QEE’1 = Kpa AA generalizing the second
fundamental form of the Surface Theory

e Linearized and gauge fixed version EZ — 9,%2, Ka? ' — 020%™
indicates that the dynamical bosonic equatrons for the super -5-brane
can be formulated as an expression for the trace of K2, mean
curvature, H™ = K2 i 9,0°%™.
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Simple 5-brane equations from superembedding equation £EA4 = Eauf A=

A N E;‘ = EaVa = eaXaé 9
7 QbAA 4je® Xaé + ebea AA ’

with symmetric Kap A := —D,E2 Ul = Koy .
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Simple 5-brane equations from superembedding equation £EA4 = Eauf A=

A AR - EA = Eava - eaXaé bl
9 QbAA 4IeaAXaa + ebea AA ,

with symmetric Kap A := —D,E2 Ul = Koy .

0 0="D(E? - e®x?) = D(E2v,2 — e®xa)=0=
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Simple 5-brane equations from superembedding equation £EA4 = Eauf A=

A AR - EA = Eava - eaXaé bl
9 QbAA 4IeaAXaa + ebea AA ,

with symmetric Kap * := —D,EE UQA = Kpy .
0 0="D(E? - e®x?) = D(E2v,2 — e®xa)=0=
@ = fermionic equations of motion (free linearized limit: aaaﬁaaéé =0)

"?aaﬁx,g = 0 <~ :}I/aaﬂ Eangé = 0

@ ¢
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Simple 5-brane equations from superembedding equation £EA4 = Eauf A=

o E;\ _ Eoc Va _ eaXaA
0=DEM = o
{QbAA 4IeaAXaa + ebea AA ,
with symmetric Kap * := —D,EE UQA = Kpy .
0 0="D(E? - e®x?) = D(E2v,2 — e®xa)=0=
@ = fermionic equations of motion (free linearized limit: aaaﬁaaéé =0)

fafly 5 =0 = FABEey A =0

¥
@ = bosonic equation of motion (free lin. limit: 9,0°%** = 0)

b i 5\ ,,8 ,,bCC,c
10" Koo g1 == —D° Elu Uapa = % have(Z) UgeU=" " Uiy
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Simple 5-brane equations from superembedding equation £EA4 = Eauf A=

o EA = Eoy,2 = ¢ u
O:DEAA :>, b AA A Xab a AA
QPM = 4je*Ay A + ePKy2 M
with symmetric Kap A := —D,E2 Ul = Koy .

0 0="D(E? - e?xa’) = D(E2v,” — e*xa) =0 =
@ = fermionic equations of motion (free linearized limit: aaaﬁaaéé =0)

’?aaﬁXa?} -0 PN ;Yaaﬂ Eagvgé -0

@ = bosonic equation of motion (free lin. limit: 9,0°%** = 0)
i 5\ 8 ,bcC
1% Ko g = —D° Elu Uapa = % have(Z) UZ(;UQ L%A )

@ = the restriction on the Ogievetsky—Polubarinov—Kalb—Ramond flux,

habc(z)uaé g =0




S0(32) heterotic 5-brane

Outline

e Superembedding description of the SO(32) heterotic 5-brane
@ Basic superfield equations of the SO(32) heterotic 5-brane
@ From basic superfield equations for SO(32) heterotic 5-brane to
equations of motion.
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the above study:
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V.

Superfield description of heterotic degrees of freedom

@ The SU(2) SYM is described by SU(2) connection 1-form on 1/ ©®)

At = e*CA MO+ A0, (A =-A' (= A7 =0),

@ which obeys the constraints FaABBB;‘ =0 =>

o A1 ;
&% A e ypas(W3)5" + §eb A €%(Fa)s” |
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e either defined by the superembedding equation E,42 = 0 (good point to
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Superfield description of heterotic degrees of freedom

@ The SU(2) SYM is described by SU(2) connection 1-form on 1/ ©®)

A = €A M0+ €A, (AN =-Af (5 AP =0),
@ which obeys the constraints FaABBB;‘ =0 =>

i

. A 1 :
2ea N e A’ybag(Wf)éA + —eb N ea(Fab)BA s

Fi* = (dA— AN A)5" 5

@ heterotic hypermultiplet(s) are defined by superfield H*8(¢) in (2,32)
representation of SU(2) x SO(32) which obeys

/D’YCHABJ _ 41-60A¢5J
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@ The SU(2) SYM is described by SU(2) connection one form on W©/®

At =AM () + AN O, (A =-A" (= A4 =0),
@ which obeys the constraints
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@ heterotic hypermultiplet(s) are defined by superfield H*8(¢) in (2,32)
representation of SU(2) x SO(32)which obeys
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Superfield description of heterotic degrees of freedom: basic superfield egs.

@ The SU(2) SYM is described by SU(2) connection one form on W©/®

At =AM () + AN O, (A =-A" (= A4 =0),
@ which obeys the constraints

i

- 1 ~
2ea A € ypas(W2)E" + ~€° A %(Fav)g™

Fi" = (dA— AN A)S 5

@ heterotic hypermultiplet(s) are defined by superfield H*8(¢) in (2,32)
representation of SU(2) x SO(32)which obeys

,D’YCHABJ _ 4i60Aw§J

D¢ is SO(1,5) ® SO(4) ® SU(2) = SU(4)* @ SU(2) ® SU(2) ® SU(2)
covariant derivative on W& ¢ (198 defined by superembedding
equation £,42 = 0 (or by some its generalization £,42 = ...) and by the
constraints on the SUGRA+SYM background.
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@ The SYM constraints are on-shell: they result in equations of motion.
@ their consistency result in the fermionic equation

V25D WA = W Cc A
@ and bosonic equations plus Binachi identities
1 .
D Foci308" + 5 DiaFoc a5 08" — fcapys (WG , WCY0s" —
1 .
—EFangié +iW°Js 0 8™,

@ with contributions of the 'geometric’ degrees of freedom and fluxes of
background SUGRA + SO(32) SYM enclosed inside Js,a ac” , J328 and

A
el
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@ The hypermultiplet equations are also on-shell: D.,cH*?’ = 4i5c 2’ =

- aa B 1
o ﬁDaTﬁﬁBJ )

—QHABJ’YMB (4D§fbAs - f,@BbBA) -
1 _pa B
+ﬂ’yb s (StgAb’YA = I’bcd’YCdﬁ’y) EJ.

and also bosonic equation.

(HAZ\J W/(\IAB + HABIW:;AJ) .
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and also bosonic equation.

@ These describe interaction with SUGRA, SO(32) gauge fields (\W5"),
geometric d-o-f.s (also given by hypermultiplet) and SU(2) SYM.
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@ But: the SYM constraints are on-shell. And they produce egs.
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Our SO(82) H5-brane equations of motion are approximate

@ Here we have a problem indicating that our present description of
H5-brane is approximate.

@ As hypermultiplet is minimally coupled to SU(2) SYM (‘charged’),
(;Yaaﬁpawgd _ % (HAAJ WXZ\B + HAB/W/%IJ) _
@ But: the SYM constraints are on-shell. And they produce egs.

1 ,
D° FpoyS 508" + ED[ancwi%cfSBA — ieaprs{ WY, WCog" —

1 ,
—EFangié +iW°Js 0 ™,

with no hypermultiplet contributions.

@ Such an approximate description may be useful as it is (it is certainly
approximate in the SU(2) SYM sector)

@ but it is tempting to speculate that the use of the GIKOS harmonic
superfield formalism might help to make the SYM constraints ’off-shell’ -
or, at least, ‘on-any-shell’ - allowing for incorporation of the terms
describing the hypermultiplet contributions.
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@ We are studying the possibility to search for equations of motion of the
SO(82) heterotic 5-brane (H5-brane) in the framework of
superembedding approach

@ We have proposed the basic superfield equations of SO(32) H5-brane.

@ These are the constraints of SU(2) SYM and superfield eqgs. for
hypermultiplet in (2,32) of SU(2) x SO(32) on curved superspace W8
identical or similar to the w/v SSP of simple 5-brane

@ (at least as the first stage) the embedding W©!®) c $61'®) is defined by
superembedding equation (the same as for 'simple’ 5-brane)

@ and x®!"® is characterized by the standard N=1 10D SUGRA
constraints (+10D SYM).

@ Then, after studying the simplest possibility, the modification of both
superembedding equations and supergravity constraints.

@ Our approach is able to describe the interaction of heterotic 5-brane with
background D=10 SUGRA and SO(32) SYM fluxes.
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@ On the other hand, as it is formulated now, our approach provides an
approximate description of H5-brane:

@ The hypermultiplet equations describe its coupling to SU(2) SYM but the

SYM equations remain ‘free’.

This is because the SYM constraints are on-shell.

The possible way out might lay through reformulating our approach with

the use of GIKOS harmonic superspace formalism

Some kind of superembedding of harmonic superspaces?

The properties of the SO(32) H5-brane equations as they follow from the
present superembedding approach as well as search for their possible
generalizations are under study now.
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