Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclus

SO(32) Heterotic 5–brane from superembedding approach Progress report

Igor A. Bandos

SQS11, BLTP, JINR, Dubna, July 18 - 23, 2011

July 21, 2011

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
Outline				

- SUSY extended objects
- 'Simple' D=10, N=1 5-brane and heterotic 5-branes
- 2 Superembedding approach for 'simple' N=1, D=10 5-brane
 - Worldvolume superspace and superembedding equation
 - Moving, and spinor moving frame and geometry induced by superembedding
- 3 'Simple' 5-brane equations of motion from superembedding approach
- Superembedding description of the SO(32) heterotic 5-brane
 - Basic superfield equations of the SO(32) heterotic 5-brane
 - From basic superfield equations for *SO*(32) heterotic 5-brane to equations of motion.

5 Conclusions and outlook

SO(32) heterotic 5-brane

SUSY extended objects

Supersymmetric extended objects, **super**–*p*-**branes** and their description

 Supersymmetric extended objects- especially 10D and 11D super-p-branes, play an important role in String/M-theory and ADS/CFT.
 Intro
 N=1 5-brane superembedding

 ●○○○○○
 ○○○○○○○

'Simple' 5-brane equations

SO(32) heterotic 5-brane

Conclusions

SUSY extended objects

Supersymmetric extended objects, **super**–*p*-**branes** and their description

- Supersymmetric extended objects- especially 10D and 11D super-p-branes, play an important role in String/M-theory and ADS/CFT.
- They can be described by worldvolume actions, by supersymmetric solutions of supergravity and also in the frame of superembedding approach (which we will be using in this talk).

SO(32) heterotic 5-brane

Conclusions

SUSY extended objects

Supersymmetric extended objects, **super**–*p*-**branes** and their description

- Supersymmetric extended objects- especially 10D and 11D super-p-branes, play an important role in String/M-theory and ADS/CFT.
- They can be described by worldvolume actions, by supersymmetric solutions of supergravity and also in the frame of superembedding approach (which we will be using in this talk).

The worldvolume actions are presently known for majority of super-*p*-branes, including fundamental strings
 D=10, string =F1-brane ← Green, Schwarz, 1984
 all the M-brane M2 ← 1987: Bergshoeff, Sezgin, Townsend 1987,
 M0 ← 1996: BT:= Bergshoeff, Townsend,
 M5 ← 1997: BPSTV:= *I.B.*, Lechner, Nurmagambetov, Pasti, Sorokin,
 Tonin; APSch :=Aganagic, Popescu, Schwarz)
 and D=10 Dirichlet *p*-branes, D*p*-branes ← 1996 CNWSG:= Cederwall,
 Nilsson, Westengerg, Sundell, Gussich; 1996 APSch; 1996 BT

SO(32) heterotic 5-brane

SUSY extended objects

Supersymmetric extended objects, **super**–*p*-**branes** and their description

- Supersymmetric extended objects- especially 10D and 11D super-p-branes, play an important role in String/M-theory and ADS/CFT.
- They can be described by worldvolume actions, by supersymmetric solutions of supergravity and also in the frame of superembedding approach (which we will be using in this talk).

The worldvolume actions are presently known for majority of super-*p*-branes, including fundamental strings
 D=10, string =F1-brane ← Green, Schwarz, 1984
 all the M-brane M2← 1987: Bergshoeff, Sezgin, Townsend 1987,
 M0← 1996: BT:= Bergshoeff, Townsend,
 M5← 1997: BPSTV:= *I.B.*, Lechner, Nurmagambetov, Pasti, Sorokin,
 Tonin; APSch :=Aganagic, Popescu, Schwarz)
 and D=10 Dirichlet *p*-branes, D*p*-branes ← 1996 CNWSG:= Cederwall,
 Nilsson, Westengerg, Sundell, Gussich; 1996 APSch; 1996 BT

 The superembedding approach was proposed and developed for 10D F1 and M2 in [1995 BPSTV:= *I.B.*, Pasti, Sorokin, Tonin, Volkov]. It uses the worldvolume superfields, developing the STV:= Sorokin, Tkach, Volkov [1988] to D=3,4 particles and strings [STV formalism was further developed in 90-94 by Delduc, Galperin, Ivanov, Sokatchev, Howe, Pasti, Tonin, Bergshoeff, Sezgin, Townsend ...] related approach: VZ=Volkov, Zheltukhin 1988; Uvarov 2000-08 Superembedding approach to M5-brane: 1996 HS:= Howe and Sezgin S-emb, app. to Dp-branes: 1996 HS: 1997 BST:=*I.B.*, Sorokin, Tonin.

Intro	N=1 5-brane superembedding
00000	

SO(32) heterotic 5-brane

Conclusions

SUSY extended objects

SO(32) heterotic 5-brane

Conclusions

SUSY extended objects

super-*p*-branes and their description

 Notice that the M5-brane equations of motion were obtained in [HS 1996] in the frame of superembedding approach some months before the covariant action was found in [1997 BLNPST, 1997 APSch]

itro	N=1 5-brane superembeddir
00000	

SO(32) heterotic 5-brane

Conclusions

SUSY extended objects

- Notice that the M5-brane equations of motion were obtained in [HS 1996] in the frame of superembedding approach some months before the covariant action was found in [1997 BLNPST, 1997 APSch]
- When the action for a p-brane is known, the superembedding approach can be deduced from that (through GAP:= generalized action principle [1995 BSV:= *I.B.*, Sorokin, Volkov]).

- Notice that the M5-brane equations of motion were obtained in [HS 1996] in the frame of superembedding approach some months before the covariant action was found in [1997 BLNPST, 1997 APSch]
- When the action for a p-brane is known, the superembedding approach can be deduced from that (through GAP:= generalized action principle [1995 BSV:= *I.B.*, Sorokin, Volkov]).
- The way from superembedding approach to the covariant action also exists [1998 Howe, Raetzel, Sezgin] [this can be considered as bootom-up version of GAP and is also related with *Ectoplasm* method by Gates et al]

- Notice that the M5-brane equations of motion were obtained in [HS 1996] in the frame of superembedding approach some months before the covariant action was found in [1997 BLNPST, 1997 APSch]
- When the action for a p-brane is known, the superembedding approach can be deduced from that (through GAP:= generalized action principle [1995 BSV:= *I.B.*, Sorokin, Volkov]).
- The way from superembedding approach to the covariant action also exists [1998 Howe, Raetzel, Sezgin] [this can be considered as bootom-up version of GAP and is also related with *Ectoplasm* method by Gates et al]
- The way from BPS solution of supergravity equations to the worldvolume actions is not so straightforward. Examples: M5-solution: 1992 Güven (equations 1996, action 1997) Dp-branes: solutions are known from early 90th and action in 1996

- Notice that the M5-brane equations of motion were obtained in [HS 1996] in the frame of superembedding approach some months before the covariant action was found in [1997 BLNPST, 1997 APSch]
- When the action for a p-brane is known, the superembedding approach can be deduced from that (through GAP:= generalized action principle [1995 BSV:= *I.B.*, Sorokin, Volkov]).
- The way from superembedding approach to the covariant action also exists [1998 Howe, Raetzel, Sezgin] [this can be considered as bootom-up version of GAP and is also related with *Ectoplasm* method by Gates et al]
- The way from BPS solution of supergravity equations to the worldvolume actions is not so straightforward. Examples: M5-solution: 1992 Güven (equations 1996, action 1997) Dp-branes: solutions are known from early 90th and action in 1996
- Still there exist some BPS solutions of SUGRA equations describing some *p*-branes for which neither worldvolume action nor eqs. of motion are known.

- Notice that the M5-brane equations of motion were obtained in [HS 1996] in the frame of superembedding approach some months before the covariant action was found in [1997 BLNPST, 1997 APSch]
- When the action for a p-brane is known, the superembedding approach can be deduced from that (through GAP:= generalized action principle [1995 BSV:= *I.B.*, Sorokin, Volkov]).
- The way from superembedding approach to the covariant action also exists [1998 Howe, Raetzel, Sezgin] [this can be considered as bootom-up version of GAP and is also related with *Ectoplasm* method by Gates et al]
- The way from BPS solution of supergravity equations to the worldvolume actions is not so straightforward. Examples: M5-solution: 1992 Güven (equations 1996, action 1997) Dp-branes: solutions are known from early 90th and action in 1996
- Still there exist some BPS solutions of SUGRA equations describing some *p*-branes for which neither worldvolume action nor eqs. of motion are known.
- In particular these are D=10 Heterotic 5-branes:

- Notice that the M5-brane equations of motion were obtained in [HS 1996] in the frame of superembedding approach some months before the covariant action was found in [1997 BLNPST, 1997 APSch]
- When the action for a p-brane is known, the superembedding approach can be deduced from that (through GAP:= generalized action principle [1995 BSV:= *I.B.*, Sorokin, Volkov]).
- The way from superembedding approach to the covariant action also exists [1998 Howe, Raetzel, Sezgin] [this can be considered as bootom-up version of GAP and is also related with *Ectoplasm* method by Gates et al]
- The way from BPS solution of supergravity equations to the worldvolume actions is not so straightforward. Examples: M5-solution: 1992 Güven (equations 1996, action 1997) Dp-branes: solutions are known from early 90th and action in 1996
- Still there exist some BPS solutions of SUGRA equations describing some *p*-branes for which neither worldvolume action nor eqs. of motion are known.
- In particular these are D=10 Heterotic 5-branes:
- SO(32) Heterotic 5-brane

- Notice that the M5-brane equations of motion were obtained in [HS 1996] in the frame of superembedding approach some months before the covariant action was found in [1997 BLNPST, 1997 APSch]
- When the action for a p-brane is known, the superembedding approach can be deduced from that (through GAP:= generalized action principle [1995 BSV:= *I.B.*, Sorokin, Volkov]).
- The way from superembedding approach to the covariant action also exists [1998 Howe, Raetzel, Sezgin] [this can be considered as bootom-up version of GAP and is also related with *Ectoplasm* method by Gates et al]
- The way from BPS solution of supergravity equations to the worldvolume actions is not so straightforward. Examples: M5-solution: 1992 Güven (equations 1996, action 1997) Dp-branes: solutions are known from early 90th and action in 1996
- Still there exist some BPS solutions of SUGRA equations describing some *p*-branes for which neither worldvolume action nor eqs. of motion are known.
- In particular these are D=10 Heterotic 5-branes:
- SO(32) Heterotic 5-brane
- $E_8 \times E_8$ heterotic 5-brane

- Notice that the M5-brane equations of motion were obtained in [HS 1996] in the frame of superembedding approach some months before the covariant action was found in [1997 BLNPST, 1997 APSch]
- When the action for a p-brane is known, the superembedding approach can be deduced from that (through GAP:= generalized action principle [1995 BSV:= *I.B.*, Sorokin, Volkov]).
- The way from superembedding approach to the covariant action also exists [1998 Howe, Raetzel, Sezgin] [this can be considered as bootom-up version of GAP and is also related with *Ectoplasm* method by Gates et al]
- The way from BPS solution of supergravity equations to the worldvolume actions is not so straightforward. Examples: M5-solution: 1992 Güven (equations 1996, action 1997) Dp-branes: solutions are known from early 90th and action in 1996
- Still there exist some BPS solutions of SUGRA equations describing some *p*-branes for which neither worldvolume action nor eqs. of motion are known.
- In particular these are D=10 Heterotic 5-branes:
- SO(32) Heterotic 5-brane
- $E_8 \times E_8$ heterotic 5-brane
- This talk is devoted to the search for *SO*(32) Heterotic 5-brane equation in the frame of superembedding approach.

Intro ○○●○○○	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

Intro ○○●○○○	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

• In D = 10 supergravity there exists a (BPS) string solution

Intro ○○●○○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

- In D = 10 supergravity there exists a (BPS) string solution
- and also 5-brane solution which is dual to the string in the same sense as the magnetic monopole is dual to electric charge in D=4.

Intro ○○●○○○	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

- In D = 10 supergravity there exists a (BPS) string solution
- and also 5-brane solution which is dual to the string in the same sense as the magnetic monopole is dual to electric charge in D=4.
- What is the worldvolume action for this 5-brane?

Intro ○○●○○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

- In D = 10 supergravity there exists a (BPS) string solution
- and also 5-brane solution which is dual to the string in the same sense as the magnetic monopole is dual to electric charge in D=4.
- What is the worldvolume action for this 5-brane?
- Is it the 'simple' 5-brane from the first 'brane scan' by Achucarro, Evan, Townsend and Wiltshire [AETW 1987]?

Intro ○○●○○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

- In D = 10 supergravity there exists a (BPS) string solution
- and also 5-brane solution which is dual to the string in the same sense as the magnetic monopole is dual to electric charge in D=4.
- What is the worldvolume action for this 5-brane?
- Is it the 'simple' 5-brane from the first 'brane scan' by Achucarro, Evan, Townsend and Wiltshire [AETW 1987]?
- No. This one is anomalous.

Intro ○○●○○○	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

- In D = 10 supergravity there exists a (BPS) string solution
- and also 5-brane solution which is dual to the string in the same sense as the magnetic monopole is dual to electric charge in D=4.
- What is the worldvolume action for this 5-brane?
- Is it the 'simple' 5-brane from the first 'brane scan' by Achucarro, Evan, Townsend and Wiltshire [AETW 1987]?
- No. This one is anomalous.
- The non-anomolous five branes should be dual to the consistent N = 1, D = 10 heterotic strings.

Intro ○○●○○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

- In D = 10 supergravity there exists a (BPS) string solution
- and also 5-brane solution which is dual to the string in the same sense as the magnetic monopole is dual to electric charge in D=4.
- What is the worldvolume action for this 5-brane?
- Is it the 'simple' 5-brane from the first 'brane scan' by Achucarro, Evan, Townsend and Wiltshire [AETW 1987]?
- No. This one is anomalous.
- The non-anomolous five branes should be dual to the consistent N = 1, D = 10 heterotic strings.
- As far as there are two anomaly–free heterotic strings, carrying charges of SO(32) and of $E_8 \times E_8$ gauge theories, respectively,

Intro ○○●○○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

- In D = 10 supergravity there exists a (BPS) string solution
- and also 5-brane solution which is dual to the string in the same sense as the magnetic monopole is dual to electric charge in D=4.
- What is the worldvolume action for this 5-brane?
- Is it the 'simple' 5-brane from the first 'brane scan' by Achucarro, Evan, Townsend and Wiltshire [AETW 1987]?
- No. This one is anomalous.
- The non-anomolous five branes should be dual to the consistent N = 1, D = 10 heterotic strings.
- As far as there are two anomaly–free heterotic strings, carrying charges of SO(32) and of $E_8 \times E_8$ gauge theories, respectively,
- there should be two anomaly-free 5-branes: SO(32) 5-brane and $E_8 \times E_8$ 5-branes

Intro	N=1 5-brane superembedding	'Simple' 5-brane equations	SC
000000			00

10D N=1 5-branes

'Simple' 5-brane [AETW 1987]

Intro ○○○●○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusio
10D N=1 5-branes	3			

• The 'simple' (and anomalous) D = 10 N = 1 5-brane from [AETW 1987] is described by

$$\mathcal{S}=\mathcal{S}^{ extsf{DNG}}+\mathcal{S}^{ extsf{WZ}}=\int d^6 \xi \sqrt{g}+\int \hat{B}_6 \; ,$$

Intro ○○○●○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusio
10D N=1 5-brane	s			

• The 'simple' (and anomalous) D = 10 N = 1 5-brane from [AETW 1987] is described by

$$S=S^{ extsf{DNG}}+S^{ extsf{WZ}}=\int d^6 \xi \sqrt{g}+\int \hat{B}_6 \; ,$$

۲

$$g = det(g_{mn}), \quad g_{mn} = \hat{E}_m^{\underline{a}} \hat{E}_{n\underline{a}}, \quad \hat{E}_m^{\underline{a}} = \partial_m \hat{Z}^M E_M^{\underline{a}}(\hat{Z})$$

Intro ○○○●○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusio
10D N=1 5-brane	S			

• The 'simple' (and anomalous) D = 10 N = 1 5-brane from [AETW 1987] is described by

$$S=S^{DNG}+S^{WZ}=\int d^6\xi\sqrt{g}+\int \hat{B}_6\;,$$

۲

$$g = det(g_{mn}) , \quad g_{mn} = \hat{E}_m^{\underline{a}} \hat{E}_{n\underline{a}} , \quad \hat{E}_m^{\underline{a}} = \partial_m \hat{Z}^{\mathcal{M}} E_{\mathcal{M}}{}^{\underline{a}}(\hat{Z})$$

 ²M(ξ) = (x^m(ξ), θ^μ(ξ)) are supercoordinate functions describing embedding of the worldvolume to the target superspace

$$W^6 \subset \Sigma^{(10|16)}$$
 : $Z^{\underline{\mathcal{M}}} = \hat{Z}^{\underline{\mathcal{M}}}(\xi) = (\hat{x}^{\underline{m}}(\xi), \hat{\theta}^{\underline{\mu}}(\xi))$

Intro ○○○●○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusio
10D N=1 5-brane	S			

• The 'simple' (and anomalous) D = 10 N = 1 5-brane from [AETW 1987] is described by

$$S=S^{ extsf{DNG}}+S^{ extsf{WZ}}=\int d^6 \xi \sqrt{g}+\int \hat{B}_6 \; ,$$

$$g = det(g_{mn}) , \quad g_{mn} = \hat{E}_m^{\underline{a}} \hat{E}_{n\underline{a}} , \quad \hat{E}_m^{\underline{a}} = \partial_m \hat{Z}^{\mathcal{M}} E_{\mathcal{M}}{}^{\underline{a}}(\hat{Z})$$

 ²M(ξ) = (x^m(ξ), θ^μ(ξ)) are supercoordinate functions describing embedding of the worldvolume to the target superspace

$$W^6 \subset \Sigma^{(10|16)}$$
 : $Z^{\underline{\mathcal{M}}} = \hat{Z}^{\underline{\mathcal{M}}}(\xi) = (\hat{x}^{\underline{m}}(\xi), \hat{\theta}^{\underline{\mu}}(\xi))$

• $E^{a}(Z) = dZ^{M}E^{a}_{M}(Z)$ is bosonic vielbein of the 10D $\mathcal{N} = 1$ SUGRA

Intro ○○○●○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusio
10D N=1 5-brane	25			

• The 'simple' (and anomalous) D = 10 N = 1 5-brane from [AETW 1987] is described by

$$S=S^{ extsf{DNG}}+S^{ extsf{WZ}}=\int d^6 \xi \sqrt{g}+\int \hat{B}_6 \; ,$$

۲

$$g = det(g_{mn}) , \quad g_{mn} = \hat{E}_m^{\underline{a}} \hat{E}_{n\underline{a}} , \quad \hat{E}_m^{\underline{a}} = \partial_m \hat{Z}^{\mathcal{M}} E_{\mathcal{M}}{}^{\underline{a}}(\hat{Z})$$

 ²M(ξ) = (x^m(ξ), θ^μ(ξ)) are supercoordinate functions describing embedding of the worldvolume to the target superspace

$$W^6 \subset \Sigma^{(10|16)}$$
 : $Z^{\underline{\mathcal{M}}} = \hat{Z}^{\underline{\mathcal{M}}}(\xi) = (\hat{x}^{\underline{m}}(\xi), \hat{\theta}^{\underline{\mu}}(\xi))$

• $E^{a}(Z) = dZ^{M}E^{a}_{M}(Z)$ is bosonic vielbein of the 10D $\mathcal{N} = 1$ SUGRA

• \hat{E}^a is its pull-back to W^6 , i.e. $\hat{E}^a = E^a(\hat{Z}) = d\hat{Z}^M E^a_M(\hat{Z})$.

Intro ○○○●○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusi
10D N=1 5-brane	s			

• The 'simple' (and anomalous) D = 10 N = 1 5-brane from [AETW 1987] is described by

$$S=S^{ extsf{DNG}}+S^{ extsf{WZ}}=\int d^6 \xi \sqrt{g}+\int \hat{B}_6 \; ,$$

۲

$$g = det(g_{mn}) , \quad g_{mn} = \hat{E}_m^{\underline{a}} \hat{E}_{n\underline{a}} , \quad \hat{E}_m^{\underline{a}} = \partial_m \hat{Z}^{\mathcal{M}} E_{\mathcal{M}}{}^{\underline{a}}(\hat{Z})$$

 ²M(ξ) = (x^m(ξ), θ^μ(ξ)) are supercoordinate functions describing embedding of the worldvolume to the target superspace

$$W^6 \subset \Sigma^{(10|16)}$$
 : $Z^{\underline{\mathcal{M}}} = \hat{Z}^{\underline{\mathcal{M}}}(\xi) = (\hat{x}^{\underline{m}}(\xi), \hat{\theta}^{\underline{\mu}}(\xi))$

• $E^{a}(Z) = dZ^{M}E^{a}_{M}(Z)$ is bosonic vielbein of the 10D $\mathcal{N} = 1$ SUGRA

- \hat{E}^a is its pull-back to W^6 , i.e. $\hat{E}^a = E^a(\hat{Z}) = d\hat{Z}^M E^a_M(\hat{Z})$.
- $\hat{B}_6 = B_6(\hat{Z})$ is the pull-back to W^6 of $B_6 = \frac{1}{6!} dZ^{M_6} \wedge ... \wedge dZ^{M_1} B_{M_1...M_6}(Z)$.

Intro ○○○●○○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusio
10D N=1 5-brane	25			

• The 'simple' (and anomalous) D = 10 N = 1 5-brane from [AETW 1987] is described by

$$S=S^{ extsf{DNG}}+S^{ extsf{WZ}}=\int d^6 \xi \sqrt{g}+\int \hat{B}_6 \; ,$$

۲

$$g = det(g_{mn}) , \quad g_{mn} = \hat{E}_m^{\underline{a}} \hat{E}_{n\underline{a}} , \quad \hat{E}_m^{\underline{a}} = \partial_m \hat{Z}^{\mathcal{M}} E_{\mathcal{M}}{}^{\underline{a}}(\hat{Z})$$

 ²M(ξ) = (x^m(ξ), θ^μ(ξ)) are supercoordinate functions describing embedding of the worldvolume to the target superspace

$$W^6 \subset \Sigma^{(10|16)}$$
 : $Z^{\underline{\mathcal{M}}} = \hat{Z}^{\underline{\mathcal{M}}}(\xi) = (\hat{x}^{\underline{m}}(\xi), \hat{\theta}^{\underline{\mu}}(\xi))$

- $E^{a}(Z) = dZ^{M}E^{a}_{M}(Z)$ is bosonic vielbein of the 10D $\mathcal{N} = 1$ SUGRA
- \hat{E}^a is its pull-back to W^6 , i.e. $\hat{E}^a = E^a(\hat{Z}) = d\hat{Z}^M E^a_M(\hat{Z})$.
- $\hat{B}_6 = B_6(\hat{Z})$ is the pull-back to W^6 of $B_6 = \frac{1}{6!} dZ^{M_6} \wedge ... \wedge dZ^{M_1} B_{M_1...M_6}(Z)$.
- $E^a(Z)$ and $B_6(Z)$ obey the superspace supergravity constraints \Rightarrow the action possesses local fermionic κ -symmetry.

itro	N=1 5-brane superembedding	'Simple'
00000		

10D N=1 5-branes

SO(32) heterotic 5-brane

Intro ○○○○●○	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusion
10D N=1 5-brane	es			

SO(32) heterotic 5-brane

In 1995 Witten argued that the spectrum of SO(32) heterotic five-brane contains, besides the 'geometrical sector' ²*M*(ξ) = (*x*^m(ξ), *θ*^μ(ξ)),

Intro ○○○○●○	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusion
10D N=1 5-brane	es			

SO(32) heterotic 5-brane

- In 1995 Witten argued that the spectrum of SO(32) heterotic five-brane contains, besides the 'geometrical sector' Â^M(ξ) = (λ^m(ξ), θ^μ(ξ)),
- d = 6, N = 2 SU(2) SYM multiplet: a traceless 2 × 2 matrix connection $A_{\tilde{B}}^{\tilde{A}} = d\xi^m A_{m\tilde{B}}^{\tilde{A}} (A_{\tilde{B}}^{\tilde{B}} = 0, \tilde{A}, \tilde{B} = 1, 2)$ and its superpartner $(W_B^{\beta})_{\tilde{B}}^{\tilde{A}}$
| Intro
○○○○●○ | N=1 5-brane superembedding | 'Simple' 5-brane equations | SO(32) heterotic 5-brane | Conclusions |
|-----------------|----------------------------|----------------------------|--------------------------|-------------|
| 10D N=1 5-bran | es | | | |
| | | | | |

- In 1995 Witten argued that the spectrum of SO(32) heterotic five-brane contains, besides the 'geometrical sector' ²*M*(ξ) = (*λ*^m(ξ), *θ*^μ(ξ)),
- d = 6, N = 2 SU(2) SYM multiplet: a traceless 2 × 2 matrix connection $A_{\tilde{B}}^{\tilde{A}} = d\xi^m A_{m\tilde{B}}^{\tilde{A}} (A_{\tilde{B}}^{\tilde{B}} = 0, \tilde{A}, \tilde{B} = 1, 2)$ and its superpartner $(W_B^{\beta})_{\tilde{B}}^{\tilde{A}}$
- hypermultiplet in (2,32) of $SU(2) \times SO(32)$:
- bosonic and fermionic fields $(H^{A\tilde{B}J}(\xi),\psi^{\tilde{B}J}_{\alpha}(\xi))$ related by susy

$$\delta_{susy} H^{A\tilde{B}J} = 4i\epsilon^{lpha A}\psi^{\tilde{B}J}_{lpha} ,$$

 $A, B = 1, 2, \quad J = 1, ..., 32 \qquad \tilde{A}, \tilde{B} = 1, 2, \quad lpha = 1, 2, 3, 4.$

Intro ○○○○●○	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
10D N=1 5-bran	es			

- In 1995 Witten argued that the spectrum of SO(32) heterotic five-brane contains, besides the 'geometrical sector' Â^M(ξ) = (λ^m(ξ), θ^μ(ξ)),
- d = 6, N = 2 SU(2) SYM multiplet: a traceless 2 × 2 matrix connection $A_{\tilde{B}}^{\tilde{A}} = d\xi^m A_{m\tilde{B}}^{\tilde{A}} (A_{\tilde{B}}^{\tilde{B}} = 0, \tilde{A}, \tilde{B} = 1, 2)$ and its superpartner $(W_B^\beta)_{\tilde{B}}^{\tilde{A}}$
- hypermultiplet in (2,32) of $SU(2) \times SO(32)$:
- bosonic and fermionic fields $(H^{A\tilde{B}J}(\xi),\psi^{\tilde{B}J}_{\alpha}(\xi))$ related by susy

$$\delta_{susy} H^{A\tilde{B}J} = 4i\epsilon^{lpha A}\psi^{\tilde{B}J}_{lpha} ,$$

 $A, B = 1, 2, \quad J = 1, ..., 32 \qquad \tilde{A}, \tilde{B} = 1, 2, \quad lpha = 1, 2, 3, 4 .$

• Neither action nor equations of motion of the SO(32) heterotic 5-brane are known.

Intro	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
000000	0000000		0000000	
10D N=1 5-brane	s			

- In 1995 Witten argued that the spectrum of SO(32) heterotic five-brane contains, besides the 'geometrical sector' Â^M(ξ) = (λ^m(ξ), θ^μ(ξ)),
- d = 6, N = 2 SU(2) SYM multiplet: a traceless 2 × 2 matrix connection $A_{\tilde{B}}^{\tilde{A}} = d\xi^m A_{m\tilde{B}}^{\tilde{A}} (A_{\tilde{B}}^{\tilde{B}} = 0, \tilde{A}, \tilde{B} = 1, 2)$ and its superpartner $(W_B^{\beta})_{\tilde{B}}^{\tilde{A}}$
- hypermultiplet in (2,32) of $SU(2) \times SO(32)$:
- bosonic and fermionic fields $(H^{A\tilde{B}J}(\xi),\psi^{\tilde{B}J}_{\alpha}(\xi))$ related by susy

$$\delta_{susy} H^{A\tilde{B}J} = 4i\epsilon^{lpha A}\psi^{\tilde{B}J}_{lpha},$$

A, B = 1, 2, J = 1, ..., 32 $\tilde{A}, \tilde{B} = 1, 2, \ lpha = 1, 2, 3, 4$

- Neither action nor equations of motion of the *SO*(32) heterotic 5-brane are known.
- For $E_8 \times E_8$ even the field content is not clear.

Then the natural proposition is

• Then the natural proposition is to use superembedding approach to search for the *SO*(32) heterotic 5-brane equations of motion.

000000 0000000 0000000	
10D N=1 5-branes	

- In 1995 Witten argued that the spectrum of SO(32) heterotic five-brane contains, besides the 'geometrical sector' ²*M*(ξ) = (*λ*^m(ξ), *θ*^μ(ξ)),
- d = 6, N = 2 SU(2) SYM multiplet: a traceless 2 × 2 matrix connection $A_{\tilde{B}}^{\tilde{A}} = d\xi^m A_{m\tilde{B}}^{\tilde{A}} (A_{\tilde{B}}^{\tilde{B}} = 0, \tilde{A}, \tilde{B} = 1, 2)$ and its superpartner $(W_B^\beta)_{\tilde{B}}^{\tilde{A}}$
- hypermultiplet in (2,32) of $SU(2) \times SO(32)$:
- bosonic and fermionic fields $(H^{A\tilde{B}J}(\xi),\psi^{\tilde{B}J}_{\alpha}(\xi))$ related by susy

$$\delta_{susy} H^{A\tilde{B}J} = 4i\epsilon^{lpha A}\psi^{\tilde{B}J}_{lpha},$$

A, B = 1, 2, J = 1, ..., 32 $ilde{A}, ilde{B} = 1, 2, \ lpha = 1, 2, 3, 4$

- Neither action nor equations of motion of the *SO*(32) heterotic 5-brane are known.
- For $E_8 \times E_8$ even the field content is not clear.

- Then the natural proposition is to use superembedding approach to search for the *SO*(32) heterotic 5-brane equations of motion.
- This talk is a progress report on elaboration of this program.

Intro ○○○○○●	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

• The presence of non–geometrical sector makes the heterotic 5-brane similar to multiple (D)p–brane systems (mDp) the superembedding approach for which was proposed and elaborated for the case of mD0 and mM0 system in [*I.B.* 2009, *I.B.* 2010].

Intro ○○○○○●	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

- The presence of non-geometrical sector makes the heterotic 5-brane similar to multiple (D)p-brane systems (mDp) the superembedding approach for which was proposed and elaborated for the case of mD0 and mM0 system in [*I.B.* 2009, *I.B.* 2010].
- The basic proposition is similar to the one in [*I.B.* 2009, *I.B.* 2010]. Schematically it is: to describe the heterotic 5-brane by the superspace constraints of SU(2) SYM and of the (2, 32) hypermultiplet on the curved superspace $W^{(6|8)}$ of a 'simple' 5-brane.

Intro ○○○○○●	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

- The presence of non-geometrical sector makes the heterotic 5-brane similar to multiple (D)p-brane systems (mDp) the superembedding approach for which was proposed and elaborated for the case of mD0 and mM0 system in [*I.B.* 2009, *I.B.* 2010].
- The basic proposition is similar to the one in [*I.B.* 2009, *I.B.* 2010]. Schematically it is: to describe the heterotic 5-brane by the superspace constraints of SU(2) SYM and of the (2, 32) hypermultiplet on the curved superspace $W^{(6|8)}$ of a 'simple' 5-brane.
- We can consider a more general framework, *e.g.* trying to make the basic superspace $W^{(6|8)}$ different from the worldvolume superspace of the 'simple' 5-brane.

Intro ○○○○○●	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
10D N=1 5-brane	s			

- The presence of non-geometrical sector makes the heterotic 5-brane similar to multiple (D)p-brane systems (mDp) the superembedding approach for which was proposed and elaborated for the case of mD0 and mM0 system in [*I.B.* 2009, *I.B.* 2010].
- The basic proposition is similar to the one in [*I.B.* 2009, *I.B.* 2010]. Schematically it is: to describe the heterotic 5-brane by the superspace constraints of SU(2) SYM and of the (2, 32) hypermultiplet on the curved superspace $W^{(6|8)}$ of a 'simple' 5-brane.
- We can consider a more general framework, *e.g.* trying to make the basic superspace $W^{(6|8)}$ different from the worldvolume superspace of the 'simple' 5-brane.
- But anyway, the natural first step is to discuss the superembedding approach on the relatively simple example of 'simple' 5-brane.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-bi

Outline

Introduction

- SUSY extended objects
- 'Simple' D=10, N=1 5-brane and heterotic 5-branes
- Superembedding approach for 'simple' N=1, D=10 5-brane
 - Worldvolume superspace and superembedding equation
 - Moving, and spinor moving frame and geometry induced by superembedding
- 3 'Simple' 5-brane equations of motion from superembedding approach
- Superembedding description of the SO(32) heterotic 5-brane
 - Basic superfield equations of the SO(32) heterotic 5-brane
 - From basic superfield equations for *SO*(32) heterotic 5-brane to equations of motion.

5 Conclusions and outlook

In	tro				
\cap	0	0	0	0	ć

Worldvolume superspace

Intro	
0000	20

Worldvolume superspace

 Superembedding approach provides the superfield description of the worldvolume dynamics of supersymmetric extended objects, p-branes.

Intro			
00	00	0	

Worldvolume superspace

- Superembedding approach provides the superfield description of the worldvolume dynamics of supersymmetric extended objects, *p*-branes.
- The worldvolume W^{p+1} is extended in it till the worldvolume superspace $\mathcal{W}^{(p+1|\frac{n}{2})}$ with $\frac{n}{2}$ fermionic dimensions, where the target superspace is $\Sigma^{(D|n)}$ (n = 32 for 11D and type II 10D, n = 16 for 10D, $\mathcal{N} = 1$ branes).

Worldvolume superspace

- Superembedding approach provides the superfield description of the worldvolume dynamics of supersymmetric extended objects, p-branes.
- The worldvolume W^{p+1} is extended in it till the worldvolume superspace $\mathcal{W}^{(p+1|\frac{n}{2})}$ with $\frac{n}{2}$ fermionic dimensions, where the target superspace is $\Sigma^{(D|n)}$ (n = 32 for 11D and type II 10D, n = 16 for 10D, $\mathcal{N} = 1$ branes).
- Hence for simple and heterotic D = 10, $\mathcal{N} = 1$ five-brane, we have to consider $\mathcal{W}^{(6|8)}$ with local coordinates

$$\zeta^{\mathcal{M}} = (\xi^{m}, \eta^{\mu}), \qquad \eta^{\mu}\eta^{\nu} = -\eta^{\nu}\eta^{\mu}, \qquad \begin{cases} m = 0, 1, ..., 5 \\ \mu = 1, ..., 8 \end{cases},$$

Worldvolume superspace

- Superembedding approach provides the superfield description of the worldvolume dynamics of supersymmetric extended objects, p-branes.
- The worldvolume W^{p+1} is extended in it till the worldvolume superspace $\mathcal{W}^{(p+1|\frac{n}{2})}$ with $\frac{n}{2}$ fermionic dimensions, where the target superspace is $\Sigma^{(D|n)}$ (n = 32 for 11D and type II 10D, n = 16 for 10D, $\mathcal{N} = 1$ branes).
- Hence for simple and heterotic D = 10, $\mathcal{N} = 1$ five-brane, we have to consider $\mathcal{W}^{(6|8)}$ with local coordinates

$$\zeta^{\mathcal{M}} = (\xi^{m}, \eta^{\mu}), \qquad \eta^{\mu}\eta^{\nu} = -\eta^{\nu}\eta^{\mu}, \qquad \begin{cases} m = 0, 1, ..., 5 \\ \mu = 1, ..., 8 \end{cases},$$

The embedding of W^(6|8) into Σ^(10|16) can be described in terms of coordinate functions Z^M(ζ) = (x^m(ζ), θ^μ(ζ)), (m = 0, 1, ..., 9, μ = 1, ..., 16) which are worldvolume superfields

$$\mathcal{W}^{(6|8)} \in \Sigma^{(10|16)}: \quad Z^{\underline{\mathcal{M}}} = \hat{Z}^{\underline{\mathcal{M}}}(\zeta) \qquad \Leftrightarrow \qquad \begin{cases} x^{\underline{m}} = \hat{x}^{\underline{m}}(\zeta) \ \theta^{\underline{\mu}} = \hat{\theta}^{\underline{\mu}}(\zeta) \ . \end{cases}$$

Worldvolume superspace

- Superembedding approach provides the superfield description of the worldvolume dynamics of supersymmetric extended objects, p-branes.
- The worldvolume W^{p+1} is extended in it till the worldvolume superspace $\mathcal{W}^{(p+1|\frac{n}{2})}$ with $\frac{n}{2}$ fermionic dimensions, where the target superspace is $\Sigma^{(D|n)}$ (n = 32 for 11D and type II 10D, n = 16 for 10D, $\mathcal{N} = 1$ branes).
- Hence for simple and heterotic D = 10, $\mathcal{N} = 1$ five-brane, we have to consider $\mathcal{W}^{(6|8)}$ with local coordinates

$$\zeta^{\mathcal{M}} = (\xi^{m}, \eta^{\mu}), \qquad \eta^{\mu}\eta^{\nu} = -\eta^{\nu}\eta^{\mu}, \qquad \begin{cases} m = 0, 1, ..., 5\\ \mu = 1, ..., 8 \end{cases},$$

The embedding of W^(6|8) into Σ^(10|16) can be described in terms of coordinate functions Â^M(ζ) = (x^m(ζ), θ^μ(ζ)), (m = 0, 1, ..., 9, μ = 1, ..., 16) which are worldvolume superfields

$$\mathcal{W}^{(6|8)} \in \Sigma^{(10|16)}: \quad Z^{\underline{\mathcal{M}}} = \hat{Z}^{\underline{\mathcal{M}}}(\zeta) \qquad \Leftrightarrow \qquad \begin{cases} x^{\underline{m}} = \hat{x}^{\underline{m}}(\zeta) \ \theta^{\underline{\mu}} = \hat{\theta}^{\underline{\mu}}(\zeta) \ . \end{cases}$$

• In the case of 'simple' five–brane (and all known p-branes!), $\hat{Z}^{\underline{\mathcal{M}}}(\zeta)$ is determined by the superembedding equation

Worldvolume superspace

- Superembedding approach provides the superfield description of the worldvolume dynamics of supersymmetric extended objects, p-branes.
- The worldvolume W^{p+1} is extended in it till the worldvolume superspace $\mathcal{W}^{(p+1|\frac{n}{2})}$ with $\frac{n}{2}$ fermionic dimensions, where the target superspace is $\Sigma^{(D|n)}$ (n = 32 for 11D and type II 10D, n = 16 for 10D, $\mathcal{N} = 1$ branes).
- Hence for simple and heterotic D = 10, $\mathcal{N} = 1$ five-brane, we have to consider $\mathcal{W}^{(6|8)}$ with local coordinates

$$\zeta^{\mathcal{M}} = (\xi^{m}, \eta^{\mu}), \qquad \eta^{\mu}\eta^{\nu} = -\eta^{\nu}\eta^{\mu}, \qquad \begin{cases} m = 0, 1, ..., 5 \\ \mu = 1, ..., 8 \end{cases},$$

The embedding of W^(6|8) into Σ^(10|16) can be described in terms of coordinate functions Â^M(ζ) = (x^m(ζ), θ^μ(ζ)), (m = 0, 1, ..., 9, μ = 1, ..., 16) which are worldvolume superfields

$$\mathcal{W}^{(6|8)} \in \Sigma^{(10|16)}: \quad Z^{\underline{\mathcal{M}}} = \hat{Z}^{\underline{\mathcal{M}}}(\zeta) \qquad \Leftrightarrow \qquad \begin{cases} x^{\underline{m}} = \hat{x}^{\underline{m}}(\zeta) \ \theta^{\underline{\mu}} = \hat{\theta}^{\underline{\mu}}(\zeta) \ . \end{cases}$$

- In the case of 'simple' five-brane (and all known p-branes!), Â^M(ζ) is determined by the superembedding equation
- (= are the solutions of the superembedding equations)

Int				
0	20	0	0	ć

Superembedding equation

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
Superembedding	equation			

• Let us introduce the supervielbein forms of $\mathcal{W}^{^{(6|8)}}$

$$e^{\mathcal{A}} := (e^{a}, e^{\alpha A}) := d\zeta^{\mathcal{M}} e_{\mathcal{M}}{}^{\mathcal{A}}(\zeta), \quad a = 0, 1, ..., 5, \quad \begin{cases} \alpha = 1, 2, 3, 4 \\ A = 1, 2 \end{cases};$$

6-vector one-form $e^a = d\zeta^M e_M{}^a(\zeta)$ and the SU(2) doublet of SO(1,5)-spinor fermionic forms $e^{\alpha A}$.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusion
Superembedding	g equation			

• Let us introduce the supervielbein forms of $\mathcal{W}^{(6|8)}$

$$e^{\mathcal{A}} := (e^{a}, e^{\alpha A}) := d\zeta^{\mathcal{M}} e_{\mathcal{M}}{}^{\mathcal{A}}(\zeta), \quad a = 0, 1, ..., 5, \quad \begin{cases} \alpha = 1, 2, 3, 4 \\ A = 1, 2 \end{cases};$$

6-vector one-form $e^a = d\zeta^{\mathcal{M}} e_{\mathcal{M}}{}^a(\zeta)$ and the SU(2) doublet of SO(1,5)-spinor fermionic forms $e^{\alpha A}$.

• The pull–back $\hat{E}^{\underline{A}} := d\hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z})$ of the supervielbein forms of the target superspace $\Sigma^{(10|16)}$

$$E^{\underline{\mathcal{A}}} := dZ^{\underline{\mathcal{M}}} E_{\underline{\mathcal{M}}}^{\underline{\mathcal{A}}}(Z) = (E^{\underline{a}}, E^{\underline{\alpha}}) , \qquad \underline{a} = 0, 1, ..., 9 , \qquad \underline{\alpha} = 1, 2, ..., 16$$

can be decomposed on the basis of $e^{\mathcal{A}}$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusion
Superembedding	g equation			

Let us introduce the supervielbein forms of W^(6|8)

$$e^{\mathcal{A}} := (e^{a}, e^{\alpha A}) := d\zeta^{\mathcal{M}} e_{\mathcal{M}}{}^{\mathcal{A}}(\zeta), \quad a = 0, 1, ..., 5, \quad \begin{cases} \alpha = 1, 2, 3, 4 \\ A = 1, 2 \end{cases};$$

6-vector one-form $e^a = d\zeta^{\mathcal{M}} e_{\mathcal{M}}{}^a(\zeta)$ and the SU(2) doublet of SO(1,5)-spinor fermionic forms $e^{\alpha A}$.

• The pull–back $\hat{E}^{\underline{A}} := d\hat{Z}^{\underline{M}} E_{\underline{M}}^{\underline{A}}(\hat{Z})$ of the supervielbein forms of the target superspace $\Sigma^{(10|16)}$

$$E^{\underline{\mathcal{A}}} := dZ^{\underline{\mathcal{M}}} E_{\underline{\mathcal{M}}}^{\underline{\mathcal{A}}}(Z) = (E^{\underline{a}}, E^{\underline{\alpha}}) , \qquad \underline{a} = 0, 1, ..., 9 , \qquad \underline{\alpha} = 1, 2, ..., 16$$

can be decomposed on the basis of $e^{\mathcal{A}}$

• $\hat{E}^{\underline{A}} := d\hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\mathcal{B}} \mathcal{D}_{\mathcal{B}} \hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\beta B} \hat{E}_{\beta B}{}^{\underline{A}} + e^{b} \hat{E}_{b}{}^{\underline{A}} .$

Intro N=1 5-brane superembedding ○○○○○○○ ○●○○○○○○	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusion
Superembedding equation			

Let us introduce the supervielbein forms of W^(6|8)

$$e^{\mathcal{A}} := (e^{a}, e^{\alpha A}) := d\zeta^{\mathcal{M}} e_{\mathcal{M}}{}^{\mathcal{A}}(\zeta), \quad a = 0, 1, ..., 5, \quad \begin{cases} \alpha = 1, 2, 3, 4 \\ A = 1, 2 \end{cases};$$

6-vector one-form $e^a = d\zeta^{\mathcal{M}} e_{\mathcal{M}}{}^a(\zeta)$ and the SU(2) doublet of SO(1,5)-spinor fermionic forms $e^{\alpha A}$.

• The pull–back $\hat{E}^{\underline{A}} := d\hat{Z}^{\underline{M}} E_{\underline{M}}^{\underline{A}}(\hat{Z})$ of the supervielbein forms of the target superspace $\Sigma^{(10|16)}$

$$E^{\underline{\mathcal{A}}} := dZ^{\underline{\mathcal{M}}} E_{\underline{\mathcal{M}}}^{\underline{\mathcal{A}}}(Z) = (E^{\underline{a}}, E^{\underline{\alpha}}), \qquad \underline{a} = 0, 1, ..., 9, \qquad \underline{\alpha} = 1, 2, ..., 16$$

can be decomposed on the basis of $e^{\mathcal{A}}$

- $\hat{E}^{\underline{A}} := d\hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\mathcal{B}} \mathcal{D}_{\mathcal{B}} \hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\beta B} \hat{E}_{\beta B}{}^{\underline{A}} + e^{b} \hat{E}_{b}{}^{\underline{A}} .$
- The superembedding equation states that the pull–back of the bosonic supervielbein of $\Sigma^{(10|16)}$ to $\mathcal{W}^{(6|8)}$ has no fermionic projection

$$\hat{\mathcal{E}}_{\beta B}{}^{\underline{a}} := \mathcal{D}_{\beta B} \hat{\mathcal{Z}}^{\underline{\mathcal{M}}} E_{\underline{\mathcal{M}}}{}^{\underline{a}}(\hat{\mathcal{Z}}) = 0 \; .$$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
Superembedding	equation			

•
$$\hat{E}^{\underline{A}} := d\hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\mathcal{B}} \mathcal{D}_{\mathcal{B}} \hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\beta B} \hat{E}_{\beta B}{}^{\underline{A}} + e^{b} \hat{E}_{b}{}^{\underline{A}}$$
.

• The superembedding equation states that the pull–back of the bosonic supervielbein of $\Sigma^{(10|16)}$ to $\mathcal{W}^{(6|8)}$ has no fermionic projection

$$\hat{E}_{\beta B}{}^{\underline{a}} := \mathcal{D}_{\beta B} \hat{Z}^{\underline{\mathcal{M}}} E_{\underline{\mathcal{M}}}{}^{\underline{a}}(\hat{Z}) = 0$$
.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
Superembedding	equation			

•
$$\hat{E}^{\underline{A}} := d\hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\mathcal{B}} \mathcal{D}_{\mathcal{B}} \hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\beta B} \hat{E}_{\beta B}{}^{\underline{A}} + e^{b} \hat{E}_{b}{}^{\underline{A}} .$$

• The superembedding equation states that the pull–back of the bosonic supervielbein of $\Sigma^{(10|16)}$ to $\mathcal{W}^{(6|8)}$ has no fermionic projection

$$\hat{E}_{\beta B}{}^{\underline{a}} := \mathcal{D}_{\beta B} \hat{Z}^{\underline{\mathcal{M}}} E_{\underline{\mathcal{M}}}{}^{\underline{a}}(\hat{Z}) = 0$$
.

• Equivalently we can write the superembedding equation as $\hat{E}^{\underline{a}} = e^b \hat{E}^{\underline{a}}_b$.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
Superembedding	equation			

•
$$\hat{E}^{\underline{A}} := d\hat{Z}^{\underline{M}} E_{\underline{M}}^{\underline{A}}(\hat{Z}) = e^{\mathcal{B}} \mathcal{D}_{\mathcal{B}} \hat{Z}^{\underline{M}} E_{\underline{M}}^{\underline{A}}(\hat{Z}) = e^{\beta B} \hat{E}_{\beta B}^{\underline{A}} + e^{b} \hat{E}_{b}^{\underline{A}}$$
.

• The superembedding equation states that the pull–back of the bosonic supervielbein of $\Sigma^{(10|16)}$ to $\mathcal{W}^{(6|8)}$ has no fermionic projection

$$\hat{E}_{\beta B}{}^{\underline{a}} := \mathcal{D}_{\beta B} \hat{Z}^{\underline{\mathcal{M}}} E_{\underline{\mathcal{M}}}{}^{\underline{a}}(\hat{Z}) = 0$$
.

- Equivalently we can write the superembedding equation as $\hat{E}^{\underline{a}} = e^b \hat{E}^{\underline{a}}_b$.
- 6 ten-vectors $u_b^a = \hat{E}_b^a$ are linearly independent and can be chosen orthogonal and normalized,

$$\hat{E}^{\underline{a}} = e^{b} u^{\underline{a}}_{b}, \qquad u_{a\underline{a}} u^{\underline{a}}_{b} = \eta_{ab} = diag(+, -, -, -, -, -).$$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
Superembedding	equation			

•
$$\hat{E}^{\underline{A}} := d\hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\mathcal{B}} \mathcal{D}_{\mathcal{B}} \hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\beta B} \hat{E}_{\beta B}{}^{\underline{A}} + e^{b} \hat{E}_{b}{}^{\underline{A}} .$$

• The superembedding equation states that the pull–back of the bosonic supervielbein of $\Sigma^{(10|16)}$ to $\mathcal{W}^{(6|8)}$ has no fermionic projection

$$\hat{E}_{\beta B}{}^{\underline{a}} := \mathcal{D}_{\beta B} \hat{Z}^{\underline{\mathcal{M}}} E_{\underline{\mathcal{M}}}{}^{\underline{a}}(\hat{Z}) = 0$$
.

- Equivalently we can write the superembedding equation as $\hat{E}^{\underline{a}} = e^b \hat{E}^{\underline{a}}_b$.
- 6 ten-vectors $u_b^a = \hat{E}_b^a$ are linearly independent and can be chosen orthogonal and normalized,

$$\hat{E}^{\underline{a}} = e^{b} u^{\underline{a}}_{b}, \qquad u_{a\underline{a}} u^{\underline{a}}_{b} = \eta_{ab} = diag(+, -, -, -, -, -).$$

ullet \Rightarrow the worldvolume vielbein is induced by (super)embedding

$$e^a = \hat{E}^{\underline{a}} u^a_{\underline{a}}$$
 .

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
Superembedding	equation			

•
$$\hat{E}^{\underline{A}} := d\hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\mathcal{B}} \mathcal{D}_{\mathcal{B}} \hat{Z}^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(\hat{Z}) = e^{\beta B} \hat{E}_{\beta B}{}^{\underline{A}} + e^{b} \hat{E}_{b}{}^{\underline{A}} .$$

• The superembedding equation states that the pull–back of the bosonic supervielbein of $\Sigma^{(10|16)}$ to $\mathcal{W}^{(6|8)}$ has no fermionic projection

$$\hat{E}_{\beta B}{}^{\underline{a}} := \mathcal{D}_{\beta B} \hat{Z}^{\underline{\mathcal{M}}} E_{\underline{\mathcal{M}}}{}^{\underline{a}}(\hat{Z}) = 0$$
.

- Equivalently we can write the superembedding equation as $\hat{E}^{\underline{a}} = e^b \hat{E}^{\underline{a}}_b$.
- 6 ten-vectors $u_b^a = \hat{E}_b^a$ are linearly independent and can be chosen orthogonal and normalized,

$$\hat{E}^{\underline{a}} = e^{b} u^{\underline{a}}_{b}, \qquad u_{\underline{a}\underline{a}} u^{\underline{a}}_{b} = \eta_{ab} = diag(+, -, -, -, -, -).$$

ullet \Rightarrow the worldvolume vielbein is induced by (super)embedding

$$e^a = \hat{E}^{\underline{a}} u^a_{\underline{a}}$$
 .

• \Rightarrow 6 vectors $u_b^{\underline{a}}$ are tangential to the worldvolume superspace $\mathcal{W}^{(6|8)}$.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
Moving frame and	l induced geometry			

Moving frame and superembedding equation

• Equivalent form of the superembedding equation

$$\hat{E}^{\underline{a}} = e^{b} u^{\underline{a}}_{b}, \qquad u_{a\underline{a}} u^{\underline{a}}_{b} = \eta_{ab} = diag(+, -, -, -, -, -).$$

• \Rightarrow 6 vectors $u_b^{\underline{a}}$ are tangential to the worldvolume superspace $\mathcal{W}^{(6|8)}$.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
Moving frame and	induced geometry			

Moving frame and superembedding equation

• Equivalent form of the superembedding equation

$$\hat{E}^{\underline{a}} = e^{b} u^{\underline{a}}_{b}, \qquad u_{a\underline{a}} u^{\underline{a}}_{b} = \eta_{ab} = diag(+, -, -, -, -, -).$$

- \Rightarrow 6 vectors u_b^a are tangential to the worldvolume superspace $\mathcal{W}^{(6|8)}$.
- Actually, it is convenient to complete their set till *moving frame* by introducing four spatial 10-vectors u_{BB}^{a} orthogonal to them and normalized ($SO(4) = SU(2) \times SU(2)$),

$$\delta_{\underline{b}}{}^{\underline{a}} = u_{\underline{b}}{}^{c}u_{c}{}^{\underline{a}} - \frac{1}{2}u_{\underline{b}}{}^{\underline{A}\underline{B}}u_{\underline{A}\underline{B}}{}^{\underline{a}}, \qquad u_{\underline{a}}{}^{\underline{c}}u^{\underline{B}\underline{B}\underline{a}} = 0, \qquad u_{\underline{a}}{}^{\underline{A}\underline{A}}u^{\underline{B}\underline{B}\underline{a}} = -2\epsilon^{AB}\epsilon^{\underline{A}\underline{B}}$$

These vectors can be used to write one more equivalent form of the superembedding equation,

$$\hat{E}^{A\check{A}} := \hat{E}^{\underline{a}} u_{\underline{a}}^{A\check{A}} = 0 \; .$$

In	tro		

N=1 5-brane superembedding

'Simple' 5-brane equations

SO(32) heterotic 5-brane

Conclusions

Moving frame and induced geometry

Spinor moving frame and fermionic superveilbein

N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-
0000000		

Moving frame and induced geometry

Spinor moving frame and fermionic superveilbein

• We can also define the fermionic supervielbein $e^{\alpha A}$ induced by superembedding,

$$e^{lpha A} = \hat{E}^{\underline{lpha}} v_{\underline{lpha}}^{\ \ lpha A}$$
 .

Then consistency requires to identify $v_{\alpha}{}^{\alpha A}$ with one of the auxiliary spinor moving frame superfields (or spinorial Lorentz harmonics).

	N=1 5-brane superembedding
00000	0000000

'Simple' 5-brane equations

SO(32) heterotic 5-brane

Moving frame and induced geometry

Spinor moving frame and fermionic superveilbein

• We can also define the fermionic supervielbein $e^{\alpha A}$ induced by superembedding,

$$e^{lpha A} = \hat{E}^{\underline{lpha}} v_{\underline{lpha}}^{\ \ lpha A}$$
 .

Then consistency requires to identify $v_{\underline{\alpha}}{}^{\alpha A}$ with one of the auxiliary *spinor moving frame superfields* (or spinorial Lorentz harmonics).

 These are two rectangular blocks of a Spin(1,9) valued matrix (spinor moving frame matrix)

$$V_{\underline{\alpha}}^{(\underline{\beta})} = (v_{\underline{\alpha}}^{\ \underline{\beta}B}, v_{\underline{\alpha}\underline{\beta}}^{\ \underline{B}}) \in Spin(1,9) , \quad \beta = 1, ..., 4 , \quad B = 1, 2 , \quad \check{B} = 1, 2$$

'Simple' 5-brane equations

SO(32) heterotic 5-brane

Moving frame and induced geometry

Spinor moving frame and fermionic superveilbein

• We can also define the fermionic supervielbein $e^{\alpha A}$ induced by superembedding,

$$e^{lpha A} = \hat{E}^{\underline{lpha}} v_{\underline{lpha}}^{\ lpha A}$$
 .

Then consistency requires to identify $v_{\alpha}^{\ \alpha A}$ with one of the auxiliary *spinor moving frame superfields* (or spinorial Lorentz harmonics).

 These are two rectangular blocks of a Spin(1,9) valued matrix (spinor moving frame matrix)

$$V_{\underline{\alpha}}^{(\underline{\beta})} = (v_{\underline{\alpha}}^{\ \underline{\beta}B}, v_{\underline{\alpha}\underline{\beta}}^{\ \underline{B}}) \in Spin(1,9) \ , \quad \beta = 1, ..., 4 \ , \quad B = 1, 2 \ , \quad \check{B} = 1, 2$$

 which are related to the moving frame vectors by the following square-root-type relations

$$\begin{split} \mathbf{v}^{\alpha A} \tilde{\sigma}_{\underline{a}} \mathbf{v}^{\beta B} &= \epsilon^{AB} \tilde{\gamma}^{\alpha \beta}_{b} \mathbf{u}_{\underline{a}}{}^{b} , \qquad \mathbf{v}^{\check{A}}_{\alpha} \tilde{\sigma}_{\underline{a}} \mathbf{v}^{\check{B}}_{\beta} &= -\epsilon^{\check{A}\check{B}} \gamma_{b\alpha\beta} \mathbf{u}_{\underline{a}}{}^{b} , \\ \mathbf{v}^{\alpha A} \tilde{\sigma}_{\underline{a}} \mathbf{v}^{\check{B}}_{\beta} &= \delta^{\alpha}_{\beta} \mathbf{u}^{A\check{B}}_{\underline{a}} , \qquad \textit{etc.} . \end{split}$$

where $\gamma^{a}_{\gamma\delta} = -\gamma^{a}_{\delta\gamma}$ and $\tilde{\gamma}^{b\gamma\delta} = \frac{1}{2} \epsilon^{\alpha\beta\gamma\delta} \gamma_{a\gamma\delta}$ are d = 6 Pauli matrices, while $\sigma^{\underline{a}}_{\underline{\alpha}\underline{\beta}} = \sigma^{\underline{a}}_{\underline{\beta}\underline{\alpha}}, \tilde{\sigma}^{\underline{a}\underline{\alpha}\underline{\beta}} = \tilde{\sigma}^{\underline{a}\underline{\beta}\underline{\alpha}}$ are D = 10 Pauli matrices, $\sigma^{(\underline{a}}\tilde{\sigma}^{\underline{b})} = \eta^{(\underline{a}\underline{b})}$.

	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions		
000000	0000000		0000000			
Moving frame and	Maying frame and induced geometry					

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
Moving frame and	induced geometry			

• We can define the SO(1,5) and SO(4) connections on $\mathcal{W}^{(6|8)}$:

$$\mathcal{D}u_{\underline{b}}^{a} = \frac{1}{2}u_{\underline{b}A\check{\lambda}}\Omega^{aA\check{\lambda}}, \qquad \mathcal{D}u_{\underline{b}}^{A\check{\lambda}} = \frac{1}{2}u_{\underline{b}a}\Omega^{aA\check{\lambda}}.$$
 (*)

 $\Omega^{a\,\textit{A}\breve{A}}$ is the generalization of the $\frac{SO(1,9)}{SO(1,5)\otimes SO(4)}$ Cartan forms.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions	
Moving frame and	Moving frame and induced geometry				

• We can define the SO(1,5) and SO(4) connections on $\mathcal{W}^{(6|8)}$:

$$\mathcal{D}u_{\underline{b}}^{a} = \frac{1}{2} u_{\underline{b}A\check{A}} \Omega^{a\,A\check{A}} , \qquad \mathcal{D}u_{\underline{b}}^{A\check{A}} = \frac{1}{2} u_{\underline{b}a} \Omega^{a\,A\check{A}} . \qquad (*)$$

 $\Omega^{a\,A\check{A}}$ is the generalization of the $\frac{SO(1,9)}{SO(1,5)\otimes SO(4)}$ Cartan forms.

• The derivatives of spinor moving frame variables read

$$\mathcal{D} v_{\underline{\alpha}}^{\beta B} = \frac{1}{2} v_{\underline{\alpha}\gamma}^{\dot{A}} \tilde{\gamma}_{a}^{\gamma \beta} \epsilon_{\dot{A} \dot{B}} \Omega^{a B \dot{B}} , \qquad \mathcal{D} v_{\underline{\alpha}\beta}^{\dot{B}} = \frac{1}{2} v_{\underline{\alpha}}^{\gamma A} \gamma_{\gamma \beta}^{a} \epsilon_{A B} \Omega^{a B \dot{B}}$$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions	
Moving frame and	Moving frame and induced geometry				

• We can define the SO(1,5) and SO(4) connections on $\mathcal{W}^{(6|8)}$:

$$\mathcal{D}u_{\underline{b}}^{a} = \frac{1}{2} u_{\underline{b}A\check{A}} \Omega^{a\,A\check{A}} , \qquad \mathcal{D}u_{\underline{b}}^{A\check{A}} = \frac{1}{2} u_{\underline{b}a} \Omega^{a\,A\check{A}} . \qquad (*)$$

 $\Omega^{a\,A\check{A}}$ is the generalization of the $\frac{SO(1,9)}{SO(1,5)\otimes SO(4)}$ Cartan forms.

The derivatives of spinor moving frame variables read

$$\mathcal{D} v^{\beta B}_{\underline{\alpha}} = \frac{1}{2} v^{\check{A}}_{\underline{\alpha}\gamma} \tilde{\gamma}^{\gamma\beta}_{a} \epsilon_{\check{A}\check{B}} \Omega^{aB\check{B}} , \qquad \mathcal{D} v^{\check{A}}_{\underline{\alpha}\beta} = \frac{1}{2} v^{\gamma A}_{\underline{\alpha}} \gamma^{a}_{\gamma\beta} \epsilon_{AB} \Omega^{aB\check{B}}$$

The worldvolume curvature two form, r^{ab} = −r^{ba} and the curvature of normal bundle F_B^A and F_B^Å (SO(4) = SU(2) ⊗ SU(2)), can be now defined by Ricci identities

$$\mathcal{D}\mathcal{D}u_{\underline{b}}^{a} = \hat{R}_{\underline{b}}^{\underline{a}} u_{\underline{a}}^{a} - u_{\underline{a}}^{b} r_{b}^{a} , \qquad \mathcal{D}\mathcal{D}u_{\underline{b}}^{A\check{\lambda}} = \hat{R}_{\underline{b}}^{\underline{a}} u_{\underline{a}}^{A\check{\lambda}} - u_{\underline{a}}^{B\check{\lambda}} \mathcal{F}_{B}^{A} - u_{\underline{a}}^{A\check{B}} \mathcal{F}_{\check{B}}^{\check{\lambda}} ,$$

where $\hat{R}_{\underline{b}}^{\underline{a}}$ is the pull–back of the SO(1,9) curvature of $\Sigma^{(10|16)}$.
Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions		
Moving frame and	Moving frame and induced geometry					

Curvatures of the worldvolume superspace and of the normal bundle

The worldvolume curvature two form, r^{ab} = −r^{ba} and the curvature of normal bundle F_B^A and F_B^Å (SO(4) = SU(2) ⊗ SU(2)), can be now defined by Ricci identities

$$\mathcal{D}\mathcal{D}u_{\underline{b}}^{\ a} = \hat{R}_{\underline{b}}^{\ \underline{a}} u_{\underline{a}}^{\ a} - u_{\underline{a}}^{\ b} r_{\underline{b}}^{\ a} , \qquad \mathcal{D}\mathcal{D}u_{\underline{b}}^{A\check{A}} = \hat{R}_{\underline{b}}^{\ \underline{a}} u_{\underline{a}}^{A\check{A}} - u_{\underline{a}}^{B\check{A}} \mathcal{F}_{B}^{\ A} - u_{\underline{a}}^{A\check{B}} \mathcal{F}_{\check{B}}^{\ \dot{A}} ,$$

where $\hat{R}_{\underline{b}}^{\underline{a}}$ is the pull–back of the SO(1,9) curvature of $\Sigma^{(10|16)}$.

Intro 000000	N=1 5-brane superembedding ○○○○○○●	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions	
Noving frame and induced dependency					

Curvatures of the worldvolume superspace and of the normal bundle

The worldvolume curvature two form, r^{ab} = −r^{ba} and the curvature of normal bundle F_B^A and F_B^Å (SO(4) = SU(2) ⊗ SU(2)), can be now defined by Ricci identities

$$\mathcal{D}\mathcal{D}u^{a}_{\underline{b}} = \hat{R}_{\underline{b}}{}^{\underline{a}}u^{a}_{\underline{a}} - u^{b}_{\underline{a}}r^{a}_{b}, \qquad \mathcal{D}\mathcal{D}u^{A\check{A}}_{\underline{b}} = \hat{R}_{\underline{b}}{}^{\underline{a}}u^{A\check{A}}_{\underline{a}} - u^{B\check{A}}_{\underline{a}}\mathcal{F}_{B}{}^{A} - u^{A\check{B}}_{\underline{a}}\mathcal{F}_{\check{B}}{}^{\check{A}},$$

where $\hat{R}_{\underline{b}}^{\underline{a}}$ is the pull–back of the SO(1,9) curvature of $\Sigma^{(10|16)}$.

• Substituting $\mathcal{D}u_{\underline{b}}^{a} = \frac{1}{2}u_{\underline{b}A\dot{\lambda}}\Omega^{aA\dot{\lambda}}$ and $\mathcal{D}u_{\underline{b}}^{A\dot{\lambda}} = \frac{1}{2}u_{\underline{b}a}\Omega^{aA\dot{\lambda}}$, we find the following superfield generalization of the Peterson–Codazzi, Gauss and Ricci equations [BPSTV:= *I.B.*, Pasti, Sorokin, Tonin, Volkov, 1995]

$$\begin{split} D\Omega^{a\,A\check{A}} &= \hat{R}^{a\,A\check{A}} , \qquad r^{ab} = \hat{R}^{ab} + \frac{1}{2}\Omega^{a}_{A\check{A}} \wedge \Omega^{b\,A\check{A}} , \\ \mathcal{F}_{B}{}^{A} &= \frac{1}{4}\hat{R}^{A\check{B}}_{B\check{B}} + \frac{1}{4}\Omega_{B\check{B}} \wedge \Omega^{b\,A\check{B}} , \qquad \mathcal{F}_{\check{B}}{}^{\check{A}} = \frac{1}{4}\hat{R}^{B\check{A}}_{B\check{B}} + \frac{1}{4}\Omega_{bB\check{B}} \wedge \Omega^{b\,B\check{A}} , \\ \text{where } \hat{R}^{a\,A\check{A}} &:= \hat{R}^{\underline{a}\underline{b}}u^{a}_{\underline{a}}u^{A\check{A}}_{\underline{b}}, \quad \hat{R}^{a\,b} := \hat{R}^{\underline{a}\underline{b}}u^{a}_{\underline{a}}u^{b}_{\underline{b}} \text{ and } \hat{R}^{A\check{A}}_{B\check{B}} := \hat{R}^{\underline{a}\underline{b}}u_{\underline{a}B\check{B}}u^{A\check{A}}_{\underline{b}}. \end{split}$$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane
Outline			

- SUSY extended objects
- 'Simple' D=10, N=1 5-brane and heterotic 5-branes
- - Worldvolume superspace and superembedding equation
 - Moving, and spinor moving frame and geometry induced by

'Simple' 5-brane equations of motion from superembedding approach 3

- - Basic superfield equations of the SO(32) heterotic 5-brane
 - From basic superfield equations for SO(32) heterotic 5-brane to

The selfconsistency conditions for the superembedding equation $\hat{E}^{A\dot{A}} = \hat{E}^{\underline{a}} u_{\underline{a}}^{A\dot{A}} = 0$

	N=1 5-brane	superembeddir
00	0000000	

SO(32) heterotic 5-brane

The selfconsistency conditions for the superembedding equation $\hat{E}^{A\check{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

• can be collected in the differential form equation

$$\mathcal{D} = \mathcal{D}\hat{\mathcal{E}}^{A\check{A}} = \hat{T}^{\underline{a}}u_{\underline{a}}^{A\dot{A}} + \hat{\mathcal{E}}^{\underline{a}} \wedge \mathcal{D}u_{\underline{a}}^{A\check{A}}$$

	N=1 5-brane	superembeddir
000	0000000	

SO(32) heterotic 5-brane

The selfconsistency conditions for the superembedding equation $\hat{E}^{A\check{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

can be collected in the differential form equation

$$\mathcal{D} = \mathcal{D}\hat{\mathcal{E}}^{A\check{A}} = \hat{\mathcal{T}}^{\underline{a}}u^{A\check{A}}_{\underline{a}} + \hat{\mathcal{E}}^{\underline{a}} \wedge \mathcal{D}u^{A\check{A}}_{\underline{a}} + \hat{\mathcal{E}}^{\underline{a}}$$

• where $\hat{T}^{\underline{a}}$ is the pull-back to $\mathcal{W}^{(6|8)}$ of $T^{\underline{a}} := DE^{\underline{a}} := dE^{\underline{a}} - E^{\underline{b}} \wedge \omega_{\underline{b}}^{\underline{a}}$

SO(32) heterotic 5-brane

The selfconsistency conditions for the superembedding equation $\hat{E}^{A\check{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

• can be collected in the differential form equation

$$0 = \mathcal{D}\hat{E}^{A\check{A}} = \hat{T}^{\underline{a}}u_{\underline{a}}^{A\dot{A}} + \hat{E}^{\underline{a}} \wedge \mathcal{D}u_{\underline{a}}^{A\check{A}},$$

• where $\hat{T}^{\underline{a}}$ is the pull–back to $\mathcal{W}^{(6|8)}$ of $T^{\underline{a}} := DE^{\underline{a}} := dE^{\underline{a}} - E^{\underline{b}} \wedge \omega_{\underline{b}}^{\underline{a}}$

• The D = 10, N = 1 supergravity constraints imply that

$$T^{\underline{a}} := DE^{\underline{a}} = -iE^{\underline{\alpha}} \wedge E^{\underline{\beta}}\sigma^{\underline{a}}_{\underline{\alpha}\underline{\beta}}$$

SO(32) heterotic 5-brane

The selfconsistency conditions for the superembedding equation $\hat{E}^{A\check{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

• can be collected in the differential form equation

$$0 = \mathcal{D}\hat{E}^{A\check{A}} = \hat{T}^{\underline{a}}u_{\underline{a}}^{A\dot{A}} + \hat{E}^{\underline{a}} \wedge \mathcal{D}u_{\underline{a}}^{A\check{A}},$$

- where $\hat{T}^{\underline{a}}$ is the pull–back to $\mathcal{W}^{(6|8)}$ of $T^{\underline{a}} := DE^{\underline{a}} := dE^{\underline{a}} E^{\underline{b}} \wedge \omega_{\underline{b}}^{\underline{a}}$
- The D = 10, $\mathcal{N} = 1$ supergravity constraints imply that

$$T^{\underline{a}} := DE^{\underline{a}} = -iE^{\underline{\alpha}} \wedge E^{\underline{\beta}}\sigma^{\underline{a}}_{\underline{\alpha}\underline{\beta}} ,$$

• and also [Nilsson, Tollsen 86, ... , Tonin, Lechner, Bonora, ... 1988]

$$\begin{split} T^{\underline{\alpha}} &:= DE^{\underline{\alpha}} = \frac{i}{4} E^{\underline{b}} \wedge E^{\underline{\beta}} (\sigma^{\underline{a}_1 \underline{a}_2 \underline{a}_3} \sigma_{\underline{b}})_{\underline{\beta}}{}^{\underline{\alpha}} h_{\underline{a}_1 \underline{a}_2 \underline{a}_3} + \frac{1}{2} E^{\underline{b}} \wedge E^{\underline{a}} T_{\underline{a}\underline{b}}{}^{\underline{\alpha}} , \\ R^{\underline{a}\underline{b}} &:= d\omega^{\underline{a}\underline{b}} - \omega^{[\underline{a}]\underline{c}} \wedge \omega_{\underline{c}}{}^{[\underline{b}]} = \frac{1}{2} E^{\underline{\alpha}} \wedge E^{\underline{\beta}} \left(\sigma^{\underline{a}_1 \underline{a}_2 \underline{a}_3 \underline{a}\underline{b}} h_{\underline{a}_1 \underline{a}_2 \underline{a}_3} - 6 h^{\underline{a}\underline{b}\underline{c}} \sigma_{\underline{c}} \right)_{\underline{\alpha}\underline{\beta}} + \\ &+ E^{\underline{c}} \wedge E^{\underline{\beta}} \left[-iT^{\underline{a}\underline{b}\underline{\beta}} \sigma_{\underline{c}\underline{\beta}\underline{\alpha}} + 2iT_{\underline{c}}^{[\underline{a}\underline{\beta}} \sigma^{\underline{b}]}_{\underline{\beta}\underline{\alpha}} \right] + \frac{1}{2} E^{\underline{d}} \wedge E^{\underline{c}} R_{\underline{c}\underline{d}} \frac{a\underline{b}}{\underline{b}} \end{split}$$

SO(32) heterotic 5-brane

The selfconsistency conditions for the superembedding equation $\hat{E}^{A\dot{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

• can be collected in the differential form equation

$$0 = \mathcal{D}\hat{E}^{A\check{A}} = \hat{T}^{\underline{a}}u_{\underline{a}}^{A\dot{A}} + \hat{E}^{\underline{a}} \wedge \mathcal{D}u_{\underline{a}}^{A\check{A}} ,$$

- where $\hat{T}^{\underline{a}}$ is the pull–back to $\mathcal{W}^{(6|8)}$ of $T^{\underline{a}} := DE^{\underline{a}} := dE^{\underline{a}} E^{\underline{b}} \wedge \omega_{\underline{b}}^{\underline{a}}$
- The D = 10, $\mathcal{N} = 1$ supergravity constraints imply that

$$T^{\underline{a}} := DE^{\underline{a}} = -iE^{\underline{\alpha}} \wedge E^{\underline{\beta}}\sigma^{\underline{a}}_{\underline{\alpha}\underline{\beta}} ,$$

• and also [Nilsson, Tollsen 86, ... , Tonin, Lechner, Bonora, ... 1988]

$$\begin{split} T^{\underline{\alpha}} &:= DE^{\underline{\alpha}} = \frac{i}{4}E^{\underline{b}} \wedge E^{\underline{\beta}}(\sigma^{\underline{a}_{1}\underline{a}_{2}\underline{a}_{3}}\sigma_{\underline{b}})_{\underline{\beta}}{}^{\underline{\alpha}}h_{\underline{a}_{1}\underline{a}_{2}\underline{a}_{3}} + \frac{1}{2}E^{\underline{b}} \wedge E^{\underline{a}}T_{\underline{a}\underline{b}}{}^{\underline{\alpha}} ,\\ R^{\underline{a}\underline{b}} &:= d\omega^{\underline{a}\underline{b}} - \omega^{\underline{[a]}\underline{c}} \wedge \omega_{\underline{c}}{}^{\underline{[b]}} = \frac{1}{2}E^{\underline{\alpha}} \wedge E^{\underline{\beta}}\left(\sigma^{\underline{a}_{1}\underline{a}_{2}\underline{a}_{3}\underline{a}\underline{b}}h_{\underline{a}_{1}\underline{a}_{2}\underline{a}_{3}} - 6h^{\underline{a}\underline{b}\underline{c}}\sigma_{\underline{c}}\right)_{\underline{\alpha}\underline{\beta}} + \\ &+ E^{\underline{c}} \wedge E^{\underline{\beta}}\left[-iT^{\underline{a}\underline{b}\underline{\beta}}\sigma_{\underline{c}\underline{\beta}\underline{\alpha}} + 2iT_{\underline{c}}^{\underline{[a]}\underline{\beta}}\sigma^{\underline{b}}_{\underline{\beta}\underline{\alpha}}\right] + \frac{1}{2}E^{\underline{d}} \wedge E^{\underline{c}}R_{cd}^{\underline{a}\underline{b}} \end{split}$$

 h_{a1a2a3} = h_[a1a2a3] is related to the field strength of the 2-form (Ogievetsky–Polubarinov–Kalb-Ramond) gauge field B_{ab} = B_[ab].

SO(32) heterotic 5-brane

The selfconsistency conditions for the superembedding equation $\hat{E}^{A\dot{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

• can be collected in the differential form equation

$$0 = \mathcal{D}\hat{E}^{A\check{A}} = \hat{T}^{\underline{a}}u_{\underline{a}}^{A\dot{A}} + \hat{E}^{\underline{a}} \wedge \mathcal{D}u_{\underline{a}}^{A\check{A}} ,$$

• where $\hat{T}^{\underline{a}}$ is the pull–back to $\mathcal{W}^{(6|8)}$ of $T^{\underline{a}} := DE^{\underline{a}} := dE^{\underline{a}} - E^{\underline{b}} \wedge \omega_{\underline{b}}^{\underline{a}}$

• The D = 10, $\mathcal{N} = 1$ supergravity constraints imply that

$$T^{\underline{a}} := DE^{\underline{a}} = -iE^{\underline{\alpha}} \wedge E^{\underline{\beta}}\sigma^{\underline{a}}_{\underline{\alpha}\underline{\beta}} ,$$

• and also [Nilsson, Tollsen 86, ... , Tonin, Lechner, Bonora, ... 1988]

$$T^{\underline{\alpha}} := DE^{\underline{\alpha}} = \frac{i}{4} E^{\underline{b}} \wedge E^{\underline{\beta}} (\sigma^{\underline{a}_1 \underline{a}_2 \underline{a}_3} \sigma_{\underline{b}})_{\underline{\beta}}{}^{\underline{\alpha}} h_{\underline{a}_1 \underline{a}_2 \underline{a}_3} + \frac{1}{2} E^{\underline{b}} \wedge E^{\underline{a}} T_{\underline{a}\underline{b}}{}^{\underline{\alpha}} ,$$

$$R^{\underline{a}\underline{b}} := d\omega^{\underline{a}\underline{b}} - \omega^{[\underline{a}]\underline{c}} \wedge \omega_{\underline{c}}{}^{|\underline{b}]} = \frac{1}{2} E^{\underline{\alpha}} \wedge E^{\underline{\beta}} (\sigma^{\underline{a}_1 \underline{a}_2 \underline{a}_3 \underline{a}\underline{b}} h_{\underline{a}_1 \underline{a}_2 \underline{a}_3} - 6h^{\underline{a}\underline{b}\underline{c}} \sigma_{\underline{c}})_{\underline{\alpha}\underline{\beta}} +$$

$$+E^{\underline{c}}\wedge E^{\underline{\beta}}\left[-iT^{\underline{a}\underline{b}\underline{\beta}}_{\underline{c}}\sigma_{\underline{c}\underline{\beta}\underline{\alpha}}+2iT_{\underline{c}}^{\underline{[a}\underline{\beta}}\sigma\underline{b]}_{\underline{\beta}\underline{\alpha}}\right]+\frac{1}{2}E^{\underline{d}}\wedge E^{\underline{c}}R_{\underline{cd}}^{\underline{a}\underline{b}}$$

- h_{a₁a₂a₃} = h_[a₁a₂a₃] is related to the field strength of the 2-form (Ogievetsky–Polubarinov–Kalb-Ramond) gauge field B_{ab} = B_[ab].
- The modifications of the constraints to account for anomalies/ modifications of the BIs for H₃ and H₇ were studied during 25 years by many groups [B.E.W. Nilsson 86, ... Tonin, Lechner 2008, Howe 2008].

Simple 5-brane equations from superembedding equation $\hat{E}^{A\check{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

	N=1	5-brane	superemb	peddir
D	00	00000		

SO(32) heterotic 5-brane

Simple 5-brane equations from superembedding equation $\hat{E}^{A\check{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

Studying

$$0 = \mathcal{D}\hat{E}^{A\check{A}} = \hat{T}^{\underline{a}} u_{\underline{a}}^{A\check{A}} + \hat{E}^{\underline{a}} \wedge \mathcal{D} u_{\underline{a}}^{A\check{A}} =$$
$$= -iE^{\underline{\alpha}} \wedge E^{\underline{\beta}} \sigma_{\underline{\alpha}\underline{\beta}}^{\underline{a}} u_{\underline{a}}^{A\check{A}} + \hat{E}^{\underline{a}} u_{\underline{a}b} \wedge \Omega^{bA\check{A}} =$$
$$= -4ie^{\alpha A} \wedge \hat{E}^{\check{A}}_{\alpha} + e_b \wedge \Omega^{bA\check{A}} = 0$$

N=1	5-brane	superembeddin
000	00000	

SO(32) heterotic 5-brane

Conclusions

Simple 5-brane equations from superembedding equation $\hat{E}^{A\dot{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

Studying

$$\begin{split} 0 &= \mathcal{D}\hat{E}^{A\check{A}} = \hat{T}^{\underline{a}} U_{\underline{a}}^{A\check{A}} + \hat{E}^{\underline{a}} \wedge \mathcal{D} U_{\underline{a}}^{A\check{A}} = \\ &= -iE^{\underline{\alpha}} \wedge E^{\underline{\beta}} \sigma_{\underline{\alpha}\underline{\beta}}^{\underline{a}} U_{\underline{a}}^{A\check{A}} + \hat{E}^{\underline{a}} U_{\underline{a}b} \wedge \Omega^{bA\check{A}} = \\ &= -4ie^{\alpha A} \wedge \hat{E}_{\alpha}^{\check{A}} + e_b \wedge \Omega^{bA\check{A}} = 0 \,, \end{split}$$

• we find $(e^{\alpha A} = \hat{E}^{\underline{\alpha}} v_{\underline{\alpha}}^{\ \alpha A})$

with symmetric $K_{ab}^{A\dot{A}} := -\mathcal{D}_a E_b^{\underline{a}} u_{\underline{a}}^{A\dot{A}} = K_{ba}^{A\dot{A}}$ generalizing the second fundamental form of the Surface Theory.

Simple 5-brane equations from superembedding equation $\hat{E}^{A\dot{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

Studying

$$\begin{split} 0 &= \mathcal{D}\hat{E}^{A\dot{A}} = \hat{T}^{\underline{a}} u_{\underline{a}}^{A\dot{A}} + \hat{E}^{\underline{a}} \wedge \mathcal{D} u_{\underline{a}}^{A\dot{A}} = \\ &= -iE^{\underline{\alpha}} \wedge E^{\underline{\beta}} \sigma_{\underline{\alpha}\underline{\beta}}^{\underline{a}} u_{\underline{a}}^{A\dot{A}} + \hat{E}^{\underline{a}} u_{\underline{a}b} \wedge \Omega^{bA\dot{A}} = \\ &= -4ie^{\alpha A} \wedge \hat{E}^{\dot{A}}_{\alpha} + e_b \wedge \Omega^{bA\dot{A}} = 0 , \end{split}$$

• we find $(e^{\alpha A} = \hat{E}^{\underline{\alpha}} v_{\underline{\alpha}}^{\ \alpha A})$

$$\begin{array}{lll} \hat{E}^{\check{A}}_{\alpha} & := & \hat{E}^{\underline{\alpha}} v_{\underline{\alpha}\underline{\alpha}}^{\check{A}} = e^{a} \chi_{a\underline{\alpha}}^{\check{A}} \,, \\ \Omega^{bA\dot{A}} & = & 4i e^{\alpha A} \chi_{a\underline{\alpha}}^{\check{A}} + e^{b} K_{b}^{aA\dot{A}} \,, \end{array}$$

with symmetric $K_{ab}^{A\check{A}} := -\mathcal{D}_a E_b^{\underline{a}} U_{\underline{a}}^{A\check{A}} = K_{ba}^{A\check{A}}$ generalizing the second fundamental form of the Surface Theory.

• Linearized and gauge fixed version $E_b^{\underline{a}} \mapsto \partial_b \hat{x}^{\underline{a}}$, $K_a^{a A \check{A}} \mapsto \partial_a \partial_b \hat{x}^{A \check{A}}$ indicates that the dynamical bosonic equations for the super-5-brane can be formulated as an expression for the trace of $K_{ab}^{A \check{A}}$, mean *curvature*, $\mathcal{H}^{A \check{A}} := K_a^{a A \check{A}} \mapsto \partial_a \partial^a \hat{x}^{A \check{A}}$.

	N=1	5-brane	superembedding
00000	00	00000	

۲

'Simple' 5-brane equations

 $0 = \mathcal{D}\hat{E}^{A\check{A}} \quad \Rightarrow , \begin{cases} \hat{E}^{\check{A}}_{\alpha} := \hat{E}^{\underline{\alpha}} v_{\underline{\alpha}}^{\check{A}} = e^{a} \chi_{a\alpha}^{\check{A}} ,\\ \Omega^{bA\dot{A}} = 4i e^{\alpha A} \chi_{a\alpha}^{\check{A}} + e^{b} K_{b}^{a\,A\check{A}} , \end{cases}$

SO(32) heterotic 5-brane

Conclusions

Simple 5-brane equations from superembedding equation $\hat{E}^{A\dot{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

with symmetric $K_{ab}^{A\check{A}} := -\mathcal{D}_a E_b^{\underline{a}} u_a^{A\check{A}} = K_{ba}^{A\check{A}}$.

	N=1	5-brane	superembeddin
0000	00	00000	

۲

'Simple' 5-brane equations

 $0 = \mathcal{D}\hat{E}^{A\check{A}} \quad \Rightarrow , \begin{cases} \hat{E}^{\check{A}}_{\alpha} := \hat{E}^{\alpha}v_{\underline{\alpha}}^{\ \dot{A}} = e^{a}\chi_{a\alpha}^{\ \dot{A}} ,\\ \Omega^{bA\dot{A}} = 4ie^{\alpha A}\chi_{a\alpha}^{\ \dot{A}} + e^{b}K_{b}^{\ aA\check{A}} , \end{cases}$

SO(32) heterotic 5-brane

Simple 5-brane equations from superembedding equation $\hat{E}^{A\dot{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

with symmetric $K_{ab}{}^{A\check{A}} := -\mathcal{D}_a E_b^a U_a^{A\check{A}} = K_{ba}{}^{A\check{A}}.$ • $0 = \mathcal{D}(\hat{E}_{\alpha}^{\check{A}} - e^a \chi_{a\alpha}^{\check{A}}) = \mathcal{D}(\hat{E}_{\alpha}^{\alpha} V_{\alpha\alpha}^{\check{A}} - e^a \chi_{a\alpha}^{\check{A}}) = 0 \Rightarrow$

N=1 5-brane superembedding

SO(32) heterotic 5-brane

Simple 5-brane equations from superembedding equation $\hat{E}^{A\dot{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

$$0 = \mathcal{D}\hat{E}^{A\check{A}} \quad \Rightarrow, \begin{cases} \hat{E}^{\check{A}}_{\alpha} := \hat{E}^{\underline{\alpha}} v_{\underline{\alpha}\alpha}^{\check{A}} = \boldsymbol{e}^{a} \chi_{a\alpha}^{\check{A}} ,\\ \Omega^{b A \dot{A}} = 4 \boldsymbol{i} \boldsymbol{e}^{\alpha A} \chi_{a\alpha}^{\check{A}} + \boldsymbol{e}^{b} K_{b}^{a A \check{A}} \end{cases}$$

with symmetric $K_{ab}^{A\check{A}} := -\mathcal{D}_a E_b^{\underline{a}} U_{\underline{a}}^{A\check{A}} = K_{ba}^{A\check{A}}$.

• $0 = \mathcal{D}(\hat{E}^{\check{A}}_{\alpha} - e^{a}\chi^{\check{A}}_{a_{\alpha}}) = \mathcal{D}(\hat{E}^{\underline{\alpha}}v_{\underline{\alpha}\alpha}^{\check{A}} - e^{a}\chi^{\check{A}}_{a_{\alpha}}) = 0 \Rightarrow$

• \Rightarrow fermionic equations of motion (free linearized limit: $\tilde{\gamma}^{a\alpha\beta}\partial_a\hat{\theta}^{\dot{A}}_{\beta} = 0$)

$$\tilde{\gamma}^{a\alpha\beta}\chi^{\check{A}}_{a\beta} = 0 \qquad \Leftrightarrow \qquad \tilde{\gamma}^{a\alpha\beta}\hat{E}_{a}^{\ \alpha}v_{\underline{\alpha}\alpha}^{\ \check{A}} = 0$$

	N=1 5-brane	superembedding
00000	0000000	

SO(32) heterotic 5-brane

Simple 5-brane equations from superembedding equation $\hat{E}^{A\dot{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

$$0 = \mathcal{D}\hat{E}^{A\check{A}} \quad \Rightarrow, \begin{cases} \hat{E}^{\check{A}}_{\alpha} := \hat{E}^{\underline{\alpha}} v_{\underline{\alpha}}^{\check{A}} = e^{a} \chi_{a\alpha}^{\check{A}} ,\\ \Omega^{b A \check{A}} = 4 i e^{\alpha A} \chi_{a\alpha}^{\check{A}} + e^{b} K_{b}^{a A \check{A}} \end{cases}$$

with symmetric $K_{ab}^{A\check{A}} := -\mathcal{D}_{a}E_{b}^{\underline{a}} u_{\underline{a}}^{A\check{A}} = K_{ba}^{A\check{A}}$.

• $0 = \mathcal{D}(\hat{E}^{\check{A}}_{\alpha} - e^a \chi^{\check{A}}_{a_{\alpha}}) = \mathcal{D}(\hat{E}^{\underline{\alpha}} v_{\underline{\alpha}\underline{\alpha}}^{\check{A}} - e^a \chi^{\check{A}}_{a_{\alpha}}) = 0 \Rightarrow$

• \Rightarrow fermionic equations of motion (free linearized limit: $\tilde{\gamma}^{a\alpha\beta}\partial_a\hat{\theta}^{\check{A}}_{\beta} = 0$)

$$\tilde{\gamma}^{a\alpha\beta}\chi^{\check{A}}_{a\beta} = 0 \qquad \Leftrightarrow \qquad \tilde{\gamma}^{a\alpha\beta}\hat{E}_{a}^{\ \alpha}v_{\underline{\alpha}\alpha}^{\ \check{A}} = 0$$

• \Rightarrow bosonic equation of motion (free lin. limit: $\partial_a \partial^a \hat{x}^{A\dot{A}} = 0$)

$$\eta^{bc} \mathcal{K}_{bc \ B\check{A}} := -D^c \hat{E}_c{}^{\underline{a}} u_{\underline{a}B\check{A}} = \frac{3i}{2} h_{\underline{a}bc}(\hat{Z}) \ u_{B\check{C}}^{\underline{a}} u^{\underline{b}C\check{C}} u_{C\check{A}}^{\underline{c}} ,$$

N=1	5-brane	superembedding
	00000	

SO(32) heterotic 5-brane

Simple 5-brane equations from superembedding equation $\hat{E}^{A\dot{A}} = \hat{E}^{\underline{a}} u_{a}^{A\dot{A}} = 0$

$$0 = \mathcal{D}\hat{E}^{A\check{A}} \quad \Rightarrow, \begin{cases} \hat{E}^{\check{A}}_{\alpha} := \hat{E}^{\underline{\alpha}} v_{\underline{\alpha}}^{\check{A}} = e^{a} \chi_{a\alpha}^{\check{A}} ,\\ \Omega^{b A \check{A}} = 4 i e^{\alpha A} \chi_{a\alpha}^{\check{A}} + e^{b} K_{b}^{a A \check{A}} \end{cases}$$

with symmetric $K_{ab}^{A\check{A}} := -\mathcal{D}_a E_b^{\underline{a}} U_{\underline{a}}^{A\check{A}} = K_{ba}^{A\check{A}}$.

• $0 = \mathcal{D}(\hat{E}^{\check{A}}_{\alpha} - e^a \chi^{\check{A}}_{a_{\alpha}}) = \mathcal{D}(\hat{E}^{\underline{\alpha}} v_{\underline{\alpha}\underline{\alpha}}^{\check{A}} - e^a \chi^{\check{A}}_{a_{\alpha}}) = 0 \Rightarrow$

• \Rightarrow fermionic equations of motion (free linearized limit: $\tilde{\gamma}^{a\alpha\beta}\partial_a\hat{\theta}^{\dot{A}}_{\beta} = 0$)

$$\tilde{\gamma}^{a\alpha\beta}\chi^{\check{A}}_{a\beta} = 0 \qquad \Leftrightarrow \qquad \tilde{\gamma}^{a\alpha\beta}\hat{E}_{a}^{\ \alpha}v_{\underline{\alpha}\alpha}^{\ \check{A}} = 0$$

• \Rightarrow bosonic equation of motion (free lin. limit: $\partial_a \partial^a \hat{x}^{A\dot{A}} = 0$)

$$\eta^{bc}\mathcal{K}_{bc\;B\check{A}}:=-D^c\hat{E}_c{}^{\underline{a}}u_{\underline{a}B\check{A}}=rac{3i}{2}h_{\underline{a}bc}(\hat{Z})\;u_{B\check{C}}^{\underline{a}}u^{\underline{b}C\check{C}}u_{C\check{A}}^{\underline{c}}\;,$$

 → the restriction on the Ogievetsky–Polubarinov–Kalb–Ramond flux,

 $h_{\underline{abc}}(\hat{Z})u_{\underline{a}}^{\underline{a}}u_{\underline{b}}^{\underline{b}}u_{\underline{A}\check{A}}^{\underline{c}}=0$.

Outline

Introduction

- SUSY extended objects
- 'Simple' D=10, N=1 5-brane and heterotic 5-branes
- 2 Superembedding approach for 'simple' N=1, D=10 5-brane
 - Worldvolume superspace and superembedding equation
 - Moving, and spinor moving frame and geometry induced by superembedding
- 3 'Simple' 5-brane equations of motion from superembedding approach
- Superembedding description of the SO(32) heterotic 5-brane
 - Basic superfield equations of the SO(32) heterotic 5-brane
 - From basic superfield equations for SO(32) heterotic 5-brane to equations of motion.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane ●000000	Conclusion
SO(32) H5-bra	ne superfield eas			

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
SO(32) H5-brane	superfield eqs			

• Our basic proposition is to describe the SO(32) heterotic 5-brane by

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane ●000000	Conclusions
SO(32) H5-brane	superfield eqs			

- Our basic proposition is to describe the SO(32) heterotic 5-brane by
- superfield equations of supermultiplet in (2,32) of $SU(2) \times SO(32)$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane ●000000	Conclusions
SO(32) H5-brane superfield eqs				

- Our basic proposition is to describe the SO(32) heterotic 5-brane by
- superfield equations of supermultiplet in (2,32) of $SU(2) \times SO(32)$
- and by the constraints of the d=6, SU(2) SYM

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
SO(32) H5-brane	superfield eqs			

- Our basic proposition is to describe the SO(32) heterotic 5-brane by
- superfield equations of supermultiplet in (2,32) of $SU(2) \times SO(32)$
- and by the constraints of the d=6, SU(2) SYM
- on the worldvolume superspace of 'simple' 5-brane $\mathcal{W}^{(6|8)}$.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusior
SO(32) H5-brane	superfield eqs			

- Our basic proposition is to describe the SO(32) heterotic 5-brane by
- superfield equations of supermultiplet in (2,32) of $SU(2) \times SO(32)$
- and by the constraints of the d=6, SU(2) SYM
- on the worldvolume superspace of 'simple' 5-brane $\mathcal{W}^{(6|8)}$.
- This latter assumption in practical term implies that the embedding of $\mathcal{W}^{(6|8)}$ into the curved superspace of SUGRA+SO(32) SYM theory is defined by the superembedding equation $\hat{E}_{\alpha A}{}^{\underline{a}} = 0 \Leftrightarrow \hat{E}^{A\lambda} = \hat{E}^{\underline{a}} u_{a}^{A\lambda} = 0$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusio
SO(32) H5-brane	e superfield eqs			

- Our basic proposition is to describe the SO(32) heterotic 5-brane by
- superfield equations of supermultiplet in (2,32) of $SU(2) \times SO(32)$
- and by the constraints of the d=6, SU(2) SYM
- on the worldvolume superspace of 'simple' 5-brane $\mathcal{W}^{(6|8)}$.
- This latter assumption in practical term implies that the embedding of $\mathcal{W}^{(6|8)}$ into the curved superspace of SUGRA+SO(32) SYM theory is defined by the superembedding equation $\hat{E}_{\alpha A}{}^{a} = 0 \Leftrightarrow \hat{E}^{A\dot{\lambda}} = \hat{E}^{a} u_{a}^{A\dot{\lambda}} = 0$
- This item can be modified Ê_{αA}^a = 0 → Ê_{αA}^a = ... (although it is not easy to modify superembedding eq. and to get a manageable system)

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusi
SO(32) H5-brane	e superfield eqs			

- Our basic proposition is to describe the SO(32) heterotic 5-brane by
- superfield equations of supermultiplet in (2,32) of $SU(2) \times SO(32)$
- and by the constraints of the d=6, SU(2) SYM
- on the worldvolume superspace of 'simple' 5-brane $\mathcal{W}^{(6|8)}$.
- This latter assumption in practical term implies that the embedding of $\mathcal{W}^{(6|8)}$ into the curved superspace of SUGRA+SO(32) SYM theory is defined by the superembedding equation $\hat{E}_{\alpha A}{}^{a} = 0 \Leftrightarrow \hat{E}^{A\dot{\lambda}} = \hat{E}^{a} u_{a}^{A\dot{\lambda}} = 0$
- This item can be modified Ê_{αA}^a = 0 → Ê_{αA}^a = ... (although it is not easy to modify superembedding eq. and to get a manageable system)
- But it is natural to begin from superspace $\mathcal{W}^{(6|8)} \subset \Sigma^{(10|16)}$ obeying $\hat{E}_{\alpha A}{}^{\underline{a}} = 0$, at least as an approximation

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusi
SO(32) H5-brane	e superfield eqs			

- Our basic proposition is to describe the SO(32) heterotic 5-brane by
- superfield equations of supermultiplet in (2,32) of $SU(2) \times SO(32)$
- and by the constraints of the d=6, SU(2) SYM
- on the worldvolume superspace of 'simple' 5-brane $\mathcal{W}^{(6|8)}$.
- This latter assumption in practical term implies that the embedding of $\mathcal{W}^{(6|8)}$ into the curved superspace of SUGRA+SO(32) SYM theory is defined by the superembedding equation $\hat{E}_{\alpha A}{}^{a} = 0 \Leftrightarrow \hat{E}^{A\dot{\lambda}} = \hat{E}^{a} u_{a}^{A\dot{\lambda}} = 0$
- This item can be modified Ê_{αA}^a = 0 → Ê_{αA}^a = ... (although it is not easy to modify superembedding eq. and to get a manageable system)
- But it is natural to begin from superspace $\mathcal{W}^{(6|8)} \subset \Sigma^{(10|16)}$ obeying $\hat{E}_{\alpha A}{}^{\underline{a}} = 0$, at least as an approximation
- The geometry of such a superspace has been completely described by the above study:

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusi
SO(32) H5-brane	e superfield eqs			

- Our basic proposition is to describe the SO(32) heterotic 5-brane by
- superfield equations of supermultiplet in (2,32) of $SU(2) \times SO(32)$
- and by the constraints of the d=6, SU(2) SYM
- on the worldvolume superspace of 'simple' 5-brane $\mathcal{W}^{(6|8)}$.
- This latter assumption in practical term implies that the embedding of $\mathcal{W}^{(6|8)}$ into the curved superspace of SUGRA+SO(32) SYM theory is defined by the superembedding equation $\hat{E}_{\alpha A}{}^{a} = 0 \Leftrightarrow \hat{E}^{A\dot{\lambda}} = \hat{E}^{a} u_{a}^{A\dot{\lambda}} = 0$
- This item can be modified Ê_{αA}^a = 0 → Ê_{αA}^a = ... (although it is not easy to modify superembedding eq. and to get a manageable system)
- But it is natural to begin from superspace $\mathcal{W}^{(6|8)} \subset \Sigma^{(10|16)}$ obeying $\hat{E}_{\alpha A}{}^{\underline{a}} = 0$, at least as an approximation
- The geometry of such a superspace has been completely described by the above study:

$$\mathcal{D}e^{a} = T^{\underline{a}}u^{a}_{\underline{a}} = -ie^{lpha A} \wedge e^{eta B} \epsilon_{AB} \gamma^{a}_{lpha eta} + ie^{c} \wedge e^{b} \epsilon_{\check{A}\check{B}} \chi^{\check{A}}_{b} \tilde{\gamma}^{a} \chi^{\check{B}}_{c}$$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusio
<i>SO</i> (32) H5-brar	ne superfield eqs			

• ...

- But it is natural to begin from superspace $\mathcal{W}^{(6|8)} \subset \Sigma^{(10|16)}$ obeying $\hat{E}_{\alpha A}{}^{\underline{a}} = 0$, at least as an approximation.
- The geometry of such a superspace has been completely described by the above study:

$$\mathcal{D}e^{a} = T^{\underline{a}}u^{a}_{\underline{a}} = -ie^{lpha A} \wedge e^{eta B} \epsilon_{AB} \gamma^{a}_{lpha eta} + ie^{c} \wedge e^{b} \epsilon_{\check{A}\check{B}} \chi^{\check{A}}_{b} \tilde{\gamma}^{a} \chi^{\check{B}}_{c} ,$$

00000	0000000 000 000	
SO(32)	-brane superfield eqs	
	our basic proposition is	
	•	
	• But it is natural to begin from superspace $\mathcal{W}^{(6 8)} \subset \Sigma^{(10 16)}$ obeying $\hat{E}_{\alpha A}{}^{a} = 0$, at least as an approximation.	
	• The geometry of such a superspace has been completely described by the above study:	
	$\mathcal{D} e^{a} = T^{\underline{a}} u^{a}_{\underline{a}} = -i e^{lpha A} \wedge e^{eta B} \epsilon_{AB} \gamma^{a}_{lpha eta} + i e^{c} \wedge e^{b} \epsilon_{\check{A}\check{B}} \chi^{\check{A}}_{b} \tilde{\gamma}^{a} \chi^{\check{B}}_{c} ,$	
	$\mathcal{D}e^{lpha A} = e^b \wedge e^{eta B} t_{eta B \ b}{}^{lpha A} + rac{1}{2} e^b \wedge e^a t_{ab}{}^{lpha A} ,$	
	$t_{\beta B \ b}{}^{\alpha A} = 2i\chi_{a\beta \check{B}}\chi_{b\gamma}{}^{\check{B}}\tilde{\gamma}^{a\gamma\alpha} - \frac{i}{4}\hat{h}_{c_1c_2c_3}(\gamma^{c_1c_2c_3}\gamma_b)_{\beta}{}^{\alpha}\delta_B{}^A - \frac{3i}{4}\hat{h}_{bB\check{B}}{}^{A\check{B}}(\gamma^a\gamma_b)_{\beta}{}^{\alpha}\delta_B{}^A$	١,
	$t_{ab}{}^{\alpha A} = \epsilon_{\breve{B}\breve{C}}(\chi_{[a]}{}^{\breve{C}}\tilde{\gamma}^{c})^{\alpha}K_{[b]c}{}^{A\breve{B}} + \frac{i}{2}\hat{h}_{D\breve{C}}{}^{D\breve{A}}{}^{A\breve{C}}\epsilon_{\breve{A}\breve{B}}(\chi_{[a}^{\breve{B}}\tilde{\gamma}_{b]})^{\alpha} +$	
	$+rac{3i}{2}\epsilon^{AB}\hat{h}_{cd\ BB}(ilde{\gamma}_{[a}\gamma^{cd}\chi^{\check{B}}_{b]})^{lpha}+\hat{T}_{ab}{}^{lpha A}$,	
	$r^{ab} = \hat{R}^{ab} + 8e^{lpha A} \wedge e^{eta B} \epsilon_{AB} \epsilon_{\check{A}\check{B}} \chi^{a\check{A}}_{lpha} \chi^{b\check{B}}_{eta} - 4ie^c \wedge e^{lpha A} \chi^{[a \check{B}}_{lpha} K_c^{ b]}_{A\check{A}} +$	
	$+rac{1}{2}m{e}^c\wedgem{e}^dm{K}_c{}^a{}_{Aracklet M}m{K}_d{}^b{}^{Aracklet M}$,	
	$\mathcal{F}_{B}{}^{A} = \hat{R}^{ab} + 8e^{lpha A} \wedge e^{eta B} \epsilon_{AB} \epsilon_{\check{A}\check{B}} \chi^{a\check{A}}_{lpha} \chi^{b\check{B}}_{eta} - 4ie^{c} \wedge e^{lpha A} \chi^{[a]\check{B}}_{lpha} K_{c}{}^{[b]}{}_{A\check{A}} +$	
	$+rac{1}{2}oldsymbol{e}^c\wedgeoldsymbol{e}^doldsymbol{\mathcal{K}}_c{}^a{}_{A\check{\lambda}}oldsymbol{\mathcal{K}}_d{}^b{}^{A\check{\lambda}}$.	

SO(32) heterotic 5-brane

	N=1 5-brane superembeddin
000000	000000

SO(32) heterotic 5-brane

Conclusions

SO(32) H5-brane superfield eqs

Superfield description of heterotic d.o.f.s

Intro	N=1 5-brane superembed

SO(32) heterotic 5-brane

Conclusions

SO(32) H5-brane superfield eqs

Superfield description of heterotic d.o.f.s

• The heterotic degrees of freedom of the SO(32) heterotic 5-branes are described by superfields on the superspace $\mathcal{W}^{(6|8)}\subset\Sigma^{(10|16)}$

N=1 5-brane superembedding	'Simple' 5-brane equations

SO(32) heterotic 5-brane

SO(32) H5-brane superfield eqs

Superfield description of heterotic d.o.f.s

- The heterotic degrees of freedom of the SO(32) heterotic 5-branes are described by superfields on the superspace $\mathcal{W}^{(6|8)}\subset\Sigma^{(10|16)}$
- either defined by the superembedding equation $\hat{E}_{\alpha A}{}^{a} = 0$ (good point to begin)
- or by some its generalization $\hat{E}_{\alpha A}{}^{\underline{a}} = ...$ (next stage)

N=1 5-brane superembedding	'Simple' 5-bi

SO(32) heterotic 5-brane

SO(32) H5-brane superfield eqs

Superfield description of heterotic d.o.f.s

- The heterotic degrees of freedom of the SO(32) heterotic 5-branes are described by superfields on the superspace $\mathcal{W}^{(6|8)} \subset \Sigma^{(10|16)}$
- either defined by the superembedding equation $\hat{E}_{\alpha A}{}^{a} = 0$ (good point to begin)
- or by some its generalization $\hat{E}_{\alpha A}{}^{\underline{a}} = ...$ (next stage)

Superfield description of heterotic degrees of freedom
N=1 5-brane superembedding	'Simple'	5-bra

SO(32) heterotic 5-brane

SO(32) H5-brane superfield eqs

Superfield description of heterotic d.o.f.s

- The heterotic degrees of freedom of the SO(32) heterotic 5-branes are described by superfields on the superspace $\mathcal{W}^{(6|8)} \subset \Sigma^{(10|16)}$
- either defined by the superembedding equation $\hat{E}_{\alpha A}{}^{a} = 0$ (good point to begin)
- or by some its generalization $\hat{E}_{\alpha A}{}^{\underline{a}} = ...$ (next stage)

Superfield description of heterotic degrees of freedom

• The SU(2) SYM is described by SU(2) connection 1-form on $\mathcal{W}^{(6|8)}$

$$A_{\tilde{B}}^{\tilde{A}} = e^{\alpha C} A_{\alpha C \tilde{B}}^{\tilde{A}}(\zeta) + e^{a} A_{a \tilde{B}}^{\tilde{A}}(\zeta) , \qquad (A_{\tilde{B}}^{\tilde{A}})^{*} = -A_{\tilde{A}}^{\tilde{B}} \quad (\Rightarrow \ A_{\tilde{A}}^{\tilde{A}} = 0) ,$$

N=1 5-brane superembedding	

SO(32) H5-brane superfield eqs

Superfield description of heterotic d.o.f.s

- The heterotic degrees of freedom of the SO(32) heterotic 5-branes are described by superfields on the superspace $\mathcal{W}^{(6|8)}\subset\Sigma^{(10|16)}$
- either defined by the superembedding equation $\hat{E}_{\alpha A}{}^{a} = 0$ (good point to begin)
- or by some its generalization $\hat{E}_{\alpha A}{}^{\underline{a}} = ...$ (next stage)

Superfield description of heterotic degrees of freedom

• The SU(2) SYM is described by SU(2) connection 1-form on $\mathcal{W}^{(6|8)}$

$$A_{\tilde{B}}^{\tilde{A}} = e^{\alpha C} A_{\alpha C \tilde{B}}^{\tilde{A}}(\zeta) + e^{a} A_{a \tilde{B}}^{\tilde{A}}(\zeta) , \qquad (A_{\tilde{B}}^{\tilde{A}})^{*} = -A_{\tilde{A}}^{\tilde{B}} \quad (\Rightarrow \ A_{\tilde{A}}^{\tilde{A}} = 0) ,$$

• which obeys the constraints ${\cal F}_{{}_{\alpha}{}_{A\!{}_{\beta}{}_{B}}{}_{B}}{}^{\tilde{A}}=0\;\Rightarrow\;$

$$\mathcal{F}_{\tilde{B}}^{\tilde{A}} := (d\mathcal{A} - \mathcal{A} \wedge \mathcal{A})_{\tilde{B}}^{\tilde{A}} = rac{i}{2} e^{a} \wedge e^{lpha \mathcal{A}} \gamma_{blphaeta}(W^{eta}_{\mathcal{A}})_{\tilde{B}}^{\tilde{A}} + rac{1}{2} e^{b} \wedge e^{a}(\mathcal{F}_{ab})_{\tilde{B}}^{\tilde{A}},$$

N=1 5-brane superembedding

SO(32) heterotic 5-brane

SO(32) H5-brane superfield eqs

Superfield description of heterotic d.o.f.s

- The heterotic degrees of freedom of the SO(32) heterotic 5-branes are described by superfields on the superspace $\mathcal{W}^{(6|8)} \subset \Sigma^{(10|16)}$
- either defined by the superembedding equation $\hat{E}_{\alpha A}{}^{a} = 0$ (good point to begin)
- or by some its generalization $\hat{E}_{\alpha A}{}^{\underline{a}} = ...$ (next stage)

Superfield description of heterotic degrees of freedom

• The SU(2) SYM is described by SU(2) connection 1-form on $\mathcal{W}^{(6|8)}$

$$A_{\tilde{B}}^{\tilde{A}} = e^{\alpha C} A_{\alpha C \tilde{B}}^{\tilde{A}}(\zeta) + e^{a} A_{a \tilde{B}}^{\tilde{A}}(\zeta) , \qquad (A_{\tilde{B}}^{\tilde{A}})^{*} = -A_{\tilde{A}}^{\tilde{B}} \quad (\Rightarrow \ A_{\tilde{A}}^{\tilde{A}} = 0) ,$$

$$\mathcal{F}_{\tilde{B}}^{\tilde{A}} := (d\mathcal{A} - \mathcal{A} \wedge \mathcal{A})_{\tilde{B}}^{\tilde{A}} = rac{i}{2} e^{a} \wedge e^{lpha \mathcal{A}} \gamma_{blphaeta}(W^{eta}_{\mathcal{A}})_{\tilde{B}}^{\tilde{A}} + rac{1}{2} e^{b} \wedge e^{a}(\mathcal{F}_{ab})_{\tilde{B}}^{\tilde{A}},$$

• heterotic hypermultiplet(s) are defined by superfield $H^{A\tilde{B}J}(\zeta)$ in (2,32) representation of $SU(2) \times SO(32)$ which obeys

$$\mathcal{D}_{\gamma C} \mathcal{H}^{\tilde{A}\tilde{B}J} = 4i\delta_C{}^A \psi_{\gamma}^{\tilde{B}J}$$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
SO(32) H5-brane	e superfield eqs			

Superfield description of heterotic degrees of freedom: basic superfield eqs.

• The SU(2) SYM is described by SU(2) connection one form on $\mathcal{W}^{(6|8)}$

$$A_{\tilde{B}}^{\tilde{A}} = e^{\alpha C} A_{\alpha C \tilde{B}}^{\tilde{A}}(\zeta) + e^{a} A_{a \tilde{B}}^{\tilde{A}}(\zeta) , \qquad (A_{\tilde{B}}^{\tilde{A}})^{*} = -A_{\tilde{A}}^{\tilde{B}} \quad (\Rightarrow \ A_{\tilde{A}}^{\tilde{A}} = 0) ,$$

which obeys the constraints

$$\mathcal{F}_{\tilde{B}}^{\tilde{A}} := (dA - A \wedge A)_{\tilde{B}}^{\tilde{A}} = rac{i}{2} e^a \wedge e^{lpha A} \gamma_{blpha eta} (W^{eta}_A)_{\tilde{B}}^{\tilde{A}} + rac{1}{2} e^b \wedge e^a (\mathcal{F}_{ab})_{\tilde{B}}^{\tilde{A}} \,,$$

heterotic hypermultiplet(s) are defined by superfield H^{ABJ}(ζ) in (2,32) representation of SU(2) × SO(32) which obeys

$$\mathcal{D}_{\gamma C} \mathcal{H}^{\tilde{A}\tilde{B}J} = 4i\delta_{C}{}^{A}\psi_{\gamma}^{\tilde{B}J}$$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions
SO(32) H5-brane	superfield eqs			

Superfield description of heterotic degrees of freedom: basic superfield eqs.

The SU(2) SYM is described by SU(2) connection one form on W^(6|8)

$$A_{\tilde{B}}^{\tilde{A}} = e^{\alpha C} A_{\alpha C \tilde{B}}^{\tilde{A}}(\zeta) + e^{a} A_{a \tilde{B}}^{\tilde{A}}(\zeta) , \qquad (A_{\tilde{B}}^{\tilde{A}})^{*} = -A_{\tilde{A}}^{\tilde{B}} \quad (\Rightarrow \ A_{\tilde{A}}^{\tilde{A}} = 0) ,$$

which obeys the constraints

$$\mathcal{F}_{\tilde{B}}^{\tilde{A}} := (d\mathcal{A} - \mathcal{A} \wedge \mathcal{A})_{\tilde{B}}^{\tilde{A}} = rac{i}{2} e^{a} \wedge e^{lpha \mathcal{A}} \gamma_{b lpha eta} (W^{eta}_{\mathcal{A}})_{\tilde{B}}^{\tilde{A}} + rac{1}{2} e^{b} \wedge e^{a} (\mathcal{F}_{ab})_{\tilde{B}}^{\tilde{A}} ,$$

• heterotic hypermultiplet(s) are defined by superfield $H^{A\tilde{B}J}(\zeta)$ in (2,32) representation of $SU(2) \times SO(32)$ which obeys

$$\mathcal{D}_{\gamma C} \mathcal{H}^{\tilde{A}\tilde{B}J} = 4i\delta_{C}{}^{A}\psi_{\gamma}^{\tilde{B}J}$$

 $\begin{array}{l} \mathcal{D}_{\gamma \mathcal{C}} \text{ is } SO(1,5)\otimes SO(4)\otimes SU(2)=SU(4)^*\otimes SU(2)\otimes SU(2)\otimes SU(2)\\ \text{covariant derivative on } \mathcal{W}^{(6|8)}\subset \Sigma^{(10|16)} \text{ defined by superembedding}\\ \text{equation } \hat{E}_{\alpha A}{}^{\underline{a}}=0 \text{ (or by some its generalization } \hat{E}_{\alpha A}{}^{\underline{a}}=...) \text{ and by the}\\ \text{constraints on the SUGRA+SYM background.} \end{array}$

000000	0000000		0000000	
Intro	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
SO(32) H5-brane	equations.			

• The SYM constraints are on-shell: they result in equations of motion.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
SO(32) H5-brane	equations.			

- The SYM constraints are on-shell: they result in equations of motion.
- their consistency result in the fermionic equation

$$\gamma^a_{\alpha\beta} \mathcal{D}_a W^{\beta A} = W^{\gamma C} J_{\gamma C \alpha}^{A}.$$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
SO(32) H5-brane	equations.			

- The SYM constraints are on-shell: they result in equations of motion.
- their consistency result in the fermionic equation

$$\gamma^{a}_{\alpha\beta}\mathcal{D}_{a}W^{\beta A} = W^{\gamma C}J_{\gamma C \alpha}{}^{A}.$$

• and bosonic equations plus Binachi identities

$$\mathcal{D}^{b}F_{bc}\gamma^{c}_{\alpha\beta}\delta_{B}^{A} + \frac{1}{2}\mathcal{D}_{[a}F_{bc]}\gamma^{abc}_{\alpha\beta}\delta_{B}^{A} - i\epsilon_{\alpha\beta\gamma\delta}\{W^{\gamma}_{C}, W^{\delta C}\}\delta_{B}^{A} - \frac{1}{2}F_{ab}J^{ab}_{\beta\alphaB} + iW^{\gamma C}J_{\beta\gamma\alpha BC}^{A}$$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
SO(32) H5-brane	equations.			

- The SYM constraints are on-shell: they result in equations of motion.
- their consistency result in the fermionic equation

$$\gamma^{a}_{\alpha\beta}\mathcal{D}_{a}W^{\beta A} = W^{\gamma C}J_{\gamma C \alpha}{}^{A}.$$

• and bosonic equations plus Binachi identities

$$\mathcal{D}^{b} F_{bc} \gamma^{c}_{\alpha\beta} \delta_{B}{}^{A} + \frac{1}{2} \mathcal{D}_{[a} F_{bc]} \gamma^{abc}_{\alpha\beta} \delta_{B}{}^{A} - i \epsilon_{\alpha\beta\gamma\delta} \{ W^{\gamma}_{C} , W^{\delta C} \} \delta_{B}{}^{A} - \frac{1}{2} F_{ab} J^{ab}_{\beta\alpha B} + i W^{\gamma C} J_{\beta\gamma\alpha BC}{}^{A} ,$$

• with contributions of the 'geometric' degrees of freedom and fluxes of background SUGRA + SO(32) SYM enclosed inside $J_{\beta\gamma\alpha BC}{}^{A}$, $J_{\beta\alpha B}^{ab A}$ and $J_{\gamma C \alpha}{}^{A}$.

SO(32) H5-brane	equations			
Intro	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
SO(32) H5-brane	equations.			

• The hypermultiplet equations are also on-shell: $D_{\gamma C}H^{A\tilde{B}J} = 4i\delta_C{}^A\psi_{\gamma}^{\tilde{B}J} \Rightarrow$

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane ○○○○○●○	Conclusions
SO(32) H5-brane	equations.			

• The hypermultiplet equations are also on-shell: $D_{\gamma C} H^{A\tilde{B}J} = 4i \delta_C{}^A \psi_{\gamma}^{\tilde{B}J} \Rightarrow$

$$\begin{split} \tilde{\gamma}^{a\alpha\beta} \mathcal{D}_{a} \psi^{\tilde{B}J}_{\beta} &= \frac{1}{2} \left(\mathcal{H}^{A\tilde{A}J} W^{\alpha}_{A\tilde{A}} {}^{\tilde{B}} + \mathcal{H}^{A\tilde{B}I} \hat{\mathcal{W}}^{\alpha JJ}_{A} \right) - \\ &- \frac{i}{12} \mathcal{H}^{A\tilde{B}J} \tilde{\gamma}^{b\alpha\beta} \left(4 \mathcal{D}^{B}_{\beta} f_{bAB} - \mathcal{F}^{B}_{\beta bBA} \right) - \\ &+ \frac{1}{24} \tilde{\gamma}^{b\alpha\beta} \left(8 t_{\beta A b} {}^{\gamma A} - r_{b c c d} \gamma^{c c d} {}_{\beta} {}^{\gamma} \right) \psi^{\tilde{B}J}_{\gamma}. \end{split}$$

and also bosonic equation.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
SO(32) H5-brane	equations.			

• The hypermultiplet equations are also on-shell: $D_{\gamma C} H^{A\tilde{B}J} = 4i \delta_C{}^A \psi_{\gamma}^{\tilde{B}J} \Rightarrow$

$$\begin{split} \tilde{\gamma}^{a\alpha\beta} \mathcal{D}_{a} \psi^{\tilde{B}J}_{\beta} &= \frac{1}{2} \left(\mathcal{H}^{A\tilde{\lambda}J} \mathcal{W}^{\alpha}_{A\tilde{A}} \overset{\tilde{B}}{+} \mathcal{H}^{A\tilde{B}J} \hat{\mathcal{W}}^{\alpha JJ}_{A} \right) - \\ &- \frac{i}{12} \mathcal{H}^{A\tilde{B}J} \tilde{\gamma}^{b\alpha\beta} \left(4 \mathcal{D}^{B}_{\beta} f_{bAB} - \mathcal{F}^{B}_{\beta \ b BA} \right) - \\ &+ \frac{1}{24} \tilde{\gamma}^{b\alpha\beta} \left(8 t_{\beta A b} \gamma^{A} - r_{b \ cd} \gamma^{cd}_{\beta} \gamma \right) \psi^{\tilde{B}J}_{\gamma}. \end{split}$$

and also bosonic equation.

These describe interaction with SUGRA, SO(32) gauge fields (
 ŵ^{α J}_A), geometric d-o-f.s (also given by hypermultiplet) and SU(2) SYM.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions
SO(32) H5-brane	equations			

• The hypermultiplet equations are also on-shell: $D_{\gamma C}H^{A\tilde{B}J} = 4i\delta_C{}^A\psi_{\gamma}^{\tilde{B}J} \Rightarrow$

$$\begin{split} \tilde{\gamma}^{a\alpha\beta} \mathcal{D}_{a} \psi^{\tilde{B}J}_{\beta} &= \frac{1}{2} \left(H^{A\tilde{A}J} W^{\alpha}_{A\tilde{A}} {}^{\tilde{B}} + H^{A\tilde{B}J} \hat{\mathcal{W}}^{\alpha JJ}_{A} \right) - \\ &- \frac{i}{12} H^{A\tilde{B}J} \tilde{\gamma}^{b\alpha\beta} \left(4 \mathcal{D}^{B}_{\beta} f_{bAB} - \mathcal{F}^{B}_{\beta \ b BA} \right) - \\ &+ \frac{1}{24} \tilde{\gamma}^{b\alpha\beta} \left(8 t_{\beta A b} {}^{\gamma A} - r_{b \ cd} \gamma^{cd} {}_{\beta} {}^{\gamma} \right) \psi^{\tilde{B}J}_{\gamma}. \end{split}$$

and also bosonic equation.

- These describe interaction with SUGRA, SO(32) gauge fields (
 ŵ^{α J}_A), geometric d-o-f.s (also given by hypermultiplet) and SU(2) SYM.
- Here we have a problem indicating that our present description of H5-brane is approximate.

SO(32) heterotic 5-brane

Conclusions

SO(32) H5-brane equations.

Our SO(32) H5-brane equations of motion are approximate

• Here we have a problem indicating that our present description of H5-brane is approximate.

N=1 5-brane	superembeddin
0000000	

SO(32) heterotic 5-brane

Conclusions

SO(32) H5-brane equations.

Our SO(32) H5-brane equations of motion are approximate

- Here we have a problem indicating that our present description of H5-brane is approximate.
- As hypermultiplet is minimally coupled to SU(2) SYM ('charged'), $(\tilde{\gamma}^{a\alpha\beta}\mathcal{D}_{a}\psi_{\beta}^{\tilde{B}J} = \frac{1}{2}\left(H^{A\tilde{A}J}W_{A\ \tilde{A}}^{\alpha\ \tilde{B}} + H^{A\tilde{B}I}\hat{\mathcal{W}}_{A}^{\alpha\ J}\right) - \dots$

SO(32) heterotic 5-brane

SO(32) H5-brane equations.

Our SO(32) H5-brane equations of motion are approximate

- Here we have a problem indicating that our present description of H5-brane is approximate.
- As hypermultiplet is minimally coupled to SU(2) SYM ('charged'), $(\tilde{\gamma}^{a\alpha\beta}\mathcal{D}_a\psi_{\beta}^{\tilde{B}J} = \frac{1}{2}\left(H^{A\tilde{A}J}W_{A\tilde{A}}^{\alpha}{}^{\tilde{B}} + H^{A\tilde{B}I}\hat{\mathcal{W}}_{A}^{\alpha}{}^{J}\right) \dots$
- But: the SYM constraints are on-shell. And they produce eqs.

$$\mathcal{D}^{b} F_{bc} \gamma^{c}_{\alpha\beta} \delta_{B}{}^{A} + \frac{1}{2} \mathcal{D}_{[a} F_{bc]} \gamma^{abc}_{\alpha\beta} \delta_{B}{}^{A} - i \epsilon_{\alpha\beta\gamma\delta} \{ W^{\gamma}_{C} , W^{\delta C} \} \delta_{B}{}^{A} - \frac{1}{2} F_{ab} J^{ab}_{\beta\alpha B} + i W^{\gamma C} J_{\beta\gamma\alpha BC}{}^{A} ,$$

with no hypermultiplet contributions.

SO(32) heterotic 5-brane

SO(32) H5-brane equations.

Our SO(32) H5-brane equations of motion are approximate

- Here we have a problem indicating that our present description of H5-brane is approximate.
- As hypermultiplet is minimally coupled to SU(2) SYM ('charged'), $(\tilde{\gamma}^{a\alpha\beta}\mathcal{D}_a\psi_{\beta}^{\tilde{B}J} = \frac{1}{2}\left(H^{A\tilde{A}J}W_{A\tilde{A}}^{\alpha}{}^{\tilde{B}} + H^{A\tilde{B}I}\hat{\mathcal{W}}_{A}^{\alpha}{}^{J}\right) \dots$
- But: the SYM constraints are on-shell. And they produce eqs.

$$\mathcal{D}^{b} F_{bc} \gamma^{c}_{\alpha\beta} \delta_{B}{}^{A} + \frac{1}{2} \mathcal{D}_{[a} F_{bc]} \gamma^{abc}_{\alpha\beta} \delta_{B}{}^{A} - i \epsilon_{\alpha\beta\gamma\delta} \{ W^{\gamma}_{C} , W^{\delta C} \} \delta_{B}{}^{A} - \frac{1}{2} F_{ab} J^{ab}_{\beta\alpha B} + i W^{\gamma C} J_{\beta\gamma\alpha BC}{}^{A} ,$$

with no hypermultiplet contributions.

 Such an approximate description may be useful as it is (it is certainly approximate in the SU(2) SYM sector)

SO(32) heterotic 5-brane

Conclusions

SO(32) H5-brane equations.

Our SO(32) H5-brane equations of motion are approximate

- Here we have a problem indicating that our present description of H5-brane is approximate.
- As hypermultiplet is minimally coupled to SU(2) SYM ('charged'), $(\tilde{\gamma}^{a\alpha\beta}\mathcal{D}_{a}\psi_{\beta}^{\tilde{B}J} = \frac{1}{2}\left(H^{A\tilde{A}J}W_{A\tilde{A}}^{\alpha}{}^{\tilde{B}} + H^{A\tilde{B}I}\hat{W}_{A}^{\alpha}{}^{J}\right) - \dots$
- But: the SYM constraints are on-shell. And they produce eqs.

$$\mathcal{D}^{b} F_{bc} \gamma^{c}_{\alpha\beta} \delta_{B}{}^{A} + \frac{1}{2} \mathcal{D}_{[a} F_{bc]} \gamma^{abc}_{\alpha\beta} \delta_{B}{}^{A} - i \epsilon_{\alpha\beta\gamma\delta} \{ W^{\gamma}_{C} , W^{\delta C} \} \delta_{B}{}^{A} - \frac{1}{2} F_{ab} J^{ab}_{\beta\alpha B} + i W^{\gamma C} J_{\beta\gamma\alpha BC}{}^{A} ,$$

with no hypermultiplet contributions.

- Such an approximate description may be useful as it is (it is certainly approximate in the SU(2) SYM sector)
- but it is tempting to speculate that the use of the GIKOS harmonic superfield formalism might help to make the SYM constraints 'off-shell' or, at least, 'on-any-shell' - allowing for incorporation of the terms describing the hypermultiplet contributions.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane
Outline			

Conclusions

- SUSY extended objects
- 'Simple' D=10, N=1 5-brane and heterotic 5-branes
- 2 Superembedding approach for 'simple' N=1, D=10 5-brane
 - Worldvolume superspace and superembedding equation
 - Moving, and spinor moving frame and geometry induced by superembedding
- 3 'Simple' 5-brane equations of motion from superembedding approach
- Superembedding description of the SO(32) heterotic 5-brane
 - Basic superfield equations of the SO(32) heterotic 5-brane
 - From basic superfield equations for *SO*(32) heterotic 5-brane to equations of motion.

N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

 We are studying the possibility to search for equations of motion of the SO(32) heterotic 5-brane (H5-brane) in the framework of superembedding approach

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

- We are studying the possibility to search for equations of motion of the SO(32) heterotic 5-brane (H5-brane) in the framework of superembedding approach
- We have proposed the basic superfield equations of SO(32) H5-brane.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

- We are studying the possibility to search for equations of motion of the SO(32) heterotic 5-brane (H5-brane) in the framework of superembedding approach
- We have proposed the basic superfield equations of SO(32) H5-brane.
- These are the constraints of SU(2) SYM and superfield eqs. for hypermultiplet in (2,32) of $SU(2) \times SO(32)$ on curved superspace $\mathcal{W}^{(6|8)}$ identical or similar to the w/v SSP of simple 5-brane

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

- We are studying the possibility to search for equations of motion of the SO(32) heterotic 5-brane (H5-brane) in the framework of superembedding approach
- We have proposed the basic superfield equations of SO(32) H5-brane.
- These are the constraints of SU(2) SYM and superfield eqs. for hypermultiplet in (2,32) of $SU(2) \times SO(32)$ on curved superspace $\mathcal{W}^{(6|8)}$ identical or similar to the w/v SSP of simple 5-brane
- (at least as the first stage) the embedding $\mathcal{W}^{(6|8)} \subset \Sigma^{(8|16)}$ is defined by superembedding equation (the same as for 'simple' 5-brane)

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

- We are studying the possibility to search for equations of motion of the SO(32) heterotic 5-brane (H5-brane) in the framework of superembedding approach
- We have proposed the basic superfield equations of SO(32) H5-brane.
- These are the constraints of SU(2) SYM and superfield eqs. for hypermultiplet in (2,32) of $SU(2) \times SO(32)$ on curved superspace $\mathcal{W}^{(6|8)}$ identical or similar to the w/v SSP of simple 5-brane
- (at least as the first stage) the embedding $\mathcal{W}^{(6|8)} \subset \Sigma^{(8|16)}$ is defined by superembedding equation (the same as for 'simple' 5-brane)
- and Σ^(8|16) is characterized by the standard N=1 10D SUGRA constraints (+10D SYM).

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

- We are studying the possibility to search for equations of motion of the SO(32) heterotic 5-brane (H5-brane) in the framework of superembedding approach
- We have proposed the basic superfield equations of SO(32) H5-brane.
- These are the constraints of SU(2) SYM and superfield eqs. for hypermultiplet in (2,32) of $SU(2) \times SO(32)$ on curved superspace $\mathcal{W}^{(6|8)}$ identical or similar to the w/v SSP of simple 5-brane
- (at least as the first stage) the embedding $\mathcal{W}^{(6|8)} \subset \Sigma^{(8|16)}$ is defined by superembedding equation (the same as for 'simple' 5-brane)
- and Σ^(8|16) is characterized by the standard N=1 10D SUGRA constraints (+10D SYM).
- Then, after studying the simplest possibility, the modification of both superembedding equations and supergravity constraints.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

- We are studying the possibility to search for equations of motion of the SO(32) heterotic 5-brane (H5-brane) in the framework of superembedding approach
- We have proposed the basic superfield equations of SO(32) H5-brane.
- These are the constraints of SU(2) SYM and superfield eqs. for hypermultiplet in (2,32) of $SU(2) \times SO(32)$ on curved superspace $\mathcal{W}^{(6|8)}$ identical or similar to the w/v SSP of simple 5-brane
- (at least as the first stage) the embedding $\mathcal{W}^{(6|8)} \subset \Sigma^{(8|16)}$ is defined by superembedding equation (the same as for 'simple' 5-brane)
- and Σ⁽⁸⁾¹⁶⁾ is characterized by the standard N=1 10D SUGRA constraints (+10D SYM).
- Then, after studying the simplest possibility, the modification of both superembedding equations and supergravity constraints.
- Our approach is able to describe the interaction of heterotic 5-brane with background D=10 SUGRA and SO(32) SYM fluxes.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusion
Out	laak			
Out	ΙΟΟΚ			

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions

• On the other hand, as it is formulated now, our approach provides an approximate description of H5-brane:

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

- On the other hand, as it is formulated now, our approach provides an approximate description of H5-brane:
- The hypermultiplet equations describe its coupling to *SU*(2) SYM but the SYM equations remain 'free'.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclusions

- On the other hand, as it is formulated now, our approach provides an approximate description of H5-brane:
- The hypermultiplet equations describe its coupling to *SU*(2) SYM but the SYM equations remain 'free'.
- This is because the SYM constraints are on-shell.

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions

- On the other hand, as it is formulated now, our approach provides an approximate description of H5-brane:
- The hypermultiplet equations describe its coupling to *SU*(2) SYM but the SYM equations remain 'free'.
- This is because the SYM constraints are on-shell.
- The possible way out might lay through reformulating our approach with the use of GIKOS harmonic superspace formalism

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	<i>SO</i> (32) heterotic 5-brane	Conclusions

- On the other hand, as it is formulated now, our approach provides an approximate description of H5-brane:
- The hypermultiplet equations describe its coupling to *SU*(2) SYM but the SYM equations remain 'free'.
- This is because the SYM constraints are on-shell.
- The possible way out might lay through reformulating our approach with the use of GIKOS harmonic superspace formalism
- Some kind of superembedding of harmonic superspaces?

Intro 000000	N=1 5-brane superembedding	'Simple' 5-brane equations	SO(32) heterotic 5-brane	Conclus

ions

- On the other hand, as it is formulated now, our approach provides an approximate description of H5-brane:
- The hypermultiplet equations describe its coupling to *SU*(2) SYM but the SYM equations remain 'free'.
- This is because the SYM constraints are on-shell.
- The possible way out might lay through reformulating our approach with the use of GIKOS harmonic superspace formalism
- Some kind of superembedding of harmonic superspaces?
- The properties of the SO(32) H5-brane equations as they follow from the present superembedding approach as well as search for their possible generalizations are under study now.
| Intro
000000 | N=1 5-brane superembedding | 'Simple' 5-brane equations | SO(32) heterotic 5-brane | Conclusions |
|-----------------|----------------------------|----------------------------|--------------------------|-------------|
| | | | | |

THANK YOU FOR YOUR ATTENTION!