A new perspective on nonrelativistic gravity Roel Andringa
Work in collaboration with M. de Roo, E. Bergshoeff, S. Panda and J. Gomis

Overview

- Motivation
- GR by gauging the Poincaré algebra
- Newton-Cartan
- Newton-Cartan by gauging the Bargmann algebra
- Extension to strings

Motivation

- A lot of physics in our universe is nonrelativistic
- Problems can become simpler
- Possible applications to AdS/CFT?

General Relativity from Poincaré

- Poincaré algebra:

$$
[\mathrm{P}, \mathrm{P}]=0
$$

Gauge fields Curvatures
$[\mathrm{J}, \mathrm{P}]=\mathrm{P}$
$P_{a}: e_{\mu}{ }^{a} \quad R_{\mu \nu}{ }^{a}(P)$
$[\mathrm{J}, \mathrm{J}]=\mathrm{J}$
$J_{a b}: \omega_{\mu}^{a b} \quad R_{\mu \nu}^{a b}(J)$

- $R_{\mu \nu}{ }^{a}(P)=0 \rightarrow(1) \omega_{\mu}^{a b}=\omega_{\mu}^{a b}(e, \partial e)$
(2) $P_{a} \rightarrow$ gct + local Lorentz
- Impose vielbein postulate \rightarrow General Relativity

Newton-Cartan : geometrizing Newton

- Spatial metric h and temporal metric τ
- Space and time decouple: $h^{\mu \nu} \tau_{\nu \rho}=0$
- Introduce 'inverse metrics' $\tilde{h}_{\mu \nu}, \tilde{\tau}^{\mu \nu}$
- Connection via $\begin{aligned} & \nabla_{\rho} h^{\mu \nu}=0 \\ & \nabla_{\rho} \tau_{\mu \nu}=0\end{aligned} \quad \Rightarrow \Gamma_{\mu \nu}^{\rho}(h, \tilde{h}, \tau, \tilde{\tau}, K)$
- 'Ehlers conditions' to constrain $\mathrm{K} \rightarrow K_{\mu \nu}=2 \partial_{[\mu} m_{\nu]}$

Newton-Cartan : EOM

- Poisson eqn. : $R_{\mu \nu}(\Gamma)=4 \pi G \rho \tau_{\mu \nu}$
- Geodesic eqn. : $\ddot{x}^{\rho}+\Gamma_{\mu \nu}^{\rho} \dot{x}^{\mu} \dot{x}^{\nu}=0$
- Only nonzero connection: $\Gamma_{00}^{i}=\partial^{i} \phi$
- All degrees of freedom in ϕ

Newton-Cartan from Bargmann I

- Bargmann algebra generators: $\{\mathrm{H}, \mathrm{P}, \mathrm{G}, \mathrm{J}, \mathrm{M}\}$ Gauge fields Curvatures
Time transl. $H: \tau_{\mu} \quad R_{\mu \nu}(H)$
Space transl. $P_{i}: e_{\mu}{ }^{i} \quad R_{\mu \nu}{ }^{i}(P)$
Boosts $\quad G_{i}: \omega_{\mu}{ }^{i 0} \quad R_{\mu \nu}{ }^{i 0}(G)$
Space rot. $\quad J_{i j}: \omega_{\mu}{ }^{i j} \quad R_{\mu \nu}{ }^{i j}(J)$
Central ext. $\quad M: m_{\mu} \quad R_{\mu \nu}(M)$
- Central extension : $[\mathrm{G}, \mathrm{P}]=0 \rightarrow[\mathrm{G}, \mathrm{P}] \sim \mathrm{M}$

Newton-Cartan from Bargmann II

- $\mathrm{R}(\mathrm{P})=\mathrm{R}(\mathrm{M})=\mathrm{R}(\mathrm{H})=0$ such that $\{\mathrm{H}, \mathrm{P}\} \rightarrow$ gct + remaining transformations
- $-R(M)=R(P)=0$: solve for spin connections $-\mathrm{R}(\mathrm{H})=0: \tau_{\mu}=\partial_{\mu} t$
- On-shell constraint: $\mathrm{R}(\mathrm{J})=0 \rightarrow$ flat space
- Vielbein postulate
- $K_{\mu \nu}=2 \partial_{[\mu} m_{\nu]} \rightarrow$ Newton-Cartan!

Role of central extension M

- 1) Without M we cannot solve for spin connections, we need both $\mathrm{R}(\mathrm{P})=0$ and $\mathrm{R}(\mathrm{M})=0$!
- 2) Remember that in Newton-Cartan the K in the connection is closed: $K_{\mu \nu}=2 \partial_{[\mu} m_{\nu]}$
\rightarrow Curl of the gauge field of M!
- In short: M is crucial

Algebra contractions

Galilei/Bargmann

- Newton-Hooke: nonrelativistic limit of AdS, cosmological constant in longitudinal direction!

The deformed string Galilei algebra

Generators:

H: long. translations
M: long. boost
P: transv, translation
M ": transv. rotation
M ': stringy 'boost'
Z: deformations

- Galilei: $\{\mathrm{H}, \mathrm{M}$ \} form 2-dim. Poincaré algebra
- Newton-Hooke: \{ H, M \} form 2-dim. AdS algebra

Stringy Newton-Cartan

- Idea: gauge deformed string Galilei algebra
- Add cosmological constant to equations of motion
- \rightarrow Stringy Newton-Hooke-Cartan theory!
- Changes:
-Newton potential: $\phi \rightarrow \phi_{a b}$
-Deformation: $M \rightarrow\left\{Z_{a}, Z_{a b}\right\}$
-K in connection: $K_{\mu \nu}=2 \partial_{[\mu} m_{\nu]} \rightarrow K_{\mu \nu}^{a}=2 \partial_{[\mu} m_{\nu]}^{a}$

Stringy Newton-Cartan: EOM

- Poisson equation: $\partial^{i} \partial_{i} \phi_{a b}=(4 \pi G \rho-\Lambda) \tau_{a b}$
- String geodesic equation

Role of deformations $\left\{Z_{a}, Z_{a b}\right\}$

- Without the Z's we can't solve for the three different spin connections!
- Ambiguity in connection now becomes

$$
K_{\mu \nu}{ }^{a}=2 \partial_{[\mu} m_{\nu]}{ }^{a}
$$

- $m_{\mu}{ }^{a b}$ appears as ambiguity of K, doesn't enter EOM
- In short: the deformation is crucial!

Conclusions

- Bargmann algebra can be gauged to obtain NewtonCartan theory
- This method can be mimicked for strings, including a cosmological constant
- Algebra deformations play a crucial role
- Stringy Newton-Cartan theory with Newton-Hooke symmetry possibly interesting for AdS/CFT

