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e The modulational instability (Ml) is one of the most frequent
instability in nature. It was studied in hydrodynamics,
electrodynamics and nonlinear optics.

e In a very simple way the Ml is the interaction of a strong
carrier wave of frequency w and small sidebands of frequencies
wq 2 = w £ Q with the fulfillement of resonance condition on the
corresponding wave vectors ki + k> = 2k also.

e All these approaches can be termed as deterministic, as they
generally study the evolution of small perturbations of the
amplitude of the carrier wave.

Review paper V.E. Zakharov, L.A. Ostrovsky, Physica D 238,
540-548 (2009)



e Statistical description of Ml (SAMI), an alternative and
complementary approach, provide a bridge between
deterministic and random schools.

e In this approach the attention was concentrated on the
wave-wave energy transfer due to weak nonlinear coupling.

e Very important in hydrodynamics (stability of surface wave
trains in deep oceans) and in incoherent light propagation in
nonlinear media.

e One of the methods used in SAMI was based on the
Wigner-Moyal transform method.



Consider the extended derivative NLS equation
OV + ad2V + BIV PV + i |W[20,W = 0
A 2-points correlation function
W(1,2) =< W(x)V*(x2) >=< V(1)¥*(2) >

Wigner function

p(x, k, t) = 2l / e k& < w(x + §) W(x — é) >

T 2 2
1
X:§(X1+X2)7 §=X1— X

The Wigner function p is a real function.



nx,f) =< [WX)R >, n(xt) = / p(x, k. £)ak

pulse intensity (optics)

n(x, t) = { fluid density (hydrodynamics)

Introduce the quantities
q(x, 1) =< (OV(X))V*(x) >, g°(x, 1) =< W(x)(xV*(x)) >

g+ g = oxn(x,t).

Another relation between g and g* comes from the
conservation low for n(x, t) ; it writes

iatn(xa t) + aax(q(xv t) _ q*(xv t)) + 2i7n(xv t)aXn(Xv t) = 07
where we used a Gaussian approximation

< [W(x, )* >~ 2(n(x, t))2.



Kinetic equation (Alber - 1978)

» write equation (1) for x = x4y and multiply by v*(2);

» write the complex conjugate of equation (1) for x = x» and
multiply it by W(1);

» add the equations and take an ansamble average;

» use a Gaussian decoupling for averages of four ¥
functions.

Decoupling examples:
< W()[Pw(1)w*(2) >~ 2n(1)W(1,2)

< [W(1)|? (8xVW(x)) W*(2) >= n(1)dx, W(1,2) + q(1)W(1,2).



The kinetic equation satisfied by W(1,2) will be
iofW(1,2) + oz(af1 — 8)2(2)W(1 ,2)+25(n(1) — n(2))W(1,2)+
i (n(1)0x + n(2)0x,)W(1,2) +ir(q(1) + 9°(2))W(1,2) = 0.

Wigner transform

In performing the Fourier transform with respect to the relative
coordinate £ = xy — x», We use

ke _ (i) amik
de M = (iyol.e ™,

Exemple:
FT((n(1) = n(2))W(1,2)) =

1 .
23 méﬁm MFT (411W(1,2)) =

( )j 2j+1 2j+1
j=0

2i n(x sm(gc‘?k) (x,k,t),



where the sin(...) is defined by its Fourier transform and the
arrows are indicating the direction in which the derivatives are
acting.

The Fourier transform of the kinetic equation becomes

op(x, k, t) + 2akoxp(x, k, t) + 45n(x, t) sm< g@) (x,k, t)+

~v(Oxn( cos< 58,() (x,k,t) 2fynxtsm<gxa_k>) (x,k, t)+
yn xtcos< §3k> (x, k, t)+

iv(q(x) — sm( 58,() X,k,t)=0

This result improves a similar result existing in literature
(Marklund , Shukla, Bingham, Mendonca, Phys. Rev. 2006),
where an incomplete decoupling procedure was used (the
terms with g are missing).



The system equilibrium state Wy(|¢ { MTEEEMEEE

|sotrop|c
The Fourier transform FT{Wy(|¢])} ) — even function
First order perturbation

p(x, k, t) = f(k) + ep1(x, Kk, 1), n(x, t) = ny + eny(x, t)

ny = /f (x,t) = /p1 (x, k, t)dk.

Taking into account the continuity equation, denoting
h(k) = kf(k) the kinetic equation becomes

at8Xp1 (Xa K, t)+(2ak+7no)8)2(p1 (Xa k? t)+45(3xn1 ) sin (

S
=1
N~
=
&
+

~(82ny) cos ( gak) — 27(dxny) sin < 58,()

(8m1 +27n08Xn1 sin < 58;()



Plane wave solutions
o1 (X, k, t) _ g(k)ei(Ox—Qi)

ni(x, t) = Ge/(&—2)

G- /g(k)dk

Ox — IQ, o — —iQ
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2 cosh <§ak> flk) = f (k T g) Ly <k _ g)



Denoting

Q gl
=500 20"
1 too Flk+9Q)—F(k-9Q
e,

:22/_+00h<k+g)_h<k_g)dk7

w—Kk

1 prof(k+§)+f(k-§
e,

one obtains the implicit dispersion relation

By A
1 l+2aJ 2@K+5(w 5,0 =0

v=0—NLSand g =0 — dNLS-2.

—00
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(w 2ano) +an0 4 =
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7 =0, W = Wis wj = 22'0, Q; = 2|a|Qy/Sn0 - &
- 2 2

v#£0, w=w+iw, wi=1/Eng—F, Q=2a|Qy/Ln- &

The same as for the NLS case.



Lorentzian case

_ a2 U
f(k) = n07Tk2 +p2
Im w >0
_kiQ has a pole in the upper complex k semiplane.
1
l=—ng-———
- 02 )
(w+ip)? =%
ip
J=n——
. Q2 ?
(w+ip)2 =%
K = no w+Ip

. o @2
(w+ip)? =G

2
Denoting A = (ﬁno = %2) + (gnop)‘2 > 0,

«

Wi = \}\/(Bnooz> +VA - p>0




Case a

As A > 0 and the r.h.s. is negative, the inequality is satisfied.
Case b

2 2
éf7o—g < 20, @ > éno—sz-
« 4 4 o

The modulational instability is restricted to long wave length
region.



Conclusions

» MI from a statistical point of view was discussed for
extended NLS equations (containing nonlinear derivative
terms).

» The kinetic equation for the two-point correlation function
W(1,2) was obtained using a complete Gaussian
decoupling procedure for averaged values of products of
four V field variable. Then the equation satisfied by
Wigner’s function p(k, x, t) is containing not only the
density n(x, t) , but also the quantities q(x, t), q*(x,1t)
related to the derivatives of n(x, t).

» In the linear approximation and for plane wave solutions an
implicit dispersion relation is obtained. This is solved for a
d-function and a Lorentzian form of the equilibrium f(k).

» For a §-function the deterministic result is recovered.

» For a Lorentzian form the instability region is reducing
when the parameter (p) of the distribution becomes
greater and greater.
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