

Borexino and status of the project

Aldo lanni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration

Moscow, 15/10/2005

Outline

□Borexino: Italian-Russian cooperation

Borexino: The Physics Case

□Borexino: Status and Schedule

Borexino Collaboration

- Italy (INFN & University of Milano and Genova, Perugia Univ., LNGS)
- USA (Princeton Univ., Virginia Tech.)
- Russia (RRC KI, JINR, INP MSU, INP St. Petersburg)
- **Germany** (Hiedelberg MPI, Munich Technical University)
- France (College de France)
- Hungary (Research Institute for Particle & Nuclear Physics)
- **Poland** (Institute of Physics, Jaegollian University, Cracow)

Italian-Russian Cooperation on Borexino

From Russia: ~ 20 collaborators

- ✓ 60% from RRC KI (M. Skorokhvatov is responsible on the Russian side)
- ✓ JINR (O. Zaimidoroga)
- ✓ INP of Moscow State University (A. Chepurnov)
- ✓ INP of St. Petersburg (A. Derbin)

Research Activities carried out by Russian colleagues:

- ✓ simulations (RRC KI + Dubna + INP St. Petersburg)
 ✓ on-line software development (A. Sabelnikov, RRC KI)
 ✓ development of electronics (INP of MSU + RRC KI)
 ✓ PMT tests and parameters data-base (O. Smirnov, Dubna)
 ✓ Analysis (at present of CTF data RRC KI + Dubna + St. Petersburg)
- Contribution on installations, commissioning and filling of detector (shifts – all groups)

Moscow, 15/10/2005

The Physics Case

- Solar Neurinos
- Geo-Neutrinos
- Supernova Neutrinos

Non standard neutrino interactions, neutrino from reactors

Solar Neutrinos

1.0 - Observed rate/BP04 A Global Fit Prediction FOGG/PEP 0.5 - Ga SK SNO-CC SNO-NC Solar Neutrino Experiments

phenomenology best explained by the matter transition MSW-LMA

Moscow, 15/10/2005

Solar Neutrinos in Borexino

- ⁷Be solar neutrinos spectroscopy by resolving the Compton-like edge (neutrino-electron elastic scattering)
- □ 1/R² effect gives 3_☉ integral evidence of neutrinos in 2yr of data taking (⁷Be + CNO)
- pep neutrinos by three-fold coincidence tagging

How robust is the LMA?

Test LMA Survival Probability with Low Energy Solar Neutrinos (just one of many examples)

$$v_l + q \rightarrow v_f + q$$

Miranda, Tortola, Valle, hep-ph/0406280

pep neutrinos in Borexino @ Gran Sasso

Detection window=[0.8,1.3] MeV

Signal/noise = 0.4[for KamLAND=0.06] due to ¹¹C background

¹¹C produced mainly from ${}^{12}C(\gamma,n){}^{11}C$ Only 5% of ¹¹C produced are not associated with a neutrons:

Possibility to apply a rejection cut using three-fold coincidence (muon+neutron tagging) as in CTF

Signal/noise can be as high as 2(4) with rejection of 3%(50%) of data volume

Galbiati,Franco,Pocar,Ianni,Cadonati,Schoenert, hep-ph/0411002, now on PRC

Muon+neutron tagging

¹¹C is removed <u>blinding</u> the intersection of the two volumes for 5-10 ¹¹C-lifetime

Moscow, 15/10/2005

Geo-Neutrinos in Borexino

- Geo-neutrinos: neutrinos/antineutrinos produced by natural radioactivity (from U,Th and K) within the earth
- Geo-neutrinos from U and Th can be detected via the inversebeta decay (background free!)
- Models suggest that radioactivity contribution to total heat from the earth (~40 TW) is 40-100%
- Geo-neutrino measurement will help understanding earth's thermal history
- Borexino a great opportunity!

SN Neutrinos in Borexino

Neutrinos from Supernovae

- We use 300tons target mass and a SN at 10kpc, 2.5x10⁵³ergs
- ~17 ev from $v(v)^{12}$ C NC: $v + {}^{12}$ C -> $v + {}^{12}$ C*(15.1 MeV γ)
- ~81 from inverse-β decay
- Inverse-beta decay gives information on spectrum at low energy (≥2 MeV)

Status of the project

Following August 2002 accident, Borexino activity has suffered from severe restrictions especially for what concerns fluid handling operations;

□ In spite of this, the detector installation has continued and was completed in july 2004;

□ INFN and NSF approved fundings for 2005-2006;

In march 2005: <u>authorization to handle water and</u> <u>scintillator</u>;

Nylon vessels installation

Moscow, 15/10/2005

Nylon vessels installed and inflated (May 2004)

Moscow, 15/10/2005

Final closure of the SSS (june 2004)

Operations group & contribution from collaborators

At present: Strong group based at Gran Sasso to push ahead the commissioning

3 external technicians with experience on petrochemical plants
 3 collaborators from Princeton
 2 collaborators from Russia (1 full time based)
 6 collaborators from INFN

Expected STRONG support from the WHOLE collaborators in 2006 for detector filling (shifts)

Status of the project (cont.)

□ re-commissioning of all ancillary plants in progress

- Cleaning of systems
- Tuning for distillation of PC and of Master Solution (PC+PPO@200g/I)
- Preparing CTF for distillation test (²¹⁰Pb ²¹⁰Po contamination issue)

□ Software for data analysis

- Monte Carlo chain, on-line code, tests, physics codes
- Tests of software chain by so-called "air runs"

Satus of the project (cont.)

□ After CTF distillation test (beginning of 2006)

- Filling of the detector, expected before spring 2006
- Data taking, expected beginnig of 2007

- Detecting low-energy solar neutrinos in real-time is crucial
- Years of R&D studies by the Borexino collaboration has addressed all the relevant radio purity issues which are needed to lower the detection threshold down to ~200 keV for a ton-scale detector;
- Borexino detector is built, tested with several "air-runs" and ready to be filled;
- Strategy of filling from CTF distillation test (soon)
- 2006 crucial year for Borexino: strong effort by the collaboration expected
- Data-taking is expected beginning of 2007;

Moscow, 15/10/2005

Borexino: the detector

- 300tons high purity liquid scintillator: PC (C₉H₁₂, ρ=0.88 g/cm³)
- 100tons target mass for ⁷Be solar neutrinos
- Detector design: self-shielding technique. In target mass external background negligible; purification methods (distillation, water extraction, nitrogen stripping) to remove impurities in the scintillator
- Expected ~35 events in [0.25,0.8]MeV against ~20 background counts after off-line cuts

Future low energy solar neutrino experiments^{*}: How?

Experiment	Detection channel	target	Data taking	Expected signal counts/year for pp(Be)
Borexino	Elastic Scattering	100tons target mass Organic Liquid Scintillator**	2007	30cpd only Be
KamLAND	Elastic Scattering	~600 target mass Organic Liquid Scintillator	2007	~180cpd only Be
LENS	CC channel ¹¹⁵ In+v _e ->e ⁻ + ¹¹⁵ Sn,γ	~20ton In-loaded scintillator cells	?	2190(511)
MOON	CC channel ¹⁰⁰ Mo+ν _e ->e ⁻ + ¹⁰⁰ Tc(β)	3.3ton Mo foils + plastic scintillator	?	240(77)
XMASS	Elastic Scattering	10ton liquid Xe	?	2373(1241) with 50keV thres.
CLEAN	Elastic Scattering	10ton liquid Ne	?	2869(1518) with 50keV thres.

*only mentioned those which have a stronger R&D in progress! **see also next speaker!

Test LMA Survival Probability with Low Energy Solar Neutrinos

Cirelli, Marandella, Strumia, Vissani, hpe-ph/0403158

Moscow, 15/10/2005

Low Energy Solar Neutrinos: how?

- Below 1 MeV radioactivity from ²³⁸U, ²³²Th, ⁴⁰K, ²¹⁰Pb, ²²²Rn, ⁸⁵Kr, ³⁹Ar must be reduced to extremely low levels to be able to detect solar neutrinos
- □ As an example: ²³⁸U and ²³²Th <=1mBq/ton to get S/N>1
- Organic liquid scintillators offer high light yield (10⁴ γ/MeV) and high intrinsic radiopurity but limited to ⁷Be and pep due to ¹⁴C [Borexino, KamLAND]
- Liquid noble gases (Xe, Ne) offer high light yield, high purity and no ¹⁴C: pp spectroscopy [XMASS, CLEAN]
- Loaded (¹¹⁵In, ¹⁰⁰Mo) liquid scintillators may offer good tagging [LENS, MOON]

Borexino Calibration Program

Borexino Parameters

Energy Scales

Beta Alpha Gamma

Position Reconstruction

Fiducial Volume Correlated Events Internal/External/Surface

α/β Separation

Stability

Chemical Optical Mechanical Solar Signature

Moscow.	15/10/2005

Kamland		SNO (ES)		
Fiducial Volume	4.1	Energy Scale	-3.5,+5.4	
ν _e spectra	2.5	Vertex Shift	3.3	
Energy Threshold	2.3	Angular resolution	2.2	
Reactor Power	2.1	Cut efficiency	0.7	
Cut efficiency	1.6	Vertex Resolution	0.4	
Fuel Consumption	1.0	Non-Linearity	0.4	
cross section	0.2	Energy Resolution	0.3	
Live Time	0.06	cross section	0.5	
Karsten Heeger, DNP 2004		Aksel Hallin, Blaubeuren 2001		

Calibration systems

- Inter-PMT equalization for timing and vertex reconstruction
 - by means of optic fibers at each PMT (requirement: < TTJ (~1ns))
- Optical calibration of liquid scintillator
 - by optic fibers
 - 226nm with decay time characteristic of charged particles excitation for position and energy
 - 355nm to optimize MC
- Calibration with radioactive sources
 - External from stainless steel sphere with Th
 - Internal from on-axis and off-axis insertion system with Rn-loaded scintillator or beta/gamma sources
- Source position measurement with 7-CCD camera system installed on the stainless steel sphere (2cm accuracy)

Rn loaded source used in the CTF