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Method of polarized semi-inclusive deep inelastic scattering (SIDIS) data analysis in the next to leading
order (NLO) QCD is developed. Within the method one first directly extracts in NLO few first truncated
(available to measurement) Mellin moments of the quark helicity distributions. Second, using these
moments as an input to the proposed modification of the Jacobi polynomial expansion method (MJEM),
one eventually reconstructs the local quark helicity distributions themselves. All numerical tests
demonstrate that MJEM allows us to reproduce with the high precision the input local distributions
even inside the narrow Bjorken x region accessible for experiment. It is of importance that only four first
input moments are sufficient to achieve a good quality of reconstruction. The application of the method to
the simulated SIDIS data on the pion production is considered. The obtained results encourage one that the
proposed NLO method can be successfully applied to the SIDIS data analysis. The analysis of HERMES
data on pion production is performed. To this end the pion difference asymmetries are constructed from
the measured by HERMES standard semi-inclusive spin asymmetries. The LO results of the valence
distribution reconstruction are in a good accordance with the respective leading order SMC and HERMES
results, while the NLO results are in agreement with the existing NLO parametrizations on these
quantities.
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3So, on the contrary to LO, where direct extraction of PDFs is
possible, it seems at first sight that dealing with SIDIS asymme-
I. INTRODUCTION

One of very important topics in the modern high energy
physics is the investigation of the partonic spin structure of
nucleon. In this connection, nowadays, there is a huge
growth of interest to the SIDIS experiments with longitu-
dinally polarized beam and target such as SMC [1],
HERMES [2], COMPASS [3]. It is of importance that the
SIDIS experiments, where one identifies the hadron in the
final state, provide us with the additional information on
the partonic spin structure in comparison with the usual
DIS experiments. Namely, on the contrary to the DIS data,
the SIDIS data allows us to extract the sea and valence
quark helicity distributions in separation.

At the same time it is argued (see, for example, Ref. [4])
that to obtain the reliable distributions at relatively low
average Q2 available to the modern SIDIS experiments,1

the leading order (LO) analysis is not sufficient and NLO
analysis is necessary. In Ref. [5] it was proposed the
procedure allowing the direct extraction from the SIDIS
data of the first moments (truncated to the accessible for
measurement Bjorken x region) of the quark helicity dis-
tributions in NLO QCD. However, in spite of the special
importance of the first moments,2 it is certainly very desir-
able to have the procedure of reconstruction in NLO QCD
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le, HERMES data [2] on semi-inclusive asymme-
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ll that, namely, these quantities, first moments, are
mportance for solution of the proton spin puzzle
ely, these quantities compose the nucleon spin
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of the polarized densities themselves. At the same time, it
is extremely difficult to extract the local in Bjorken x�xB�
distributions directly, because of the double convolution
product entering the NLO QCD expressions for the semi-
inclusive asymmetries3 (see Ref. [5] and references
therein). Fortunately, operating just as in Ref. [5], one
can directly extract not only the first moments, but the
Mellin moments of any required order. Using the truncated
moments of parton distribution functions (PDFs) and ap-
plying the modified Jacobi polynomial expansion method
(MJEM) proposed in Ref. [7] one can reconstruct PDFs
themselves in the entire accessible for measurement xB
region. In the brief letter [7] MJEM was tested using
only the simple numerical (idealized) examples, where
the exact values of the input moments entering MJEM
are known (see Sec. II). However, in the conditions of
the experiment we have at our disposal only rather small
number of the measured asymmetry values (one point for
each bin with the rather wide bin widths at the middle and
large xB). Thus, extracting the moments from the measured
asymmetries one calculates the integrals over xB using
tries in NLO one can not avoid some fitting procedure. However,
the modern world SIDIS data provide us by the rather small
number of points for the measured asymmetries (and, besides,
they suffer from the large statistical errors). Thus, purely semi-
inclusive data very weakly constrains the large number of fit
parameters entering NLO analysis (for example, twenty free
parameters are used in Ref. [6]). At the same time, the addition
of DIS data in analysis can not help us to solve the main task of
SIDIS—to extract the valence, sea and strange PDFs in
separation.

-1 © 2006 The American Physical Society
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5JEM with respect to polarized quark densities was first
applied in Ref. [12]

6Expansion (1) becomes exact when Nmax ! 1. However, the
advantage of JEM is that even truncated series with the small
number of used moments Nmax and properly fixed parameters �,
� gives the good results (see, for example, [10])

7We choose here the most narrow HERMES xB region where
the difference between JEM and its modification MJEM (see
below) application becomes especially impressive. However,
even with the more wide accessible xB region (for example,
COMPASS region [3]) it is of importance to avoid the additional
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rather small4 number of points. So, because of this prob-
lem, even for the data obtained with very high precision
(small errors) the extracted moments always suffer from
the deviation from their true values. In this extended paper
we investigate this problem in detail (see Sec. III). In
Sec. III MJEM is tested with the simulations corresponding
to the kinematics of the HERMES experiment, where the
accessible xB region is the most narrow in comparison with
SMC and COMPASS regions.

After the testing the proposed method is applied to the
NLO QCD analysis of the HERMES data (Sec. IV). Notice
that although the method is quite general, within this paper
we deal only with the SIDIS data on the pion production.
The point is that here we would like first of all to see how
well the method itself works. That is why, for a moment,
we do not like to deal with the such poorly known objects
asDK�

q andDh
g fragmentation functions which additionally

introduce the big uncertainties in the analysis results. For
example, the analysis performed in Ref. [6] shows that the
different choices of parametrizations for these fragmenta-
tion functions lead to the strong disagreement in the ob-
tained results (about 30% for valence quarks and about
100% for sea quarks). From this point of view the most
attractive objects are the difference asymmetries [8] (for
details on difference asymmetry in NLO see [5,9] and
references therein), where the fragmentation functions
are cancel out in LO, while in NLO the difference asym-
metry has only weak dependence of the difference of the
favored and unfavored pion fragmentation functions
(known with a good precision). In Sec. IV the pion differ-
ence asymmetries are constructed from the measured by
HERMES standard semi-inclusive spin asymmetries.
Using as a starting point the constructed in such a way
difference asymmetries, the (preliminary) reconstruction
in NLO QCD of the valence PDFs from the HERMES data
is performed.

II. MJEM AND THE USUAL JEM IN COMPARISON.
NUMERICAL TESTS

In this section we, for the sake of self-consistence and
clarity, represent in more detail the results of Ref. [7].

There exist several methods allowing to reconstruct the
local in xB quantities (like structure functions, polarized
and unpolarized quark distributions, etc) knowing only
finite number of numerical values of their Mellin moments.
All of them use the expansion of the local quantity in the
series over the orthogonal polynomials (Bernstein,
Laguerre, Legendre, Jacobi)—see Ref. [10] and references
therein. The most successful in applications (reconstruc-
tion of the local distributions from the evolved with GLAP
moments and investigation of �QCD) occurred the Jacobi
4For example, HERMES used 9 bins for the region 0:023<
x< 0:6 and COMPASS used 12 bins for the region 0:003< x<
0:7.
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polynomial expansion method (JEM) proposed in the pio-
neer work by Parisi and Sourlas [11] and elaborated5 in
Refs. [10,13].

The local in xB functions (structure functions or quark
distributions) are expanded in the double series over the
Jacobi polynomials and Mellin moments (see the
Appendix):

F�x� ’ FNmax
�x�

� !��;���x�
XNmax

k�0

���;��k �x�
Xk
j�0

c��;��kj M�j� 1�; (1)

where !��;���x� � x��1� x�� and Nmax is the number of
moments left6 in the expansion. For what follows it is of
importance that the moments entering Eq. (1) are the full
moments, i.e., the integrals over the entire Bjorken x region
0< x< 1:

M�j� �
Z 1

0
dxxj�1F�x�: (2)

Till now nobody investigated the question of applicability
of JEM to the rather narrow xB region available to the
modern polarized SIDIS experiments. So, let us try to
apply JEM to the reconstruction of �uV�x� and �dV�x�
in the rather narrow xB region7 a � 0:023< x< b � 0:6
available to HERMES, and to investigate is it possible to
safely replace the full moments (2) by the truncated mo-
ments. To this end we perform the simple test. We choose8

GRSV2000NLO (symmetric sea) parametrization [14] at
Q2 � 2:5 GeV2. Integrating the parametrizations on �uV
and �dV over the HERMES xB region we calculate 12
truncated moments given by (c.f. Eq. (13) below)

M0�j� 	 M0�a;b��j� 	
Z b

a
dxxj�1F�x�; (3)

where we put F�x� � �uV�x� or F�x� � �dV�x� and
choose a � 0:023, b � 0:6. Substituting these moments
in the expansion Eq. (1) with Nmax � 12, we look for
systematical errors caused by the replacement of the full (un-
accessible) moments in JEM (1) by the accessible truncated
moments.

8Certainly, one can choose for testing any other
parametrization.
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FIG. 1. Results of �uV�x� (�opt � 8:189221, �opt � �0:99000) and �dV�x� (�opt � �0:99000, �opt � �0:387196) reconstruction
with the usual JEM. Solid line corresponds to the input (reference) parametrization GRSV2000NLO (symmetric sea). Dotted line
corresponds to the distribution reconstructed with JEM for Nmax � 12.
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optimal values of parameters � and � corresponding to the
minimal deviation of reconstructed curves for �uV�x� and
�dV�x� from the input (reference) curves corresponding to
input parametrization. To find these optimal values �opt

and �opt we use the program MINUIT [15]. The results are
presented in Fig. 1. Looking at Fig. 1, one can see that the
curves strongly differ from each other even for the high
number of used moments Nmax � 12.

Thus, the substitution of truncated moments instead of
exact ones in the expansion (1) is a rather crude approxi-
mation at least for HERMES xB region. Fortunately it is
possible to modify the standard JEM in a such way that
new series contains the truncated moments instead of the
full ones. The new expansion looks as (see the Appendix)

F�x� ’ FNmax
�x�

�

�
x� a
b� a

�
�
�
1�

x� a
b� a

�
� XNmax

n�0

���;��n

�
x� a
b� a

�



Xn
k�0

c��;��nk

1

�b� a�k�1

Xk
l�0

k!

l!�k� l�!


M0�l� 1���a�k�l; (4)

where we use the notation Eq. (3) for the moments trun-
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FIG. 2. Results of �uV�x� (�opt � �0:827885, �opt � �0:01150
struction with MJEM. Solid line corresponds to the input (reference
corresponds to the distribution reconstructed with MJEM for Nmax �
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cated to accessible for measurement xB region. It is of great
importance that now in the expansion enter not the full
(unavailable) but the truncated (accessible) moments.
Thus, having at our disposal few first truncated moments
extracted in NLO QCD (Eqs. (9) below), and applying
MJEM, Eq. (4), one can reconstruct the local distributions
in the accessible for measurement xB region.

To proceed let us clarify the important question about
the boundary distortions. The deviations of reconstructed
with MJEM, Eq. (4), FNmax

from F near the boundary
points are unavoidable since MJEM is correctly defined
in the entire region �a; b� except for the small vicinities of
boundary points (see the Appendix). Fortunately, FNmax

and
F are in very good agreement in the practically entire
accessible xB region, while the boundary distortions are
easily identified and controlled since they are very sharp
and hold in very small vicinities of the boundary points
(see Figs. 2– 4 below). In this section we, for clarity,
explicitly show these distortions in all figures. In the next
sections the all such distortions will be just cutted off.

Let us check how well MJEM works. To this end let us
repeat the simple exercises with reconstruction of the
known GRSV2000NLO (symmetric sea) parametrization
and compare the results of �uV�x� and �dV�x� reconstruc-
tion with the usual JEM and with the proposed MJEM. To
X
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5) and �dV�x� (�opt � �0:989752, �opt � �0:012393) recon-
) parametrization GRSV2000NLO (symmetric sea). Dotted line

12.
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FIG. 3. Results of the valence PDFs reconstruction with JEM and MJEM in comparison. Top part corresponds to �uV�x� (�opt �
�0:99, �opt � 0:054010) and �dV�x� (�opt � 0:174096, �opt � 0:162567) reconstructed with the usual JEM. Bottom part corre-
sponds to �uV�x� (�opt � �0:0025869, �opt � �0:071591) and �dV�x� (�opt � 0:110331, �opt � �0:049255) reconstructed with
MJEM. Solid lines correspond to input (reference) parametrization GRSV2000NLO (symmetric sea). Dotted lines correspond to the
distributions reconstructed with JEM (top) and MJEM (bottom).
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control the quality of reconstruction we introduce the
parameter9

� �

R
b
a dxjFreconstructed�x� � Freference�x�jR

b
a dxjFreferencej

� 100%; (5)

where Freference�x� corresponds to the input parametrization
and Freconstructed�x� 	 FNmax

�x� in Eq. (4). We first perform
the reconstruction with very high number of moments
Nmax � 12 and then with the small number Nmax � 4.
Notice that the last choice Nmax � 4 is especially impor-
tant because of peculiarities of the data on asymmetries
provided by the SIDIS experiments. Indeed, the number of
used moments should be as small as possible because first,
the relative error j��M0�j��=M0�j�j on M0�j� becomes
higher with increase of j and second, the high moments
become very sensitive to the replacement of integration by
the sum over the bins. The results of �uV�x� and �dV�x�
reconstruction with MJEM at Nmax � 12 and with appli-
cation of both JEM and MJEM (in comparison) at Nmax �
4, are presented in Figs. 2 and 3. It is seen (see Fig. 2) that
for Nmax � 12 MJEM, on the contrary to the usual JEM
9Calculating � we just cut off the boundary distortions which
hold for MJEM in the small vicinities of the boundary points (see
the Appendix), and decrease the integration region, respectively.
To be more precise, one can apply after cutting some extrapo-
lation to the boundary points. However, the practice shows that
the results on � calculation are practically insensitive to the way
of extrapolation since the widths of the boundary distortion
regions are very small (about 10�3).
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(see Fig. 1), gives the excellent agreement between the
reference and reconstructed curves. In the case Nmax � 4
the difference in quality of reconstruction between JEM
and MJEM (see Fig. 3) becomes especially impressive.
While for standard JEM the reconstructed and reference
curves strongly differ from each other, the respective
curves for MJEM are in a good agreement. Thus, one can
conclude that dealing with the truncated, available to mea-
surement, xB region one should apply the proposed modi-
fied JEM to obtain the reliable results on the local
distributions.

Until now we looked for the optimal values of parame-
ters � and � entering MJEM using explicit form of the
reference curve (input parametrization). Certainly, in real-
ity we have no any reference curve to be used for optimi-
zation. However, one can extract from the data in NLO
QCD the first few moments (Eqs. (9) below). Thus, we
need some criterion of MJEM optimization which would
use for optimization of � and � only the known (extracted)
moments entering MJEM.

On the first sight it seems to be natural to find the
optimal values of � and � minimizing the difference of
reconstructed with MJEM and input10 (entering MJEM
(4)) moments. However, it is easy to prove (see the
Appendix) that this difference is equal to zero:
10In practice one should reconstruct these input moments from
the data using Eqs. (9) (below). The reference ‘‘twice-truncated’’
moments (7) should be reconstructed from the data in the same
way.
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FIG. 4. Results of �uV and �dV reconstruction for GRSV2000NLO parametrization for both symmetric (top) and broken sea
(bottom) scenarios. Solid line corresponds to the reference curve (input parametrization). Dotted line is reconstructed with MJEM and
criterion (8) inside the accessible for measurement region ([0.023,0.6] here). Optimal values of parameters for symmetric sea scenario
for �uV are �opt � �0:15555, �opt � �0:097951 and for �dV are �opt � �0:002750, �opt � �0:07190. Optimal values of
parameters for broken sea scenario for �uV are �opt � �0:209346, �opt � 0:153417 and for �dV are �opt � 0:702699, �opt �

�0:293231.
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M0
�a;b��n�jreconstructed � M0

�a;b��n�jinput; n � Nmax; (6)

i.e. all reconstructed moments with n � Nmax are identi-
cally equal to the respective input moments for any � and
�. Fortunately, we can use for comparison the reference
‘‘twice-truncated’’ moments

M00�n� 	 M00
�a�a0;b�b0��n�

	
Z b�b0

a�a0
dxxn�1F�x��a < a� a0 < b� b0 < b�;

(7)

i.e. the integrals over the region less than the integration
region �a; b� for the ‘‘once-truncated’’ moments M0

�a;b�

entering MJEM (4). The respective optimization criterion
can be written in the form

XNmax

j�0

jM00�reconstructed��j� �M
00
�reference��j�j � min: (8)

The ‘‘twice truncated’’ reference moments should be ex-
tracted in NLO QCD from the data in the same way as the
input (entering MJEM (4)) ‘‘once truncated’’ moments. In
reality one can obtain ‘‘twice-truncated’’ moments using
Eqs. (9) (below) and removing, for example, first and/or
last bin from the sum in Eq. (14) (below).

Let us now check how well the optimization criterion (8)
works. To this end we again perform the simple numerical
test. We choose GRSV2000NLO parametrization at Q2 �
2:5 GeV2 with both broken and symmetric sea scenarios.
We then calculate four first ‘‘once-truncated’’ and four first
094026
‘‘twice-truncated’’ moments defined by Eqs. (3) and (7),
and then substitute them in (4) and the optimization crite-
rion (8), respectively. To find the optimal values of � and�
we use the MINUIT [15] program. The results are pre-
sented in Fig. 4. It is seen that the optimization criterion
works well for both symmetric and broken sea scenarios.

Thus, the performed numerical tests show that the pro-
posed modification of the Jacobi polynomial expansion
method allows to reconstruct with a high precision the
quark helicity distributions in the accessible for measure-
ment xB region.

III. RECONSTRUCTION OF THE VALENCE
QUARK HELICITY DISTRIBUTIONS FROM THE

SIMULATED DATA

In this section the proposed NLO QCD method will be
applied to the simulated data. The simulations give us a
good tool for testing of the method since here one knows in
advance the answer to be found—the reference parame-
trization entering the generator as an input. At the same
time the properly performed simulations (i.e., correspond-
ing to the experimental statistics, binning and kinematical
cuts) allow us finally adapt the method for application to
the real experimental data.

Let us first investigate the peculiarities of the nth mo-
ments extraction in the conditions of the real experimental
binning (rather small number of bins covering the acces-
sible for measurement xB region).

The simple extension of the procedure proposed in
Ref. [5] gives for the n-th moments �nq	

R
1
0dxx

n�1q�x�
-5
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of the valence distributions the equations

�nuV�
1

5

A�n�
p �A�n�

d

L�n�1�L�n�2
; �ndV�

1

5

4A�n�
d �A�n�

p

L�n�1�L�n�2
: (9)

Here the notation is absolutely analogous to one used in
Ref. [5]:

A�n�
p 	

Z 1

0
dxxn�1A�

����
p jZ�4uV � dV�



Z 1

Z
dzh

�
1�

�s
2�

Cqq
�
�D1 �D2�; (10)

A�n�
d 	

Z 1

0
dxxn�1A�

����
d jZ�uV � dV�



Z 1

Z
dzh

�
1�

�s
2�

Cqq
�
�D1 �D2�; (11)

where D1�D2� is favored (unfavored) pion fragmentation
11Operating in such a way one puts the x-dependent measured
quantity (difference asymmetries A�

����
p�d� �xi� here) to be equal

its mean value in the ith bin, while the x-dependent rest is
calculated in the point xi 	 hxii.
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function, the quantities L�n�1, L�n�2 are defined as

L�n�1 	 L�
�

�n�u � L�
�

�n� �u � L�
�

�n� �d
� L�

�

�n�d;

L�n�2 	 L�
�

�n�d � L�
�

�n� �d
� L�

�

�n�u � L�
�

�n� �u;

Lh
�n�q 	

Z 1

Z
dzh

�
Dh
q�zh� �

�s
2�

Z 1

zh

dz0

z0
�nCqq�z

0�Dh
q

�
zh
z0

��
;

(12)

where

�nCqq�z� 	
Z 1

0
dxxn�1�Cqq�x; z�

are the nth moments of the polarized Wilson coefficients
�Cqq�x; z� entering the NLO expressions for the difference
asymmetries A�

����
p;d (the respective experimental expres-

sions via counting rates are given by Eq. (19)—see below):
A�
����

p �x;Q2�jZ �
�4�uV � �dV�

R
1
Z dzh�1�

�s
2��Cqq��D1 �D2�

�4uV � dV�
R

1
Z dzh�1�

�s
2�Cqq��D1 �D2�

;

A�
����

d �x;Q2�jZ �
��uV � �dV�

R
1
Z dzh�1�

�s
2��Cqq��D1 �D2�

�uV � dV�
R

1
Z dzh�1�

�s
2�Cqq��D1 �D2�

:

It should be noticed that in reality one can measure the
asymmetries only in the restricted Bjorken x region a <
x < b, so that the approximate equations for the truncated
moments (c.f. Eq. (3))

�0nq 	 M0�n� 	
Z b

a
dxxn�1�q�x� (13)

of the valence distributions have the form Eq. (9) with the
replacement of the full integrals in Eq. (10) by the sums
over bins covering the accessible region a < x < b:

A �n�
p ’

XNbins

i�1

xn�1�xiA
�����
p �xi�jZ�4uV � dV��xi�



Z 1

Z
dzh

�
1�

�s
2�

Cqq
�
�D1 �D2�; (14)

and analogously for A�n�
d .

The approximation to Eq. (10) given by Eq. (14) is based
on the assumption that all integrated quantities are the
constants11 within each bin. This is well-known ‘‘middle
point’’ numerical integration method.

However, it seems that there is a way to improve this
approximation having in mind the real experimental situ-
ation. The point is that the reality of an experiment compel
us to approximate by the constant within the bin only the
measured quantity (difference asymmetry here), that can
be written as

A�
����

p �x�jZ �
XNbins

i�1

A�
����

p �hxii�jZ��x� xi�1���xi � x�;

(15)
where A�

����
p �hxii�jZ is the mean value of asymmetry in

ith bin, x0 � a, xNbins
� b and ��x� is the usual step func-

tion. At the same time, there is no any need to approximate
by the constant another x-dependent quantities (unpolar-
ized valence PDFs and Wilson coefficients here) entering
the integrals over xB as the known input. Thus, substituting
Eq. (15) in the initial integral equation Eq. (10) we get
(c.f. Eq. (14))

A�n�
p �

XNbins

i�1

A�
����

p �hxii�jZ
Z xi

xi�1

dxxn�1�4uV � dV��x�



Z 1

Z
dzh

�
1�

�s
2�

Cqq
�
�D1 �D2�: (16)

Notice that the analogous way of the integral approxi-
mation was applied by the HERMES collaboration in
Ref. [2], where the moments �0nq were reconstructed sub-
stituting extracted from the data (‘‘measured’’) quantities
��q=q��xi� in the equation (see Eq. (46) in Ref. [2])

�0nq �
Z 0;6

0:023
dx

XNbins

i�1

�
�q
q
�hxii���x� xi�1�


 ��xi � x�
�
xn�1q�x�: (17)
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FIG. 5 (color online). Idealized LO testing of the integration procedures given by Eq. (14) and (16). The input parametrizations
GRSV2000LO with symmetric sea scenario (top) and broken sea scenario (bottom) are used for direct calculation of asymmetries with
Eq. (18). Solid line corresponds to the input parametrization. Closed circles correspond to the values of input parametrization in the
middle of each bin. Broken line shows the way of integral approximation corresponding to application of Eq. (14). Dashed line is
obtained with MJEM and application of Eq. (16) for the moment calculation. Dot-dashed line is obtained with MJEM and application
of Eq. (14) for the moment calculation. Parameters �1 and �2 are given by Eq. (5) and show the quality of reconstruction for the dashed
and dot-dashed lines, respectively.
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To see the advantage of Eq. (16) application, let us com-
pare it with the application of the integration procedure
given by Eq. (14). To this end we perform absolutely
idealized LO test, where in each bin (we choose the
HERMES binning) the value of asymmetry is directly
calculated from the given12 parametrization on �uV and
�dV using the theoretical LO expressions [8] for the
difference asymmetries

A�
����

p �
4�uV��dV

4uV�dV
; A�

����
d �

�uV��dV
uV�dV

: (18)

For simplicity, within this test we put hxii � �xi � xi�1�=2
(i � 1; . . . ; 9; x0 � 0:023, x9 � 0:6), so that reconstructed
with Eq. (18) values of �uV�hxii� and �dV�hxii� exactly
coincide with the respective input parametrization values
in the points hxii—see Fig. 5. Now we calculate four first
moments using reduced to LO Eqs. (9) and the integration
procedures given by Eqs. (14) and (16) and then we apply13

MJEM to both sets of the obtained moments. Looking at
Fig. 5 one can see that reconstructed in this way curves
strongly differ from each other, and the curve obtained
with application of the integration procedure given by
12We choose for illustration GRSV2000LO (symmetric sea)
parametrization. At the same time, it is easy to check that
absolutely the same picture holds for any other parametrization.

13Here we find �opt and �opt values requiring the minimal
deviation of reconstructed with MJEM �uV�hxii� and
�dV�hxii� from the reference parametrization values at the points
hxii.

094026
Eq. (16) is in much better agreement with the input (refer-
ence) parametrization.

Thus, following the results of just performed test, from
now on we will use, namely, Eq. (16) performing the
moments calculations.

Let us now perform LO and NLO analysis of the simu-
lated SIDIS data on �� and �� production with both
proton and deutron targets. To this end we use the PEPSI
generator of polarized events [16]. The conditions of simu-
lations are presented in Table I and correspond to the
HERMES kinematics. Let us stress that all the cuts on
Q2, xF, W2 and zh in Table I are the standard physical14

cuts applied by SMC, HERMES and COMPASS. The
statistics 3 � 106 in Table I is the total number of DIS events
for both proton and deutron targets and for both longitu-
dinal polarizations.

Using the simulated data we construct the difference
asymmetries (see Ref. [5] for details)

A�
����

p�d� jZ �
1

PBPTfD



�N��
"# � N

��
"# �L"" � �N

��
"" � N

��
"" �L"#

�N��
"# � N

��
"# �L"" � �N

��
"" � N

��
"" �L"#

;

(19)
14For example, the important cut on invariant mass W2 >
10 GeV2 is applied by these collaborations to exclude the events
coming from the resonance region.
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TABLE I. Simulation conditions. Here xB and xF are the
Bjorken and Feynman variables, respectively, zh is the standard
hadronic variable and W is the invariant mass of the final
hadronic state.

Elepton xB xF zh

27:5 GeV 0:023< xB < 0:6 xF > 0:1 zh > Z � 0:2

W2 Q2 Q2
mean Events

W2 > 10 GeV2 Q2 > 1 GeV2 2:4 GeV2 3 � 106

TABLE II. Results for LO extracted truncated moments for the
simulations with the entering PEPSI two different parametriza-
tions: GRSV2000LO (symmetric sea) parametrization (top) and
GRSV2000LO (broken sea) parametrization (bottom). For com-
parison the respective reference (obtained by direct integration
of entering PEPSI input parametrizations) moments are also
presented.

�0nuV �0ndV
n Extracted Reference Extracted Reference

1 0:7042� 0:0124 0.7176 �0:2568� 0:0271 �0:2618
2 0:1489� 0:0037 0.1477 �0:0439� 0:0079 �0:0482
3 0:0467� 0:0016 0.0457 �0:0118� 0:0033 �0:0135
4 0:0179� 0:0007 0.0173 �0:0041� 0:0015 �0:0048

�0nuV �0ndV
n Extracted Reference Extracted Reference

1 0:5346� 0:0123 0.5255 �0:0952� 0:0274 �0:1103
2 0:1318� 0:0036 0.1282 �0:0297� 0:0081 �0:0331
3 0:0434� 0:0015 0.0425 �0:0098� 0:0034 �0:0107
4 0:0167� 0:0007 0.0166 �0:0037� 0:0015 �0:0039
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where N��
"#�""�

are the counting rates integrated over zh in the
region Z � 0:2< zh < 1, L"#�""� � N"#�""�=�"#�""� are the lu-
minosities, and the quantities pB, pT , f are equal to unity in
the conditions of simulations with PEPSI.

We first perform the LO analysis of the simulated dif-
ference asymmetries. The important peculiarity of LO
analysis is that in this case one can perform the extraction
of �uV and �dV in two ways. First is the direct extraction
where one applies Eqs. (18) in each bin—points with error
bars in Fig. 6. The second method is the proposed one,
where MJEM is applied to the LO extracted moments—
dashed line in Fig. 6. The moments used in MJEM are
extracted from the simulated difference asymmetries with
application of reduced to LO Eqs. (9)–(13), (16) are pre-
sented in Table II.

Looking at Fig. 6, one can see that the input (reference)
parametrization slightly deviates from both the directly
extracted values of �uV and �dV and the reconstructed
with MJEM curve. These deviations are unavoidable and
are caused by the specific character of the events genera-
tion with PEPSI. Our experience shows that the asymme-
tries reconstructed from the generated events always
slightly differ from the respective asymmetries calculated
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FIG. 6. Results of the simulated difference asymmetry analysis in L
broken sea (bottom) scenarios are used for simulations. Solid line cor
the reconstructed with MJEM curve. Points with error bars correspo
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from the input parametrizations (with application of
Eq. (18) in LO). One the other hand, comparing the directly
extracted and the reconstructed with MJEM �uV and �dV ,
one can see that they are in a good agreement with each
other. Thus, the performed LO testing encourage us that the
proposed method of PDFs extraction could be successfully
applied.

Let us now clarify the important point concerning ap-
plication of the optimization criterion Eq. (8) which we use
to find the optimal values �opt and �opt of the entering
MJEM parameters � and � (see Sec. II for details). All
over the paper, applying the optimization criterion, we
simultaneously use for each j (j � 1; . . . 4) in the sum
X
-110

.1

-0

05
V d∆x

X
-110

15

0.1

05

0

05

0.1

15
V d∆x

O. GRSV2000LO parametrizations for symmetric sea (top) and
responds to the input parametrization. Dashed line corresponds to
nd to direct extraction of the valence distributions with Eq. (18).
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TABLE III. Results for NLO extracted truncated moments for the simulations with the
entering PEPSI two different parametrizations: GRSV2000NLO (symmetric sea) parametriza-
tion (top) and GRSV2000NLO (broken sea) parametrization (bottom). For comparison the
respective reference (obtained by direct integration of entering PEPSI input parametrizations)
moments are also presented.

�0nuV �0ndV

n Extracted Reference Extracted Reference
1 0:7369� 0:0133 0.7507 �0:2577� 0:0293 �0:2760
2 0:1507� 0:0039 0.1545 �0:0423� 0:0085 �0:0490
3 0:0449� 0:0016 0.0471 �0:0109� 0:0033 �0:0133
4 0:0163� 0:0007 0.0176 �0:0037� 0:0015 �0:0045

�0nuV �0ndV
n Extracted Reference Extracted Reference

1 0:5860� 0:0134 0.5701 �0:1045� 0:0300 �0:1137
2 0:1392� 0:0039 0.1381 �0:0314� 0:0088 �0:0367
3 0:0433� 0:0015 0.0448 �0:0101� 0:0034 �0:0121
4 0:0159� 0:0007 0.0172 �0:0037� 0:0016 �0:0045
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FIG. 7. Results of the simulated difference asymmetry analysis in NLO. GRSV2000NLO parametrizations for symmetric sea (top)
and broken sea (bottom) scenarios are used for simulations. Solid line corresponds to the input parametrization. Dashed line
corresponds to the reconstructed with MJEM curve.

15These are starting values for the MIGRAD algorithm imple-
mented in MINUIT package [15].
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two extracted twice-truncated moments. These moments
correspond to two (sufficiently large and overlapping) in-
tegration regions, covering, respectively, the bins from first
to seven and from third to last ninth. We make such choice
because on the one hand, one should take into account in
the criterion the whole accessible integration region, and,
on the other hand, the ‘‘twice-truncated’’ moments should
essentially differ from the ‘‘once-truncated’’ moments for
the well-working of the minimization procedure (see the
respective discussion just after Eq. (6)).

Let us now perform the NLO analysis of the simulated
data. We again use as an input two different parametriza-
tions GRSV2000NLO (symmetric sea) and
GRSV2000NLO (broken sea). The conditions of simula-
tion are presented in Table I. We first extract the truncated
moments using Eqs. (9)–(13) and (16). The results are
presented in Table III. Using these moments and applying
094026
MJEM, we reconstruct in NLO �uV�x� and �dV�x� with
the results presented in Fig. 7. Comparing Fig. 7 with
Fig. 6, one can see that quality of reconstruction in NLO
is not worse than the quality of LO reconstruction. The
slight deviations of reconstructed and input curves as be-
fore (c.f. Fig. 6) are explained by the unavoidable devia-
tions of the simulated with PEPSI asymmetries from their
reference (corresponding to the input parametrization)
values.

The remark concerning very important peculiarity of
application in NLO of the optimization criterion Eq. (8)
should be made here. The crucial point for the optimization
criterion is the proper choice of the initial15 values of� and
�. Indeed, the experience shows that if these initial values
-9
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are too far away from the real �opt and �opt to be found,
then the MINUIT program can ‘‘fall’’ into some wrong
local minimum and produce the false values of �opt and
�opt. Fortunately in LO we can compare the reconstructed
with MJEM curve with the reference (directly extracted)
values of PDFs and unambiguously find the optimal values
of �opt and �opt. On the other hand, it is natural to use �opt

and �opt obtained within LO analysis as the initial (start-
ing) values for the application of optimization criterion
Eq. (8) in NLO. The simulations demonstrate (see Fig. 7)
that with the such choice of initial � and � the minimiza-
tion procedure performed in NLO analysis unambiguously
finds the proper values of �opt and �opt. As a result the
obtained with MJEM curves are in a good agreement with
the input (reference) parametrizations. At the same time,
094026
looking at Figs. 8 and 9, one can see that the behavior of
both LO and NLO extracted curves is in a good agreement
with the respective behavior of the input (reference)
parametrizations.

Thus, all performed in this section studies show that the
proposed method can be successfully applied to the polar-
ized PDFs extraction in NLO QCD.
IV. NLO QCD ANALYSIS OF THE HERMES DATA
ON PION PRODUCTION

A. Construction of the difference asymmetries from the
HERMES data on pion production

Let us now apply the proposed method to the HERMES
SIDIS data on the pion production. Within this paper we
-10



TABLE IV. The obtained from the LEPTO generator results
for the relative unpolarized quantity R�=�i given by Eq. (21).

proton target deutron target

i R�=�i R�=�i

1 1.220 1.150
2 1.270 1.201
3 1.346 1.229
4 1.436 1.274
5 1.494 1.315
6 1.569 1.350
7 1.629 1.407
8 1.669 1.444
9 1.803 1.556
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would like first of all to test the applicability of the method
to the experimental data analysis. That is why, for a mo-
ment, we do not like to deal with the such poorly known
objects as DK�

q and Dh
g fragmentation functions. As it was

discussed before (see the Introduction), from this point of
view the most attractive objects are the difference asym-
metries. At the same time the difference asymmetries are
still not constructed.16 So, let us apply a trick and express
the difference asymmetry given by Eq. (19) via the stan-
dard virtual photon SIDIS asymmetries

A�
�

p�d�jZ �
1

PBPTfD

N��
"# L"" � N

��
"" L"#

N��
"# L"" � N

��
"" L"#

;

which were measured by HERMES [2]. Namely, in each
ith bin the difference asymmetries given by Eq. (19) can be
rewritten as

A�
�����xi� �

R�=�i

R�=�i � 1
A�

�
�xi� �

1

R�=�i � 1
A�

�
�xi�;

(20)

where the quantity R�=�i is defined as

R�=�i 	
N��
i"# L"" � N

��
i"" L"#

N��
i"# L"" � N

��
i"" L"#

:

It is easy to see that the ratio R�=�i can be rewritten as

R�=�i �
��

�

"# �xi� � �
��
"" �xi�

��
�

"# �xi� � �
��
"" �xi�

�
��

�

unpol�xi�

��
�

unpol�xi�
�
N��
i

N��
i
; (21)

and, thus, can be taken from the unpolarized SIDIS data.
This relative quantity is well defined and extracted with the
high precision object. We take its value from the LEPTO
generator of unpolarized events [17], which gives a good17

description of the fragmentation processes. The calcula-
tions show that the relative quantities R�=�i remarkably
weakly depend on statistics of simulated events. Indeed, if
one changes N��

totaljLEPTO from 105 to 106 then only 1–3%
deviation of R�=�i (in dependence of bin number) occurs.
Nevertheless, to be more precise, extracting the quantities
R�=�i for the HERMES statistics (N��

total � 117:000,
N��

total � 82:000 for proton and N��
total � 491:000, N��

total �
385:000 for deutron targets, respectively [2]) we preserve
the condition

N��
totaljLEPTO ’ N

��
totaljHERMES; N��

total 	
X
i

N��
i ; (22)
16At present the such analysis is performed by HERMES
collaboration

17Dealing with LEPTO generator one should properly tune [2]
the internal parameters of generator in order to achieve a proper
description of the fragmentation process in the different experi-
ments (HERMES here).

094026
performing the simulations with LEPTO. The results for
R�=�i are presented in Table IV.

Thus, using in Eq. (20) the results from Table IV and
HERMES results [2] on A�

�

p;d (see Tables XII and XIII in
Ref. [2]), one easily constructs the difference asymmetries
A�

����
p;d . The results are presented in Fig. 10.
First, for the sake of testing (to check how well Eq. (20)

works), we reconstruct the valence PDFs in the leading
order. In LO the equations for the difference asymmetries
take the simple form given by Eq. (18). With these equa-
tions we reconstruct �uV and �dV using the results on
difference asymmetries presented in Fig. 10. The results
are shown in Fig. 11, where we also plotted the respective
results from Ref. [2] (obtained with the purity method).
One can see that the results obtained with both procedures
are in a good agreement.
X
-110

-0.2

0

FIG. 10. Difference asymmetries constructed with application
of Eq. (20).
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TABLE V. LO extracted truncated moments obtained from the difference asymmetries con-
structed with application of Eq. (20) in comparison with the existing LO results of SMC and
HERMES collaborations. The SMC moments are truncated to the HERMES xB region and are
evolved to the HERMES Q2

mean � 2:5 GeV2 —see Table XI in Ref. [2].

�0nuV

n 1 2 3 4

This paper 0:510� 0:110 0:134� 0:043 0:048� 0:020 0:020� 0:010
HERMES 0:603� 0:071 0:144� 0:014 �=� �=�
SMC 0:614� 0:082 0:152� 0:016 �=� �=�

�0ndV

n 1 2 3 4

This paper �0:280� 0:146 �0:074� 0:058 �0:026� 0:026 �0:011� 0:013
HERMES �0:172� 0:068 �0:047� 0:012 �=� �=�
SMC �0:334� 0:112 �0:056� 0:026 �=� �=�
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FIG. 11 (color online). LO extraction of the valence PDFs from the difference asymmetries constructed with Eq. (20) (up-oriented
triangles) in comparison with the respective published HERMES results (down-oriented triangles). The HERMES results are shifted to
the right for better visibility.
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Let us now compare the LO extracted18 moments (trun-
cated to the HERMES xB region) obtained with application
of Eq. (20) (first line in the Table V) with the existing LO
results of SMC and HERMES taken from the Table XI in
Ref. [2]. One can see that the results obtained with appli-
cation of Eq. (20) (i.e., from the difference asymmetries
plotted in Fig. 10) are in a good accordance with both
HERMES and SMC results.

Thus, the performed LO tests show that representation
Eq. (20) for the difference asymmetry can be successfully
applied.

Notice also that even the LO extraction of �uV and �dV
from the difference asymmetries is interesting in itself as
an alternative (complementary) possibility. Indeed,
Eqs. (18) are free from the rather badly known fragmenta-
tion functions and purities.

B. Reconstruction of the valence PDFs in NLO QCD

Here, using the constructed difference asymmetries as a
starting point and operating just as in Sec. III, we will
18As before (see Sec. III), reconstructing the moments we apply
the procedure of integration given by Eq. (16) since it gives more
precise reconstruction of the local PDFs than the usually applied
procedure given by Eq. (14).

094026
reconstruct in NLO QCD both the truncated Mellin mo-
ments of the valence PDFs and the local PDFs themselves.

Let us first extract four first moments truncated to the
HERMES xB region. The results are presented in Table VI.
It is of importance that the proposed procedure allows us to
extract the moments in NLO directly, without the com-
monly used assumptions like � �u � � �d � �s � ��s (see,
for example, Refs. [14,18]). Notice that the first moments
�1uV and �1dV are very important in themselves because,
namely, the first moments compose the nucleon spin. At
the same time all four moments presented in Table VI are
necessary for the reconstruction of the local PDFs with
MJEM application.

Before application of MJEM in NLO, let us, for the sake
of testing, reconstruct the local valence distributions in the
leading order using LO moments from Table V. The results
are presented in Fig. 12. One can see that reconstructed
with MJEM Eq. (4) and optimization criterion Eq. (8)
curve is in a good agreement with both HERMES results
and with the results of direct LO extraction from the
difference asymmetries constructed with application of
Eq. (20).

After the successful LO testing we apply MJEM in NLO
QCD using the results for �0nuV and �0ndV from Table VI.
The results are presented in Fig. 13, where also, for com-
-12
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FIG. 12 (color online). Different LO procedures of the valence PDFs extraction in comparison. Solid line and up-oriented triangles
correspond to LO extraction with the proposed method and direct extraction with Eq. (18), respectively. The difference asymmetries
constructed with application of Eq. (20) are used. Down-oriented triangles correspond to LO results of HERMES obtained with
application of the purity method to the measured by HERMES usual virtual photon spin asymmetries.

TABLE VI. NLO extracted truncated moments obtained from the difference asymmetries
constructed with application of Eq. (20).

n 1 2 3 4
�0nuV 0:555� 0:126 0:134� 0:047 0:047� 0:020 0:019� 0:10

�0ndV �0:302� 0:173 �0:076� 0:064 �0:025� 0:027 �0:010� 0:012
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parison, the respective LO results are plotted. It is seen that
the behavior of NLO and LO curves with respect to each
other is in agreement with the predictions of existing
parametrizations (see, for example, [14]).

C. Corrections caused by Q2 dependence of
asymmetries

Until now we applied the approximation

A�xi; Q2
i � ’ A�xi; Q

2
mean�

commonly used (see Refs. [1,2]) for analysis of the DIS
and SIDIS asymmetries. This approximation is in a good
agreement even with the COMPASS data (see Fig. 5 in
Ref. [19]) and is especially suitable for the HERMES
kinematics, where the ‘‘shoulder’’ in Q2 is rather small
(1 GeV2 & Q2 & 10 GeV2; Q2

mean � 2:5 GeV2—see
Tables XII and XIII in Ref. [2]) in comparison with the
SMC and COMPASS kinematics. Nevertheless, even for
the HERMES kinematics we deal with, for more compre-
hensive analysis, it is useful to estimate the corrections
caused by the weak Q2 dependence of the difference
X
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FIG. 13. Results of both LO and NLO analysis of the difference
correspond to NLO and LO results, respectively.
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asymmetries. So, let us estimate the shifts in all four
NLO moments caused by the respective shifts

�iA�
����

p;d � A�
����

p;d �xi; Q2
mean� � A�

����
p;d �xi; Q2

i � (23)

in the difference asymmetries. The most simple way to
estimate �iA�

����
p;d is to use the maximal number of the

latest available NLO parametrizations. Namely, we ap-
proximate r.h.s of Eq. (23) by the respective difference of
‘‘theoretical’’ asymmetries calculated with substitution of
the different parametrizations to NLO equations for the
difference asymmetries—Eqs. (14), (15) in Ref. [5].

Adding the calculated in this way �iA�
����

p;d to the initial

experimental asymmetries A�
����

p;d �xi; Q2
i �, one estimates

the evolved from Q2
i to Q2

mean asymmetries
A�

����
p;d �xi; Q2

mean�jEvolved. Using the obtained in such a
way evolved asymmetries we extract the respective cor-
rected moments of the valence PDFs �0nqV jCorrected repeat-
ing the procedure from Sec. III. Then we compare the
corrected moments �0nqVjCorrected with the respective mo-
ments �0nqV from the previous section (obtained without
corrections due to evolution) and calculate the respective
X
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asymmetries constructed with Eq. (20). Solid and dashed lines
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TABLE VII. NLO results for �0nuV corrected due to evolution (top) together with the
respective absolute and relative deviations from the uncorrected moments (bottom). The
corrections are estimated using seven different NLO parametrizations. The roman numbers I
and II correspond to GRSV2000NLO parametrization for broken and symmetric sea scenarios,
respectively. The roman numbers III and IV correspond to Ref. [20] for sets ii� and ii�
(symmetric and weakly broken sea scenarios). The rest of numbers V–VII corresponds to the
NLO parametrizations from Ref. [18] (in the order of citation).

�0nuV jCorrected

n I II III IV V VI VII

1 0.5495 0.5464 0.5555 0.5551 0.5473 0.5588 0.5457
2 0.1364 0.1367 0.1378 0.1377 0.1368 0.1387 0.1363
3 0.0459 0.0460 0.0463 0.0463 0.0460 0.0467 0.0459
4 0.0182 0.0182 0.0183 0.0183 0.0182 0.0185 0.0182

Average �0nuV jCorrected

n
1 0:5437� 0:1266
2 0:1348� 0:0475
3 0:0453� 0:0199
4 0:0179� 0:0089

���0nuV�

n I II III IV V VI VII

1 �0:0054 �0:0085 0.0006 0.0002 �0:0077 0.0039 �0:0092
2 �0:0034 �0:0031 �0:0019 �0:0021 �0:0030 �0:0010 �0:0035
3 �0:0013 �0:0012 �0:0009 �0:0009 �0:0012 �0:0005 �0:0013
4 �0:0005 �0:0005 �0:0004 �0:0004 �0:0005 �0:0002 �0:0006

���0nuV�=�0nuV (%)

n I II III IV V VI VII

1 �0:97 �1:53 0.11 0.04 �1:38 0.71 �1:65
2 �2:42 �2:21 �1:37 �1:47 �2:12 �0:73 �2:47
3 �2:67 �2:54 �1:86 �1:95 �2:56 �1:14 �2:84
4 �2:62 �2:62 �2:08 �2:14 �2:72 �1:28 �2:94

Average ���0nuV�

n

1 �0:0037
2 �0:0026
3 �0:0011
4 �0:0004
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shifts ���0nqV� � �0nqV jCorrected � �0nqV . The results are
presented in the Tables VII and VIII, where also the
relative quantities ���0nqV�=�0nqV are presented.

Notice that the considered procedure of the asymmetry
evolution is quite similar to the procedure used by SMC for
the �1p�d� reconstruction (see Sec. V in Ref. [21]).

It is of importance that we use for estimations the set of
essentially different19 NLO parametrizations and some of
them, for example, GRSV2000 (broken sea) and
19They correspond to the different sea scenarios (symmetric
sea, weakly and strongly broken light quark sea), different de-
tails of calculations and different choice of ansatz for PDFs.
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GRSV2000 (symmetric sea), differ from each other very
strongly. However, one can see from the Tables VII and
VIII that independently of the chosen parametrization the
corrections for moments caused by evolution are very
small (negligible in comparison with the statistical errors).
To be precise, one can just include ���0nqV�jAverage (see
Tables VII and VIII) in the systematical error.

Let us now reconstruct the local valence PDFs applying
MJEM to the corrected moments �0nqV jCorrected from the
Tables VII and VIII. The results are presented in Fig. 14.
One can see that the curves corresponding to the different
ways of correction (different used parametrizations) are
very close to each other. The averaged over the different
-14



TABLE VIII. NLO results for �0ndV corrected due to evolution (top) together with the
respective absolute and relative deviations from the uncorrected moments (bottom). The
corrections are estimated using seven different NLO parametrizations. The roman numbers I
and II correspond to GRSV2000NLO parametrization for broken and symmetric sea scenarios,
respectively. The roman numbers III and IV correspond to Ref. [20] for sets ii� and ii�
(symmetric and weakly broken sea scenarios). The rest of numbers V–VII corresponds to the
NLO parametrizations from Ref. [18] (in the order of citation).

�0ndV jCorrected

n I II III IV V VI VII

1 �0:3130 �0:3091 �0:3197 �0:3251 �0:3062 �0:3096 �0:3064
2 �0:0778 �0:0779 �0:0811 �0:0822 �0:0771 �0:0780 �0:0774
3 �0:0256 �0:0256 �0:0267 �0:0269 �0:0254 �0:0256 �0:0255
4 �0:0096 �0:0098 �0:0102 �0:0102 �0:0097 �0:0097 �0:0097

Average �0ndV jCorrected

n

1 �0:3127� 0:1731
2 �0:0788� 0:0643
3 �0:0259� 0:0269
4 �0:0099� 0:0119

���0ndV�

n I II III IV V VI VII

1 �0:0114 �0:0075 �0:0181 �0:0235 �0:0046 �0:0080 �0:0048
2 �0:0015 �0:0017 �0:0048 �0:0059 �0:0008 �0:0018 �0:0012
3 �0:0003 �0:0004 �0:0014 �0:0017 �0:0001 �0:0003 �0:0002
4 �0:0001 �0:0001 �0:0005 �0:0006 �0:0000 �0:0000 �0:0000

���0ndV�=�0ndV (%)

n I II III IV V VI VII

1 3.77 2.48 5.99 7.78 1.53 2.65 1.58
2 1.97 2.20 6.33 7.72 1.10 2.33 1.53
3 1.31 1.47 5.71 6.74 0.52 1.35 0.95
4 0.83 0.83 5.07 5.89 0.10 0.52 0.52

Average ���0ndV�

n

1 �0:0111
2 �0:0025
3 �0:0007
4 �0:0002

X
-110

0.05

0.1

0.15

0.2

0.25

0.3 V u∆x

X
-110

-0.2

-0.1

-0

V d∆x

FIG. 14 (color online). NLO results obtained with application of MJEM to the moments extracted from the difference asymmetries
corrected due to evolution. Dotted lines correspond to corrections estimated with the different parametrizations. Dashed line
corresponds to the curve averaged over corrections. Solid line corresponds to reconstruction without corrections.
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corrections curve (dashed line) also very insignificantly
differs from the initial (obtained without corrections) curve
(solid line).

Thus, the performed in this Section analysis demon-
strates that at least for the HERMES kinematics we deal
with here, the results are very insensitive to the corrections
on the difference asymmetries caused by evolution.
V. CONCLUSIONS AND PROSPECTS

Thus, in this paper the method of polarized SIDIS data
analysis in NLO QCD is developed. The main peculiarity
of the method is that its application is based on two sub-
sequently applied procedures. First one directly extracts in
NLO few first truncated (available to measurement) Mellin
moments of the quark helicity distributions. The obtained
at this stage results are very important and interesting in
themselves. Indeed, the first moments are the main objects
for understanding of the nucleon spin structure since they
compose the nucleon spin. Second, using the obtained at
first stage truncated moments as an input to the modifica-
tion of the Jacobi polynomial expansion method, one even-
tually reconstructs the local quark helicity distributions in
the accessible for measurement xB region.

After successful testing we apply the proposed NLO
method to the HERMES data on the pion production. To
this end the pion difference asymmetries are constructed
for both proton and deutron targets. To construct the dif-
ference asymmetries we use the HERMES data on the
usual virtual photon SIDIS asymmetries, and, also, the
well-known quantity—ratio of unpolarized cross-sections
for �� and �� production which we take from the LEPTO
generator of unpolarized events. With the constructed in
such a way difference asymmetries the LO results of the
valence distribution reconstruction are in a good accor-
dance with the respective leading order HERMES and
SMC results, while the NLO results are in agreement
with the existing NLO parametrizations on these quanti-
ties. Nevertheless, the obtained results should be consid-
ered as the rather preliminary since we construct the
difference asymmetries in indirect way. At present the
difference asymmetries are constructed by HERMES and
are expected to be available in the nearest future. Certainly,
it is very desirable to perform the NLO analysis of these
directly constructed asymmetries and compare the results
with the respective results presented in this paper.

In this paper we apply the proposed method to the
difference asymmetries only. Let us recall once again
that essential advantage of these asymmetries in compari-
son with any other ones is the absence of fragmentation
functions in LO and the weak dependence of well-known
difference of favored and unfavored pion fragmentation
functions in NLO. So, since within this paper we mainly
would like to investigate how well the method itself works,
we, for a moment, prefer to deal, namely, with these very
clean (from theoretical point of view) objects. In this
094026
connection it is of importance that the measurement of
the difference asymmetries is one of the main topics of
the physical program of E04-113 experiment planned at
Jefferson Lab [22]. It is of importance that in this experi-
ment the expected average Q2 is also rather small (about
2 GeV2). So, the NLO analysis in this experiment is also
strongly required.

Certainly, in the nearest future we will apply the method
to NLO analysis of all measured in the SIDIS experiments
asymmetries. In particular, it can allow us to extract in
NLO so important quantity as the polarized strangeness in
nucleon. Regretfully, the only existing today data on kaon
production (HERMES experiment) suffers of large statis-
tical errors and, besides, the accessible for measurement
HERMES xB region is rather narrow. So, to obtain the
reliable results on the such tiny quantity as �1s (as well
as on �1 �u and �1

�d) it is necessary to perform the com-
bined analysis, i.e., to analyze in NLO the combined data
of SMC, HERMES, COMPASS and the planned E04-113
(Jefferson Lab) experiments. This is one of the main sub-
jects of our future investigations.
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APPENDIX

JEM is the expansion of x-dependent function (structure
function or quark density) in the series over Jacobi poly-
nomials ���;��n �x� orthogonal with weight !��;���x� �
x��1� x�� (see [10,11] for details):

F�x� ’ FNmax
�x� � !��;��

XNmax

k�0

���;��k �x�
Xk
j�0

c��;��kj M�j� 1�;

(A1)

where

M�j� �
Z 1

0
dxxj�1F�x� (A2)

and

Z 1

0
dx!��;���x����;��n �x����;��m �x� � �nm: (A3)

The details on the Jacobi polynomials
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���;��k �x� �
Xk
j�0

c��;��kj xj (A4)

can be found in Refs. [11,13]. In practice one truncates the
series (A1) living in the expansion only finite number of
moments Nmax —see Eq. (4). The experience shows [10]
that even small Nmax gives good results.

The idea of modified expansion is to re-expand F�x� in
the series over the truncated moments M0

�ab��j� given by
Eq. (3), performing the rescaling x! a� �b� a�x which
compress the entire region [0, 1] to the truncated region
�a; b�. To this end let us apply the following ansatz

F�x� �
�
x� a
b� a

�
�
�
1�

x� a
b� a

�
� X1
n�0

~fn���;��n

�
x� a
b� a

�

(A5)

and try to find the coefficients ~fn. Multiplying both parts of
Eq. (A5) by ���;��k ��x� a�=�b� a��, integrating over x in
the limits �a; b� and performing the replacement t � �x�
a�=�b� a�, one gets

Z b

a
dxF�x����;��k

�
x�a
b�a

�
��b�a�

X1
n�0

~fn
Z 1

0
dtt��1� t��


���;��n �t����;��k �t�; (A6)

so that with the orthogonality condition Eq. (A3) one
obtains

~f n � �b� a��1
Z b

a
dxF�x����;��n

�
x� a
b� a

�
: (A7)

Substituting Eq. (A7) in the expansion (A5), and using
Eq. (A4) one eventually gets

F�x� �
�
x� a
b� a

�
�
�
1�

x� a
b� a

�
� X1
n�0

���;��n

�
x� a
b� a

�



Xn
k�0

c��;��nk

1

�b� a�k�1

Xk
l�0

k!

l!�k� l�!


M0�a;b��l� 1���a�k�l; (A8)

where M0
�a;b��j� is given by Eq. (3). Truncating in the exact

Eq. (A8) the infinite sum over n to the sum
PNmax
n�0 one gets

the approximate Eq. (4).
Let us prove the important property20 of the truncated

moments reconstructed with MJEM.
For any n � Nmax

M0�a;b��n� 1�jreconstructed � M0�a;b��n� 1�jinput; (A9)

where
20The proof of analogous property for the usual JEM can be
found in [10]
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M0
�a;b��n�jinput �

Z b

a
dxxn�1F�x�;

M0
�a;b��n�jreconstructed �

Z b

a
dxxn�1FNmax

�x�;
(A10)

FNmax
�x� is the function reconstructed with application of

MJEM (4), and Nmax � 1 is the number of the highest of
moments used in Eq. (4).

To prove this statement we will need the inverse to (A4)
expansion

xn �
Xn
k�0

d��;��nk ���;��k �x�; (A11)

with the obvious property of d��;��nk coefficients

Xn
k�j

d��;��nk c��;��kj � �nj: (A12)

Let us integrate Eq. (4) over x in the limits �a; b� with
weight ��x� a�=�b� a��n.
Z b

a
dx
�
x�a
b�a

�
n
FNmax

�x��
Z b

a
dx
�
x�a
b�a

�
n




�
!��;��

�
x�a
b�a

� XNmax

m�0


���;��m

�
x�a
b�a

�
�b�a��1



Xm
j�0

c��;��mj

Z b

a
dzF�z�

�
z�a
b�a

�
j
�
:

(A13)

Using expansion (A11) and orthogonality condition (A3),
one easily gets

Z b

a
dx
�
x� a
b� a

�
n
FNmax

�x� �
XNmax

m�0

Xn
k�0

�km

�
d��;��nk

Xm
j�0

c��;��mj



Z b

a
dxF�x�

�
x� a
b� a

�
j
�
:

(A14)

It is obvious that at n � Nmax the Kronecker symbol �km
reduces the sum

PNmax
m�0 to the sum

Pn
m�0 . Thus, summing

over m with �km using the identity

Xn
k�0

Xk
j�0

fjk 	
Xn
j�0

Xn
k�j

fjk (A15)

and applying Eq. (A12), one get eventually:
Z b

a
dx
�
x� a
b� a

�
n
FNmax

�x� �
Z b

a
dx
�
x� a
b� a

�
n
F�x�;

n � Nmax

(A16)

Setting n � 0 in Eq. (A16) one obtains
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M0
�a;b��1�jreconstructed 	

Z b

a
dxFNmax

�x� �
Z b

a
dxF�x�

	 M0
�a;b��1�jinput: (A17)

Putting then n � 1 in (A16) and using (A17) one gets

M0�a;b��2�jreconstructed � M0�a;b��2�jinput: (A18)

Operating in this way for all n � Nmax, one arrives at the
equality (A9) to be proved.

In conclusion, very important remark should be made
here. Notice that ansatz (A5) (as well as the expansion
Eq. (4) itself ) is correctly defined inside the entire region
�a; b� except for the small vicinities of boundary points
(absolutely the same situation holds for the usual JEM,
Eq. (A1), applied to the quark distributions in the region (0,
1)). Thus, near the boundary points the deviations of
reconstructed with MJEM function from its true values
are unavoidable. Fortunately, all numerical examples (see
Sec. II) show that input and reconstructed with MJEM

A. N. SISSAKIAN, O. YU. SHEVCHENKO, AND O. N. IVANO
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functions are in very good agreement in the practically
entire considered xB region, while the boundary distortions
are easily identified and controlled since they are very
sharp and hold in very small vicinities of the boundary
points (see Figs. 2–4). Thus, to reconstruct the curve near
the boundary points one should just cut off these distortions
and then extrapolate the rest to the boundaries of the
considered xB region.

To be precise, it should be also noticed that the all proofs
given in the Appendix are rather formal because of the
boundary distortions problem. All equations in the
Appendix (like, for example, Eq. (A9)) become exact
only when the distortions are cut off and extrapolation to
the boundaries is made. Fortunately, the practice show that
the distortion regions are so small that the numerical results
on the integrals over the entire region �a; b� are practically
insensitive to the way of extrapolation, so that all equations
in the Appendix are valid with a high numerical precision.
[1] B. Adeva et al. (SMC collaboration), Phys. Lett. B 369, 93
(1996).

[2] A. Airapetyan et al. (HERMES collaboration), Phys. Rev.
D 71, 012003 (2005).

[3] G. Baum et al. (COMPASS collaboration) CERN Report
No. CERN-SPSLC-96-14, 1996 (unpublished).

[4] A. N. Sissakian, O. Yu. Shevchenko, and O. N. Ivanov,
Phys. Rev. D 68, 031502 (2003).

[5] A. N. Sissakian, O. Yu. Shevchenko, and O. N. Ivanov,
Phys. Rev. D 70, 074032 (2004).

[6] D. de Florian, G. A. Navarro, and R. Sassot, Phys. Rev. D
71, 094018 (2005).

[7] A. N. Sissakian, O. Yu. Shevchenko, and O. N. Ivanov,
JETP Lett. 82, 53 (2005).

[8] L. Frankfurt et al., Phys. Lett. B 230, 141 (1989).
[9] E. Christova and E. Leader, Nucl. Phys. B607, 369 (2001).

[10] V. G. Krivokhizhin et al., Z. Phys. C 36, 51 (1987); JINR
Report No. JINR-E2-86-564 (unpublished).

[11] G. Parisi and N. Sourlas, Nucl. Phys. B151, 421 (1979).
[12] E. Leader, A. V. Sidorov, and D. B. Stamenov, Int. J. Mod.

Phys. A 13, 5573 (1998).
[13] I. S. Barker, C. S. Langensiepen, and G. Shaw, Nucl. Phys.

B186, 61 (1981); CERN Report No. CERN-TH-2988
(unpublished).
[14] M. Gluck, E. Reya, M. Stratmann, and W. Vogelsang,

Phys. Rev. D 63, 094005 (2001); Phys. Rev. D 63, 094005
(2001).

[15] F. James and M. Roos, Comput. Phys. Commun. 10, 343
(1975).

[16] L. Mankiewicz, A. Schafer, and M. Veltri, Comput. Phys.
Commun. 71, 305 (1992).

[17] G. Ingelman, A. Edin, and J. Rathsman, Comput. Phys.
Commun. 101, 108 (1997).

[18] Y. Goto et al. (Asymmetry Analysis collaboration), Phys.
Rev. D 62, 034017 (2000); E. Leader, A. Sidorov, and D.
Stamenov, Eur. Phys. J. C 23, 479 (2002); M. Hirai et al.
(Asymmetry Analysis Collaboration), Phys. Rev. D 69,
054021 (2004).

[19] E. S. Ageev et al. (COMPASS Collaboration) Phys. Lett.
B 612, 154 (2005).

[20] D. de Florian, O. A. Sampayo, and R. Sassot, Phys. Rev. D
57, 5803 (1998).

[21] B. Adeva et al. (SMC collaboration), Phys. Rev. D 58,
112002 (1998).

[22] X. Jiang et al., hep-ex/0412010.
-18


