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Abstract

In this article we review some recent results on the application of
Lie algebra and Lie group contractions to special function theory
and to the separation of variables in Laplace-Beltrami equations on
homogeneous spaces. The concept of analytic contractions is defined.
The contraction parameters are introduced into the the coordinates on
the homogeneous spaces and thus also into the differential operators
realizing the Lie algebras, into the Laplace-Beltrami operators, into
the basis functions of representations and all other objects figuring in
the representation theory of the groups involved.

1. Introduction

Lie algebra contractions were introduced into physics by Inénii and
Wigner [2] in 1953 as a mathematical expression of a philosophical idea,
namely the correspondence principle. This principle tells us that whenever
a new physical theory surplants an old one, there should exist a well
defined limit in which the results of the old theory are recovered. A typical
example of such a limiting procedure is the relation between relativistic
and nonrelativistic theories where the limit ¢ = oo for the velocity of the
light takes the Poincaré group into the Galilei one. Similarly, de Sitter
space with its SO(3,2) or SO(4, 1) isometry group is contracted to a flat
Minkowski space with its Poincaré isometry group P(3,1), in the limit
R — oo for the radius of the universe.

The In6nii-Wigner contractions can be viewed as singular changes of
basis in a given Lie algebra L [2]. Indeed, consider a basis {X), Xs,...
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..., Xy} of L. Introduce a new basis
ii=Uik(€l,62,.-.,6p)Xk, Uik(lyly-"’l)=6ik7 (l'l)

where the matrix U (¢) realizing the transformation (1.1) depends on some
parameters ¢; and is nonsingular for ¢; #0, |eil < 0o. For e = 0 (ie.
some, or all of the ¢; vanishing) the matrix U(e) is singular. In this
limit the commutation relations of L change (continuously) into those of
a different, nonisomorphic, Lie algebra L.

Let us consider a simple example, namely the rotation algebra L =
= o(3) with the basis X;, i=1,2,3 chosen such that the following
commutation relation are valid

[Xs, X;] = €ije X (1.2)
Introduce a new basis ,
Y: = U(e)] Xi (1.3)
where : £ 00

U(e)=<0 € 0)
' 001

The commutation relations (1.2) are transformed into
V.2l =e’ys, [Va.V3]l=Y:, [BY]=Y:
and in the limit € — O we obtain the Euclidean Lie algebra L=e():
[Yi,Y2] =0, [Yo.Y3]=Yi, [Ya.Yi]=Ya.

It is well known that practically all properties of large classes of
special functions can be obtained from the representation theory of
Lie groups, making use of the fact that the special functions occur
as basis functions of irreducible representations, as matrix elements of
transformation matrices, as Clebsch-Gordon coefficients, or in some other
guise. One very fruitful application of Lie theory, in this context, is the
algebraic approach to the separation of variables in partial differential
equations. In this approach separable coordinate systems (for Laplace-
Beltrami, Schrodinger and other invariant partial differential equations)
are characterized by complete sets of commuting second order operators.

By «separable coordinates» we mean curvilinear coordinates
(é1,&,....,&,) on a hyperboloid H, or sphere S, such that the
Laplace-Beltrami equation

| S ]
= y A = — 7 7 sl .
App¥ = EY 18 = o 3§’ﬁg 6 (1.4)
allows the emultiplicative» separation of variables
‘I’Al.Az...,z\n(glv€2l ----- »£n) = H@i(éﬁ;A],AQ,..,An). (15)

=1
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The metric is )
ds? = gi;de'de?,  g=|detgy],  gig" = oF, (1.6)

In eq. (1.5) each function ®; depends only on one variable &;, but can
depend on all the separation constants ;.

. The separated solutions of eq. (1.4) are simultaneous eigenfunctions
of a complete set of commuting operators {Y,Y3,...,¥,} (including the
Laplace—Beltrami operator), where n is the dimension of the space. We
thus have

Yo ¥ =-2% a=1,.,n (1.7)

The operators Y, are second order operators in the enveloping algebra of
L, where L is the Lie algebra of the isometry group G of the corresponding
space. Let {X},...., X} be a basis of L and

Yo = A% X: Xk, [YaYi]=0, A% =A% a=12 0. (18)

The commuting sets of operators {Y,} can be classified into conjugacy
classes under the action of the isometry group G.

The classification of the sets. {Y,} provides a classification of
inequivalent coordinate systems. Particularly simple coordinate systems
are obtained if all operators Y, in a given set are either squares of elements
in the Lie algebra L

. N 2
Yj = {Zaijk} . (19)
k=l ’

or Casimir operators of subalgebras L. Such coordinate systems have been
called «subgroup type coordinates» [10].

Subgroup type coordinates on homogeneous spaces associated with
rotation groups O(n) and unitary groups SU(n) where studied by
Vilenkin, Kuznetsov, Smorodinsky and others [14, 15}. They introduced
a graphical method, the «method of trees» to describe - subgroup
coordinates on spheres  S,~ O(n + 1)/O(n) and complex «spheres»
Cp~ SU(n)/U(n — 1). The method of trees was extended from S,
spheres to Euclidean spaces E, and hyperboloids L,~ O(n,1)/O(n) or
L,~0O(n,1)/O{n — 1, 1) .in two recent articles [6, 12].

Some new aspects of the theory of Lie group and Lie algebra
contractions have recently been presented in the series of papers [3]-[8],
namely: the relation between separable coordinate systems in curved
and flat spaces, related by the contraction of their isometry groups. The
approach makes use of specific realizations of Indnii—-Wigner contractions.
The articles [3]<[5] were devoted to two simple homogeneous spaces:the
two-dimensional sphere ' Sy~ :0(3)/O(2) and  the . two-dimensional
hyperboloid Ha~ O(2,1)/O(2) . The new aspect introduced was a
contraction procedure, called analytic contractions. The contractions
are analytic because the contraction parameter R -the radius of sphere,
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or pseudosphere, appears in the operators of the Lie algebra, in the
eigenvalues and eigenfunctions, not only in the structure constants. For
two-dimensional spaces all types of coordinates where considered. For
example, contractions of O(3) to E(2) relate elliptic coordinates on S
to elliptic and parabolic coordinates on Ep. They also relate spherical
coordinates on Sy to polar and Cartesian coordinates on Ej. Similarly,
all 9 coordinate systems on the Hs hyperboloid can be contracted to
at least one of the four systems on E», or one of the 10 separable
systems on E;; [4,5,11]. Using this method, it is possible to observe
the contraction limit R — oo at all levels. The level of the Lie algebra
as realized by vector fields. That Laplace-Beltrami operators in the four
homogeneous spaces (sphere or hyperboloid on one hand and Euclidean
or pseudo-Euclidean space on the other). The second order operators in
the enveloping algebras, characterizeng separable systems. The separable
coordinate systems themselves, the separated (ordinary) differential
equations, the separated eigenfunctions of the invariant operators and the
interbases expansions.

In paper [6] the dimension of the space was arbitrary, but only the
simplest types of coordinates were considered, namely subgroup ones.
Furthemore, we introduce a graphical method for connecting subgroup-
type coordinates on the sphere S, ~ O(n + 1)/O(n) (characterized
by tree diagrams) and on the Euclidean space E, (characterized by
cluster diagrams) and give the rules relating the contraction limit
R — oo of the coordinates, eigenvalues and basis functions. The analytic
contractions from the rotation group O(n + 1) to the Euclidean group
E(n) are used to obtain asymptotic relations for matrix elements between
the eigenfunctions of the Laplace—Beltrami operator corresponding to
separation of variables in the subgroup-type coordinates on S, {7, 8, 13].
The contraction for non subgroup coordinates have been described in [9].

2. Subgroup Coordinates on S,
and the Method of Trees

Let us consider the n - dimensional sphere S,,:
uw}+> ul =R, R?>0, (2.1)
v=I

where u; are Cartesian coordinates in the Euclidean ambient space E, ;.
Its isometry group is O(n + 1). We choose a standard basis L for the
Lie algebra o(n + 1):

Ly = ui0 —ux0;, (2.2)
[Lij. Lrs] = 6jrLis + 6isLjr — 85 Lir — 8is L, (2.3)

,7,7r,6=0,1,2,...,n.
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The metric tensor in this case has the form: g;; = diag(l,1,...,1) and the
Laplace-Beltrami operator on S,, is:

l n
A(Sn) = 577 S L. (2.4)
i,k=0

We are dealing with the Laplace—Beltrami equation (1.4} on the sphere
S, and use a graphical method, the «method of trees», for characterizing
different types of subgroup coordinates, or hyperspherical coordinates on
Sn, complete sets of commuting operators and their eigenvalues and
separated solutions. These methods are best presented in the original
article [15] and in the book [14].

Let us briefly describe some basic facts concerning the method of
trees [15]. Each end point u;,i =0, 1,2,...,n on the tree corresponds to a
Cartesian coordinate in the ambient space E, . At each branching point,
we introduce an angle ;. To express a cartesian coordinate in terms of
hyperspherical ones we move along the tree from the ground upwards to
a specific coordinate u;. At each branching point, we write cosd;, if we
go to the left, and sin@;, if we go to the right. For example, to the tree
on Fig.l there correspond the following hyperspherical coordinates:

ug = Rcos 8 cos s, u) = Rcos# sinfy cos b3,
u2 = Rcos ) sin 8 sin 83, u3 = Rsin @ cos 04 cos b5,
14 = Rsin 8 cos 04 5in G5 us = Rsin 6 sin 04,

To each branching point on the tree diagram we also associate non-
negative quantum numbers I;. This will determine the eigenvalue X; of
the O(k) Laplace-Beltrami operators according to the formula

Y;¥ = RPArp¥ = - N8, A\ =Ll +k-2), (2.5)

Ug uy Ug Us Uy Us

Fig. 1. Example of tree for hyperspherical coordinates on the sphere Sp
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where k is the dimension of the ambient space above the corresponding
vertex on the tree. Only for k = 2 we have ;=0%1,%£2,....

15,58 lo, Sa Sa I3, 58
2a 2b 20 2c
I8, S8 Va, Sa \ Vo, Sa \ is,Sp
\@/ \?/ <) 2
v, L}

2a’ 2 2¢ 2d

z g, Sp Tn Ig, Sp

kx kr R Y . caue| kpr
24’ 2 2d 2d

Fig.2. Elementary cells for S, (diagrams 2a, ..., 2d) and H, (diagrams 2d’, ..., 2d’), and
their contractions to E, ones (diagrams 2a'’,...,2d"). Full circles correspond to closed
ends. There are S, further vertices above the vertex alpha. The broken lines are explaned in
the text

To specify the separated wave function
¥ =107, %;(6;) (2.6)

on S,, we follow Refs. [15] and introduce four types of vertices, or «cells»
on a tree, as illustrated in Fig 2. The first row, diagrams 2(a)-(d) contains
elementary S, cells (the second and third rows 2(a’-d’) and 2(a”- d”) will
be discussed below). A full circle on diagrams 2(a)-(d) denote a «closed»
end, i.e., one that leads to further branches, an open end leads directly to
a coordinate in ambient space. The numbers m, ¢, €3, £, are all integers
and are related to the separation constant corresponding to each vertex,
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S. = number of vertices above vertex £,, Sg = number of vertices above

vertex £g.
Each vertex and each angle 6; provides a «building block» ¥;(8;) for
the wave function ¥(8,, ...,8,). Specifically, we have

Cell of type 2a:

1 .
U, (0,) = \/276""9"‘ m=0,+1,+£2,...; 0<0,<2r. (27)
Cell of type 2b:
¢ 15(B) = NE< (sin 85)' P (cos 65) (2.8)
n=1-1g, c=15+i—ﬂ, n=012..; 0<6,<m,

where P{*®) (x) are the Jacobi polynomials [1].
Cell of type 2c:

02, (y) = N2 (cos Oy )’ P{*%) (sin 6y) 2.9
n=1-1, a=za+37°', n=012..; -7/2<0y <7/2

Cell of type 2d:

)8 1. 0) = o(b+a)/2+1 jba (gip g Y8 (cos )= P> (cos 26.), (2.10)
=1, -1 S S
n:——;——é, b=z,,+—2’i. a=la+ 3,
n=012..; 0<6.<n/2

The normalization constants are

yob_ [@nta+tbt DE(r+atb+ Dn! 172
" T 200+ T(n4a+ DI(n+b+ 1)

3. Subgroup Coordinates on E, and Cluster Diagrams
Let us now consider the Euclidean Lie algebra e(n) with a basis
Ly =zi0c —20;, pi=0:, 1,k=12.,n
The commutation relations are as in (2.3), together with
[pj, Lix} = 8jipk — 0jepis  [pi, P] = 0.
The Casimir operator of e(n) is
Apn=p2+P3+ oo + P (3.1)
As in the case of the O(n) group it is useful to introduce diagrams for

subgroup type coordinate systems on the Euclidean space E,. They are

270



called «cluster diagrams» [6]. They consist of one or more trees of the
O(k) type with a tree «trunk» added, and possibly of individual isolated
trunks.

An isolated trunk corresponds to a Cartesian coordinate. A trunk with
further branches above it corresponds to a radial coordinate r satisfying
0 < r < 0o. The tree above the trunk is treated exactly as in the case of
hyperspherical coordinates on S, spheres.

As an example let us consider the diagram on Fig.3. The coordinates
in E7 are: :

T = =z, T4 = r9cosfy,
T3 = rjcosf, 5 = rgsinfy cos b3,
3 = r7siné, Zg = 1o sin By sin f3 cos b4,

7 = 19 sin @7 sin 3 sin 8.

The prescriptions for writing the complete sets of commuting operators,
eigenvalues and eigenfunctions are now quite simple.

Ty T2 T3 T4 Ty Te .'177'
h
koZ kl'l‘l

Fig.3. Example of E7 cluster diagram

To each tree trunk we associate an M- dimensional Laplace operator
where M is the number of end points (Cartesian coordinates) above
the trunk. We also associate a number k € R> 0 with each trunk.
The corresponding radial eigenfunction [normalized to the delta function:

8(k' — k)] is
T(r) = ,/;A—f_—z Jipmza(kr),  M22, (3.2)

!

Vi(2) = s

etz M=1 (3.3)
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The angular part of the eigenfunctions is written following the rules for
S, spheres, as are the invariant operators and their eigenvalues.

4. Pseudospherical Coordinates on H,

Let us consider the upper sheet of the two-sheeted hyperboloid H,
uy— Y ul =R’ R?>0, (4.1)

where u,, p =0,1,..n are Cartesian coordinates in the ambient
Minkowski space M, ;. The isometry group is SO(n,1), the proper Lorentz
group. Its Lie algebra o(n,1) is realized by vector fields with a standard
basis M,,, namely

Mix = uiO — ur0;, Mor = uoBx + urdo, i,k=12,..n (4.2)

with the commutation relations
My, Mopl = GoaMyup — GugMua— GuaMyg + GupMya,

(4.3)
a.ﬂ,ﬂ,l/ = 0, 1,2, ...

where the metric tensor is G,, = diag(l,-1,-1,...,-1), (v =
=0,1,2,..n).

The Laplace-Beltrami operator and the second order Casimir operator
of o(n,1) are related by the formula

A(Ha) = Q(n1),  Q(n,1)=> Mg— > M., (44

i=1 1<i<k

In previous sections we have presented the separated solutions of the
Laplace-Beltrami equation for all subgroup type coordinates on S, and
E,. Here we descibe the pseudospherical coordinates and wave functions
on hyperboloid H,,. We use the modified, or pseudosherical tree formalism
[12]. We will always chose the ug coordinate on the left side of the tree.
We introduce two types of nodes: trigonometric and hyperbolic ones. For
each trigonometric node we introduce an angle  and for each hyperbolic
one a «hyperbolic angle» 7 € (—00, 00). At trigonomatric nodes we write
cos® when going to the left and sinf when going right. Similarly for
hyperbolic nodes we write ch u and sh p. For example the tree on Fig 4.
corresponds to the pseudospherical system of coordinates

uy = Rchrichmchrs, u; = Rchrychryshm,

us = Rchryshmcosby, u3 = Rch7yshrsiné,

ugs = Rshricosfs us = Rsh 7} sinfs cosé;
ug = Rshrsinfysinb;.
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Ug Uy Uz Uz Uy Uy Us

Fig. 4. Example of pseudospherical coordinate diagram for the H7 hyperboloid

On a <hyperbolic tree» we meet four types of trigonometric vertexes or
«cells» and four types of hyperbolic pnes [see Fig 2(a,...d) and 2(a’...d)].-
The following numbers are associated with each cell: (¢, £3, £,) are related
to the separation constant corresponding to each trigonometric node, v,
v, to hyperbolic ones and S,, Sg - numbers of vertexes above vertex
Lo (vg) or £3. The numbers m, £, €z and ¢, are integers while v, v, are
complex and correspond to the principal series of unitary representations
of O(n, 1) with
n —1

2

Here p is real, n' is the number of end points u;, 7 =0, 1, ..n' — 1 connected
with vertex 7,. We will request that the function ¥ be normalized to the
delta function é(p' — p) with respect to the invariant measure on H,,.

Let us construct the wave functions corresponding to cells of type
2(a’,b',c’,d’).

=+ ip.

Vo = —

Cell of type 2a’:
This cell corresponds the wave function (7 = 74, Var = ip)

ipr
(1) = = (4.5)
Cell of type 2b": -
For this case we have (v = vy = -2 +ip, 7 = 7)
Tes+ 3 +ip) s :
¥ (r) = | nr)-F P F (e 46
» (7) V2 |L(p)| (sh7) — L +ip (cht) (4.6)
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where the P#(z) is an associated Legendre function. It can be written in
terms of the hypergeometric function

PY(z) = (22— 1)7%,F, (l—#+v,—#—v;l—n;l;z)('”)

ok
(1l - p)
Cell of type 2c”:

Taking into account that v = vy = —
(7 = 7+) we have

Sa+l . _ Sa
g TP va= g

+ ip
¥pp (1) = 7= [N —ip)| (hr) ™ PZ,__pehr)  (49)

Cell of type 2d”:
The corresponding wave function (7 = 74, va = v) is

I‘(lﬁ +ip+ipy +1 + §2)P(£ﬂ+zp—zpa +1 + §_’i)
s 2 4 2 4
“I’Ppa(T) = Sﬁ
2V T(tg + = + 1) ID(ip)
Sa ,
. t (Ls+ DR Va+—é—
x (cht)**(sh7) P,_ Ve — g (ch 27), (4.9
2
where v = _SatSp+2 + ip,buu = —ST"' + ip, and ’P,(f"ﬂ)(z) is the

Jacobi function defined by the formula

PLh)(z) = (z; l)#an (—u, —p-Bia+ 1;'2:-1-)- (4.10)

z+1

5. Contractions of the Lie Algebras

5.1. The o(n + 1) — e(n) contraction. We shall use ¢ = R~ as
the contraction parameter. To realize the contraction explicitly, let us
introduce Beltrami coordinates on the sphere [6}, putting

—1/2
l n
x#=R%§-=uu(l—ﬁZuﬁ) . =123,..n (51
v=l
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The O(n + 1) generators then can be expressed as:

LOu Ty =
- = mEnth S @upw), (5.2)

v=1

i

=Ly = (zTupy — ToPu) = ZuTy —zum,, prv=12,.,n, (63)

where p, = 8/9z,. The commutation relations in the new variables are:

[L;un L)w] = Jp,\Lvo' + 6V6Lp>\ - ‘SpaLuA - 6W\Lpa- (54)
Lyy
[pr 7",\] = 6pk7rv - ‘Sw\"rp,r [7rpv Wv] = #‘. (55)

so that for R — oc the o(n + 1) algebra contracts to the Euclidean e(n)
one. The momenta =, contract to the Euclidean e(n) ones: n, — p,. The
o(n + 1) Laplace-Beltrami operator (2.4) contracts to the e(n) one:

n n L2
ASa)=) _mt+ > 21‘%; = A(En)=pi+p5+..+p5.  (56)

v=Il pr=1

5.2. The o(n,1) — e(n) contraction. To realize the contraction
from o(n,1) to e(n), as in the case of the sphere S,, we introduce Beltrami
coordinates on the hyperboloid H,, putting

n -1/2
u 1 9
T, = Raﬁ =u, (1 + ﬁ;uu) . p=123,...n (5.7)
The O(n,1) generators (4.2) can be written as:

Mo, _ 1<
R = =P % ) (@up), (5.8)
v=I1

M, = z.,p,—ZTupy=zum — 7, p=123,..,n (5.9
The commutators of the o(n,1) algebra take the form:

M,.
[ry,m) = R—‘;, [ms, My} = 57, — G507, (5.10)

In the limit B — oo the o(n,I) algebra contracts to e(n) and the o(n, l)
Laplace-Beltrami operator (4. 4) contracts to the e(n) one:

ALB=;7r E

p=l

+p2+ +p,,) (5.11)
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6. Contractions of Coordinate Systems and Basis
Functions. The Graphical Method

We shall now describe a graphical method for connecting the subgroup
type coordinates on Sy, or H, with those on E, and present the rules
relating the coordinates, eigenvatues and basis functions. The relations are
asymptotic ones for the radius of the sphere or hypersphere R = oo and
one or more of the coordinates 8; or T; satisfying 8; — 0 and ; — 0.

N\ oy

@.’1...37[ ) .‘@,H...I(.e- Tipk41 (z,,_j...x,,)

& 3~1 , T

5b

Fig. 5. Contractions of the tree diagrams into cluster ones for Sy (Ha) — En hyperboloid

A general S, (or H,) tree diagram can be represented by Fig 5(a)
(for H, the trigonometric angles 8; must be changed to hyperbolic ones
;). Graphically the contraction R — oo corresponds to the fact that we
cut off the ground to up branch by the dashed line in Fig.5(a). The
dashed line then becomes the ground for the corresponding E, cluster
diagram of Fig.5(b). The ambient space coordinates (uo, ut, ...tn) for Sp
or H, are replaced by the Cartesian coordinates (z,z...z,). The angles
(61,62, ...8;) or (1, 72,...7;) that lead to branches cut off by the dotted
line satisfy ; — 0 or 7; — 0 in the contraction and are replaced by radial
coordinates r;, or Cartesian coordinates z, (if the surviving branch leads
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directly to a single coordinate on S, (H,) and E,). We have
R - o0, 4, =0, Rtg0i~Rsin0i~R0i—>ri 6.1)

and
R — oo, 7 =0, Rtht; ~ Rshy ~ Ry = 1y (6.2)

The individual trees in an E, cluster correspond to an O(k) subgroup of
O(n) that survives the contraction.

When we cut off the branches of a tree as in Fig 5(a), the cutting line
intersects an elementary cell (see Fig.2) at each branch. Each elementary
O(n + 1) or O(n, 1) cell then goes into an elementary trunk for E(n), as
indicated by the lower row of diagrams in Fig.2.

Let us now discuss the four cases in Fig. 2. The limiting procedure is
always the same, namely for S, :

05 ~ % lj~kR, R—o0, j=uabcd (6.3)
and for H,
T~ % vi~kR, R—o00, j= ab. e, d (6.4)

where r; is the radius of the sphere (pseudosphere) that survives the
contraction. So, for j = a,c we have r; = z, a Cartesian coordinate.
Let us now run through the individual cells in Fig.2.

6.1 Contractions of Functions Corresponding to Elementary Cells
for S,

1. Cell 2a to 2a”
Using the eqgs. (2.7) and (6.1) we have (R — oo, m ~ kR, 0, ~ z/R)
. 1 .
: imb, _ ikx
Rl}_r)noo o e = ——\/.Q; e (6.5)

2. Cell 2b to 2b”
For the second cell using the eq. (2.8). We have (£ ~ kR, 6, ~ r/R)

A l § . L) , S
Im ——— N,B_ -;,_F (sin 8)P Pff};ﬂ2 ﬁ+-g)(cos 9 =

R—oo \/RSe+
/ k
= ;‘S; Jﬂ+§£_(k7'). (66)
3. Cell 2¢ to 2¢”

The contribution of this cell to the O(n + 1) separated basis function
is given in eq. (2.9). The limit is (£ ~ kR, £, ~ pR, 6c ~ z,/R)

S, S, S,
Rlim N;"_':,—f1 (cosO)"P,(_c_':-?'a*"ﬂ(sinO) = ”%k— { 008 knZn }(6.7)
—» 00 n

—is8inknZn

where k? = p? + k2.
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4. Cell 2d to 2d”
The corresponding basis function given in eq (2.10). Taking the limit
(6.1), £~ kR, £, ~ ko R and 6 ~ r/R) we get

S
lim 23(a+ 3B+l o, 5p
R—oo \/-W f=g=8

(B+3£.a+58) _ 2k
x P, j (cos28) = —(kgr)sﬁ Jﬂ+if_(kﬁ7'), (6.8)

where k2 = k% + k3.
These contractlons for basis functions of the elementary cells 2(a,...d)

determine the general contractions for hypergeometrical functions
corresponding to any tree for the sphere S,,.

ot (sin 8)° (cos 8)* x

6.2. Contractions of Functions Corresponding to Elementary Cells
for H,

1. Cell 2a’ to 2a”
Using the eq. (4.5) and (6.4) we have (R = oo, v, = ip, ~ tkR,
Te ~ z/R)
eip,,r. ikz
AR o T o (69)

2. Cell 2b’ to 2b"

The contribution to the separated O(n, 1) basis function is given in eq.
(4.6). In the contraction limit R — oo we put: p ~ kR, 7 ~ r/R. Using
the asymptotic formula [1]

lim |T(z + )| exp(olyl) Iy} = Vor (6.10)
lyl—o0 2

and rewriting the Legendre function in terms of the hypergeometric
function as in eq. (4.7), we obtain

S
+ip,Lp + ﬁ;

. Sg+1 1 . Sp . 9T

ngnoo o Fy ([3-0— —’l,p,eg+?+l,—sh 5
ta+f

'—F(l+fﬁ+-—)( ) t+-{1(kr)

So, finally we have

Ir(e +"§—+zp)| % -
R—-)oo V2RSs+! IC(ip)| (sh1)™ 'F —711 (ChT)z";E;%ﬁf,a(k’")-
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3. Cell 2¢’ to 2¢”

The relevant basis function is given in eq. (4.8). To perform the
contraction we write the Legendre function in terms of the hypergeometric
function

i VT2 (ch )~ 1 1 o1 9
P—;:pa 1/2(th7) = 2 Fy ite7 +b,§,th T)+

T(3-a)T(3-b) |
3 _
2mr(4 o) I (3 Lm —adon )l
T(:-a)T (3 4 72
where a = i(p—pa)/2. b=i(p+ pa)/2 In the contraction limit R — oo

we put: p ~ kR, pa ~ ko R and 7 ~ 22, where z,, is a Cartesian coordinate. _
We use the asymptotic formulae:

1 1
lim oF) (l+a —+b;——;th2n) = cosk,z,,
R— oo 2

4 "4
. 3 3 3 .9 _ 1 .
R!llbréo o F) (Z - a, i b, 2,l;h n) = b sin knz,,,

where k2 + k2 = k%. After using asymptotic formula

. F(z + a) a—f
L ey A

we finally obtain

Tk .
_ ip _ iknZn
hm —,— IT(1 —ip)| (chr)~ =t P—w—l/2(thf) ¥V 27k, e

4. Cell 2d’ to 2d”

The correspondmg basis function is given in eq (4.9) (v = §°—+§&2 +
+ip, Vo = ——1 +ipa). To take the limit (6.1), we put p, ~ kqR, p ~ kR
and @ ~ r/R) We use the equation expressing Jacobi functions in terms
of hypergeometric functions

) 1 (to+3f. va+3R)
llm - ——'—_Py—ﬁu - Ch 2T ’
R—o0 I‘([ﬁ + é} + 1) _;—l‘g ( )
(Ch T)v-vc. ~a ( V—vy— 83 v+ vy — [ﬁ Sa
— ,— + =
TTUs+F D) 2 2 ?

b+ %+ l;th2r)
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where k2 + k3 = k. The final result is

lim

R 2v/ZRSHT(ls + £ + 1) |T(ip)|

F(‘g-i-il";ipa'f'l + %E)I-\(lg‘HP;iPa+l + §E)| ,
(chr)¥=(shr)“ x

[4 5 s Vot 5, 2k
'PS,f:f? +_f)(ch 2r) = \/ <y Jtﬁ+f§(kﬂr)'

7. Conclusions

The main conclusion from this article, or rather from the research
program that it summarizes, is that the use of analytical contractions
makes is possible to apply Lie group theory to a new area of special
function theory: asymptotic relations between special functions occuring
in the representation theory of different Lie groups. This should be
specially fruitiul for for less well studied functions than those that occur
when subgroup type coordinates are used on spheres and hyperboloid.
So far this has been studied only for O(3) and O(2,1) [3] and this has
provided asymptotic relations between Lamé and Mathieu functions. Work
in’ this direction is in progress.
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