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Direct extraction of transversity and its accompanying T-odd distribution from the unpolarized
and single-polarized Drell-Yan processes
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The Drell-Yan processes with unpolarized colliding hadrons and with the single transversally polarized
hadron are considered. The possibility of direct (without any model assumptions) extraction of both
transversity and its accompanying T-odd parton distribution functions is discussed. For Drell-Yan
processes measurements planned at GSI, the preliminary estimations demonstrate that it is quite real to
extract both transversity and its accompanying T-odd PDF in the PAX conditions.
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The advantage of the Drell-Yan (DY) process for extrac-
tion of parton distribution functions (PDFs), is that there is
no need for any fragmentation functions. While the double
transversely polarized DY process H"1H

"
2 ! l�l�X allows

us to directly extract the transversity distributions (see
Ref. [1] for review), in the single-polarized DY H1H

"
2 !

l�l�X the access to transversity is rather difficult since it
enters the respective cross-section in the complex convo-
lution with another unknown T-odd PDF (see below). At
the same time it is certainly very desirable to manage to get
the transversity PDF from unpolarized and single-
polarized DY processes as an alternative possibility.
Besides, T-odd PDFs are very intriguing and interesting
objects in themselves, so it is also very important to extract
them.

The main goal of this paper is to investigate the possi-
bility to completely disentangle PDFs corresponding to the
unpolarized and single-polarized DY processes.

Let us first consider the results of Ref. [2] for both
unpolarized and single-polarized DY processes. In that
paper the Collins-Soper frame1 is used (see Fig. 3 in
Ref. [2]), where one deals with three angles �, �, and
�S2

. Two angles, � and �, are common for both unpolar-
ized and polarized DY processes. These are the polar and
azimuthal angles of the lepton pair. The third angle �S2

appears when hadron two is transversely polarized, and
this is just the azimuthal angle of S2T measured with
respect to the lepton plane.

We consider here the case of pure transverse polarization
of hadron two, so that we put �1 � 0 and jS1T j � 1 (�2 �
0 and jS2T j � 1 in our notation) in the respective equations
of Ref. [2] (Eqs. (21) and (22) in Ref. [2]) for unpolarized
and single-polarized cross-sections. Besides, taking into
account only the dominating electromagnetic contributions
and neglecting (just as in Ref. [2]) the ‘‘higher harmonic’’
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details of the respective kinematics.
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term containing 3�-dependence, one gets the following
simplified equations for the QPM unpolarized and single-
polarized cross-sections
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Here ĥ 
 qT=jqT j, h1q�x;k2
T� is the kT-dependent trans-

versity distribution, while h?1q�x;k
2
T� and f?q1T �x;k

2
T� are

kT-dependent T-odd PDFs (see Ref. [1] for review). The
convolution product is defined [2] as

F � �fqfq� 

Z
d2k1Td2k2T�2�k1T � k2T � qT�

� �fq�x1;k2
1T�

�fq�x2;k2
2T� � �1$ 2��: (3)

Let us first consider the purely unpolarized DY process.
Notice that Eq. (1) is very inconvenient in application
because of the complicated qT- and kT-dependence enter-
-1 © 2005 The American Physical Society
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ing Eq. (1) via the convolution, Eq. (3). To deal with Eq. (1)
the model

h?1q�x;k
2
T� �

�T
�
cqH

MCMH

k2
T �M

2
C

e��Tk2
Tf1q�x�; (4)

where MC � 2:3 GeV, cqH � 1, �T � 1 GeV�2, and MH
is the hadron mass, was proposed in Ref. [2]. With such an
assumption one then calculates [2,3] the coefficient � 

	=2 at the cos2� dependent part of the ratio

R 

d��0�=d�

��0�
; (5)

which allows us to explain2 the anomalous
cos2�-dependence [4,5] of the unpolarized DY cross-
section. However, the author of Ref. [2] stresses that
Eq. (4) is just a ‘‘crude model.’’ Besides, Eq. (4) cannot
help us to extract the quantity h?1 from the unpolarized DY
process.

Thus, to avoid these problems, let us apply the qT
weighting approach which was first proposed and applied
in Refs. [6,7] with respect to a particular electron-positron
annihilation process and in Ref. [8] with respect to semi-
inclusive DIS. To use the advantage of the qT integration,
one should extract from the unpolarized DY process the
properly integrated over qT ratio [cf. Eq. (5)]

R̂ �

R
d2qT�jqTj2=M1M2��d��0�=d��R

d2qT��0�
; (6)

parametrized as

R̂ �
3

16�
�
�1� cos2�� � k̂ cos2�sin2��; (7)

that should be compared3 with the equation (see
Refs. [2,4])

R �
3

16�
�1� �cos2��� sin2� cos�

� �	=2� cos2�sin2�� �	 
 2�; � ’ 1; � ’ 0�: (8)

By virtue of Eq. (1), the coefficient k̂ at the
cos2�-dependent part of R̂ reads

k̂ �
Z
d2qT�jqTj

2=M1M2�
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q
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�
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; (9)
2Notice that the large values of 	 cannot be explained by
leading and next-to-leading order perturbative QCD corrections
as well as by the high twists effects (see [2] and references
therein).

3Obtaining Eg. (8) one sets [2] � � 1 and � � 0 in the most
general equation for R (Eq. (5) in Ref. [2]), which is justified [2]
by the expectation from next-to-leading order QCD and the data
(Refs. [4,5]) in the Collins-Soper frame.
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and, due to the properly chosen weight jqT j2, the integra-
tion over qT leads to4 the following simple equation for k̂:

k̂ � 8

P
q
e2
q� �h
?�1�
1q �x1�h

?�1�
1q �x2� � �1$ 2��P

q
e2
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; (10)

where the standard notation [6–8]

h?�n�1q �x� 

Z
d2kT

�
k2
T

2M2

�
n
h?1q�x;k

2
T� (11)

for the nth moment of the kT-dependent PDF is used.
Thus, one can see that the numerator of k̂ is factorized
out in the simple product of the first moments of h?1
distributions. This allows us to directly extract these quan-
tities from k̂, which should be measured in unpolarized DY.
This, in turn (see below), allows us to directly extract the
transversity distributions h1 from the single-spin polarized
DY. Notice that now there is no need in any model assump-
tions about kT-dependence of h?1 distributions.

Let us now consider the single transversely polarized
DY process H1H

"
2 ! l�l�X and define the following

single-spin asymmetries (SSA)

Ah�f� �
Z
d�d�S2

sin����S2
��d��S2T� � d���S2T��

�

�Z
d�d�S2

�d��S2T� � d���S2T��

�
�1
; (12)

where the single-polarized cross-section is given by
Eq. (2). It is clear that in the difference d��S2T� �
d���S2T�, only the terms of Eq. (12) containing sin���
�S2
� and sin����S2

� survive (and are multiplied by two).
Besides, the properly chosen5 weights sin����S2

� and
sin����S2

� allow us to separate the contributions con-
taining the h?1 and f?1T PDFs with the result
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1

4
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q
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and
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1

2
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�fq1f
?q
1T �P

q
e2
qF � �f1qf1q�

: (14)

The asymmetries like Af given by Eqs. (12) and (14) and
their application with respect to Sivers function
f?1T�x;k

2
T� 
 ��M=2jkT j��

N
q=H"
�x;k2

T� extraction from
4The normalization condition
R
d2kTf1q�x;k2

T� � f1q�x� is
used (see, for example, Ref. [1]).

5The analogous weighting procedure was applied [9] in the
case of transversely polarized semi-inclusive DIS by the
HERMES collaboration.
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the data were considered in detail in Refs. [10,11], so that
we concentrate here on the asymmetry Ah given by
Eqs. (12) and (13).

Notice that asymmetry Ah given by Eqs. (12) and (13) is
inconvenient in application because of the complicated qT-
6The large x values is the peculiarity of the �pp experiments
planned at GSI—see Ref. [12]
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and kT-dependence entering the convolution. So, we again
apply the qT integration method [6–8] (see also its appli-
cation for the SIDIS processes in Ref. [9] and for the Sivers
PDF extraction from the single-polarized DY in Ref. [10]):
Â h �

R
d�d�S2

R
d2qT�jqTj=M1� sin����S2

��d��S2T� � d���S2T��R
d�d�S2

R
d2qT�d��S2T� � d���S2T��

; (15)
so that one easily gets
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q
e2
q� �f1q�x1�f1q�x2� � �1$ 2��

: (16)

Thus, one can see that Âh is also factorized in the simple
product of �h?�1�1 and h1.
Among a variety of DY processes, DY processes with
antiprotons ( �pp! l�l�X, �pp" ! l�l�X, �p"p" ! l�l�X)
have an essential advantage because the charge conjuga-
tion symmetry can be applied. Indeed, due to charge con-
jugation, antiquark PDFs from the antiprotons are equal to
the respective quark PDFs from the protons. Thus,
Eqs. (10) and (16) in the case of �pp collisions are rewritten
as
k̂j �pp"!l�l�X � 8
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q
e2
q�h
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; (17)

and
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2
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q
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q�f1q�x1�f1q�x2� � �f1q�x1� �f1q�x2��

; (18)
where now all PDFs refer to protons. Neglecting squared
antiquark and strange quark PDF contributions to proton
and taking into account the quark charges and u quark
dominance at large6 x, Eqs. (17) and (18) are essentially
given by

k̂�x1; x2�j �pp"!l�l�X ’ 8
h?�1�1u �x1�h

?�1�
1u �x2�

f1u�x1�f1u�x2�
; (19)

and

Â h�x1; x2�j �pp"!l�l�X ’ �
1

2

h?�1�1u �x1�h1u�x2�

f1u�x1�f1u�x2�
: (20)

One can see that the system of Eqs. (19) and (20) has a very
simple and convenient form in application. Measuring the
quantity k̂ in unpolarized DY [Eqs. (6) and (7)] and using
Eq. (19), one can obtain the quantity h?�1�1u . Then, measur-
ing SSA, Eq. (15), and using the obtained quantity h?�1�1u ,
one can eventually extract the transversity distribution h1u
using Eq. (20). Let us stress once again that now there is no
need in any model assumptions about kT-dependence of h?1
distributions.
In order to obtain squares of h?�1�1u and f1u in Eqs. (19)
and (20), one should consider them at the points7 x1 �
x2 
 x (i.e., xF 
 x1 � x2 � 0), so that

h?�1�1u �x� � f1u�x�

�������������
k̂�x; x�

8

s
; (21)

and

h1u�x� � �4
���
2
p Âh�x; x��������������

k̂�x; x�
q f1u�x�: (22)

To estimate the possibility of h?�1�1u and h1u measure-
ment, the special simulation of DY events with the PAX
kinematics [12] are performed. The proton-antiproton col-
lisions are simulated with the PYTHIA event generator [13].
Two samples are prepared: for the collider mode (15 GeV
antiproton beam colliding on the 3.5 GeV proton beam)
and for the fixed target mode (22 GeV antiproton beam
colliding on an internal hydrogen target). Each sample
contains about 100 K pure Drell-Yan events. Notice, that
this is just the statistics planned to be achieve by PAX.
Indeed (see Ref. [12]), the sample for collider mode cor-
7The different points xF � 0 can be reached changing Q2

value at fixed s � x1x2Q
2 
 �Q2.
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FIG. 1. Reconstructed from simulations (fixed target mode)
quantities � and 	 versus qT in comparison with the input
(corresponding to experimental data) dependencies (solid lines).
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FIG. 2. Reconstructed from simulations (fixed target mode)
quantities � and 	 versus x1 in comparison with the input
(corresponding to experimental data) dependencies (solid lines).
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FIG. 3. k̂ versus x1 at xF ’ 0. Data is obtained with
Monte Carlo simulations for the collider mode (closed circles)
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responds to about 1 yr of data-taking with a cross-section
of 40 mb and a luminosity of 2� 1030 cm�2s�1. For the
fixed target mode it can take about three months with a
cross-section of 30 mb and a luminosity of about
1031 cm�2s�1.

Unfortunately, the original PYTHIA generator we deal
with does not reproduce the corresponding to DY experi-
ments [4,5] nontrivial qT and x dependencies of the quan-
tity 	 entering Eq. (8). So, to estimate the possibility of
h?�1�1u and h1u measurement, one should properly introduce
these dependencies in accordance with the existing experi-
mental data. To this end we apply the commonly used
Monte Carlo method based on weighting of the kinemati-
cal events. To apply the weighting procedure in our case,
we just ascribe to each event the weight w � R which, in
accordance with the data [4,5], is given by Eq. (8), where
� ’ 1, � ’ 0, and 	 has nontrivial qT and x dependencies.
The qT dependence of 	 is taken from Refs. [2,3]—
Eq. (49) in Ref. [2] and Eq. (21) in Ref. [3], and this qT
dependence properly fits the existing experimental data
[4,5]. However, in Refs. [2,3] (where the simplified
Boer’s model is applied) there is no (important and corre-
sponding to DY experiments [4,5]) x-dependence of 	 at
all, so that we take this dependence from Ref. [4].

To check the validity of the angular distribution analysis
of the weighted events we reconstruct the qT and x1 de-
pendencies of 	. The results are shown in Figs. 1 and 2.
One can see a good agreement8 between input (solid lines)
and reconstructed (points with error bars) values.

Thus, applying the above-described weighting proce-
dure, our simulations reproduce the nontrivial angular
dependence of R with qT- and x-dependent 	. These de-
8As an additional check of our analysis validity, we reproduce
the input zero value of �.
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pendencies are in accordance with the respective input
dependencies obtained in experiments on DY [4,5]. Now
it is straightforward to reconstruct the qT-weighted quan-
tity R̂ [Eq. (6)] and, consequently, k̂ [Eq. (7)]. The results
are shown in Fig. 3. The values of k̂ at averaged Q2 for both
modes are found to be 1:2� 0:2 for the collider mode and
1:0� 0:2 for the fixed target mode.
and for the fixed target mode (open circles). For better visibility
(to avoid overlapping), the points for the collider (fixed target)
mode are shifted 0.01 to the left (right) along the x-axis.
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9 GeV2 (middle curve), and 4 GeV2 (upper curve).
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The quantity h?�1�1u is reconstructed from the obtained
values of k̂ using Eq. (21) with xF � 0� 0:04. The results
are shown in Fig. 4. The obtained magnitudes of h?�1�1u are
in accordance (in order of value) with the respective mag-
nitudes obtained with the model (4) for h?1u�x;kT�. Indeed,
for example, for the collider mode (Q2

average ’ 9 GeV2, so
that x1 ’ x2 ’ 0:2 at the point xF ’ 0), the results from the
simulations and from the model (4) are h?�1�1u ’ 1 and
h?�1�1u ’ 0:5, respectively.
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FIG. 5 (color online). SSA given by Eq. (20) versus xF for the
collider mode for three values of Q2: 50 GeV2 (lower curve),
25 GeV2 (middle curve), and 9 GeV2 (upper curve).
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Using the obtained magnitudes of h?�1�1u we estimate the
expected SSA given by Eq. (20). The results are shown in
Figs. 5 and 6. For estimation of h1u entering SSA together
with h?�1�1u [see Eq. (20)], we follow the procedure of
Ref. [14] and use the (rather crude) ‘‘evolution model’’
[2,14] , where there are no estimations of uncertainties.
That is why in (purely qualitative) Figs. 5 and 6 we present
the solid curves instead of points with error bars. To obtain
these curves we reproduce the x-dependence of h?�1�1u in the
considered region, using the Boer’s model, Eq. (4), prop-
erly numerically corrected in accordance with the simula-
tion results.

To estimate the measurability of the quantities we deal
with, it is relevant to estimate the upper bounds on h1, h?�1�1

and then on k̂ and Âh. Obtaining h?�1�1u and h1u one deals
with Eqs. (19) and (20) applied at the points x1 ’ x2 ’�����������
Q2=s

p
, so that we perform the estimation of the upper

bounds on k̂ and Âh at the points xF ’ 0 corresponding to
the average Q2 values for both the collider and fixed target
modes. The maximally allowed value of h?�1�1 can be found
operating just as it was done with respect to the quantity
f?�1�q1T (first moment of the Sivers function) in Ref. [10]. To
this end we first apply the inequality [15]9

�jkT j=M�h
?
1 �x;k

2
T� � f1�x;k2

T�: Then, using the estima-
tion (see Ref. [10] and references therein) hkTi ’
0:8 GeV, one easily gets the upper bound on h?�1�1u :

h?�1�1u & 0:4f1u�x�: On the other hand, the maximally al-
lowed value of h1u can be found using the Soffer [16]
inequality jh1uj � �f1u � g1u�=2. For the PAX kinematics
s � 43 GeV2, Q2

average ’ 5 GeV2 for the fixed target mode
9This inequality is directly obtained by relaxing the bound
Eq. (16) in Ref. [15] (eliminating the unknown distribution in
that bound).
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and s � 215 GeV2, Q2
average ’ 9 GeV2 for the collider

mode. Thus, at the point xF � 0 we deal with, x1 ’ x2 ’
0:3 and x1 ’ x2 ’ 0:2 for the fixed target and collider
modes, respectively. Then, the inequalities on h1u and
h?�1�1u give10 h1u�max� ’ 1:5 (f1u � 1:9, g1u � 1:0 ) and

h?�1�1u�max� ’ 0:8 for the fixed target mode while h1u�max� ’

2:3 (f1u � 3:1, g1u � 1:5) and h?�1�1u�max� ’ 1:2 for the col-
lider mode. Using these estimations of h1u�max� and h?�1�1u�max�

in Eqs. (19) and (20), it is straightforward to obtain the
maximally allowed values of k̂ and Âh: k̂�max� ’ 1:4 and
jÂh�max�j ’ 0:17 for the fixed target mode while k̂�max� ’ 1:2
and jÂh�max�j ’ 0:14 for the collider mode. One can see that
obtained estimations of upper bounds on h?�1�1u , k̂ and Âh
are in accordance with the results presented by Figs. 3–6.

Looking at the (preliminary) estimations presented
by Figs. 3 and 4, one can conclude that the quantities k̂
and h?�1�1u are presumably measurable in most of the
considered x-region. At the same time, looking at Figs. 5
and 6 one can see that for both modes SSA, Âh is estimated
to be about 6%–8%. On the other hand, as it was argued
in Ref. [12] (see section ‘‘Single Spin Asymmetries
and Sivers Function’’, p. 25), the SSA studied in
Ref. [10], Asin����S��qT=MN�

UT , of order 5%–10% can be mea-
sured by PAX. It is obvious that the SSA studied in
this paper, Âh, weighted with sin����S� and the same
weight qT=MN , is absolutely analogous to SSA
Asin����S��qT=MN�
UT , so that it is clear that if Asin����S��qT=MN�

UT
10Performing these estimations we use GRSV2000LO parame-
trization [17] for g1u and GRV98LO parametrization [18] for
f1u.
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of 5%–10% is measurable, then Âh of 6%–8% is measur-
able too.

Thus, it is shown that it is possible to directly extract the
transversity and its accompanying T-odd PDF from the
unpolarized and single-polarized DY processes with anti-
proton participation. It is of importance that there is no
need in any model assumptions about kT-dependence of
h?1 . One can directly extract both h1 and the first moment
of h?1 from the single-polarized and unpolarized DY pro-
cesses, since these quantities enter the measured k̂ and SSA
Ah in the form of simple product instead of complex
convolution. The preliminary estimations for PAX kine-
matics show the possibility to measure both k̂ and SSA Âh
and then to extract the quantities h?�1�1 and h1. Certainly,
the estimations of k̂ and Âh magnitudes obtained it this
paper are very preliminary and show just the order of
values of these quantities. For more precise estimations
one needs the Monte Carlo generator, which is more suit-
able for DY processes studies (see, for example. Ref. [3])
than the PYTHIA generator which we used (with the proper
weighting of events) here.

Notice that it is straightforward to properly modify the
procedure discussed in this paper to DY processes:��p!
����X and ��p" ! ����X, which could be studied
[19] in the COMPASS experiment at CERN.
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