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Possibility of a dynamical Higgs mechanism and of the respective phase transition
induced by a boundary
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The dynamical quantum effects arising due to the boundary presence with two types of boundary conditions
(BC's) satisfied by scalar fields are studied. It is shown that while the Neumann BC's lead to the usual scalar
field mass generation, the Dirichlet BC’s give rise to the dynamical mechanism of spontaneous symmetry
breaking. Because of the latter, there arises the possibility of the respective phase transition from the normal
phase to the spontaneously broken one. In particular, at the critical value of the combined evolution parameter
the usual massless scalar QED transforms to the Higgs model.
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The investigation of quantum field theot@FT) systems and the Neumann BC's,
with respect to their response to different external influences,
such as different external fields, nonzero temperature, and
density of the medium, etc., allows one to discover some Ion! Xa|yy= = L12=0. 2
new properties of these systems. For example, it is of interest
to study the phase transitions in QFT systems with sponta-
neous symmetry breakir@uch as the H|ggs modé]_]) at To Study the dynamical effects ariSing in the tranSlationa”y
nonzero temperatu@,a]_ It is of importance that the tem- noninvariant case we deal W|th, it is convenient to start with
perature(just as well as the finite medium dengsitgiways the unrenormalized Schwinger-Dyson equation written in a
restores the initially broken symmetry and the phase transicoordinate representation for the full propagat(x,y)
tion from the broken to the normalinbroken phase occurs = T{(#(X) $(¥)),
with a temperature increa$g,3|.

On the other hand, it is possible to arrive at the very
interesting class of external influences if one considers the —2G(x,y)= %T<¢3(X)¢(y)>+i§(x—y),
QFT system quantized not in infinite space, as usual, but in 3
space restricted by some boundary surfaces with the respec-
tive boundary conditionBC) satisfied by the fields. Such L . . . .
situations ariZe in physics very often. Thilese are, for exampldVhich in the leading order i, by virtue of the Wick theo-
potential barriers for scalar mesons modeled by the Dirichlef€™: IS rewritten as
and (or) Neumann BC in nuclear physics, the Casimir BC
satisfied by the electromagnetic field on metal surfaces in N
QED, and the nucleon surface impenetrable for quarks and —aiGD’NzEDD,N(X,X)GD’N(x,y)+i5(x—y), ®))
gluons modeled by the bag BC in QCD. It is well known that
the Casimir effect occurs in all these cagsee[4] for an
excellent review. However, the Casimir effect is the effect e
of zero order in the coupling constant and deals with freeWhere_ DD'ﬂ(X%) are thi_grop_agators dsat'ﬁfyng. t.hﬁl free
fields[5]. So, it is of interest to consider the possibilities of equation —d,Dp n(x,y)=i8(x=y) ‘and the ',”C et
some purely dynamical phenomena, caused by interaction, iRolx;==L2=0 or NeumannyDy /x|y, =1 2=0 BC's, re-
the boundary presence. In particular, we will be especiallygPectively. These propagators are found by the method of
interested in the possibility of dynamic@nd depending on Mirror images, and in the nontrivial region inside the gap in
the characteristic region sigparticle mass generation in the Which we are interested, the result reads
initially massless theories. Namely such a situation occurs in
QFT at finite temperature, for example in scalar field theory AX,
[3], where the initially massless particle becomes massive L2
due to the temperature inclusion while the nontrivial part of
dynamical mass depending on the temperature disappears in
the zero temperature limit. Z 64 }5

f

Let us consider thenassless scalar field theowith £
=\ ¢*4! quantized in the flat gap pictured in Fig. 1. We will
consider two possible types of BC'’s satisfied by the field L2
on the plates. These are the Dirichlet BC’s,

¢Dlxy=x12=0, (1) FIG. 1. The flat gap with the shadowed centfalegion.
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DD,N(x,y)=—<4w2>‘1§ (FD(x—y)2—[x3— (- 1)"y3—nL]?}*

=—<4w2>*1§ ([(x=¥)?=(x3—y3—2nL)2] 1T {(x—y)?—[xs+ys—(2n—1)L]} 1),

wherex?=x3—x2—x3. Introducing the quantity

2 2 :f- s 2
X—Yy
where
D(x,y)=D(X,y) — Do(X—Y), (7)

and Do(x)= — (472) " [x3—x?]"1, one gets from Eq(3)
the equation

8

where now all quantities are renormalizig] in leading or-
der[9].
From Eq.(8) one can see that thedependent quantity

[— 93— b n(Xa)1Gp N(X,Y) =i 8(X—Y),
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[13] of the full x? value, losing thex-dependent contribu-
tions. Moreover, it is seen from E¢9) that these contribu-
tions always dominate, i.e., they are the biggest at xany
values. The latter point leads to the crucial difference be-
tween Dirichlet and Neumann BC's, and this is of great im-
portance for what follows: while in the case of a Neumann
BC the mass gap square is always positiyé,,>0, in the
case of a Dirichlet BC the mass gap square is always nega-
tive, ,u,%<0, and we will discuss this possibility later.
Looking at Eg.(9), one can notice that the expressions for
,u%,N are divergent on the gap boundariet /2. These di-
vergences are not surprising since, in addition to the usual,
ultraviolet singularity ((—y)‘2|>Hy subtracted by Eq(7),
the propagato(4) also contains contributions corresponding
to n==1 in the sum that are divergent as-y on the
boundaries. Such so-called “surface divergences” are well
known[4] from the calculation of the Casimir energy density

can be considered an external “mass field” which acquireswith boundary conditions like Eqgl) and(2). It is known

the sense of mass in its tradition@o thatE=/p%+ u?)
understanding only when it weakladiabatically depends

that these singularities arise because boundary conditions
like Eqgs.(1) and(2) are too idealized approximations to the

on the coordinate. So, we will call this quantity the “mass €@l ones, and to avoid surface divergences one should deal

gap” in analogy with condensed matter physjds)].
We first consider theero-temperaturease. Using Egs.
(5)—(7), the formulas=;n~2=¢{(2)=#?/6, and
> (n+a) 2= — wdcot wa)/da= m?/siré(ma),

one easily gets

N[l
wlo N= (—1csc,2

320.2(3 ' ©

T L
L%t 3

Let us analyze Eq9). First of all, one can see that there are

two contributions to u?—translationally invariant and

xz-dependent, respectively. The translationally invariant con
tribution \/96L2 is the same for Dirichlet and Neumann
BC'’s and comes from the translationally invariant part of the

propagatorsDp, y—the first term in Eq(5). Notice that this

contribution can also be obtained from the well known resultf0||

of QFT at finite temperaturg3],

m2=\T2/24 (10)
with the substitutioir — 1/2L if one, similarly to the case of
a periodic BC[11], uses the analog}12] of the eigenfre-
guency spectrumv,= wn/L for the Dirichlet and Neumann
BC with the finite-temperature spectruw,=27nT. How-

with more realistic smooth boundary conditions. However,
the transition from idealized sharp boundary conditions of
total impenetrability to the realistic smooth ones causes enor-
mous complications in all calculations. Fortunately, there is a
possibility of getting reliable results even with the sharp
boundary conditions like Eq$1) and(2). Indeed, the expe-
rience of the Casimir energy density calculations shows that
the application of the smooth boundary conditions instead of
the sharp ones does not influence the result in the region
maximally distanced from the boundaries. So, we will as-
cribe to resuli9) a physical sense only in such a region—in
a strip with a small §/L<1) width é surrounding the cen-
tral planex;=0 (see Fig. 1

On the other hand, this central region has a remarkable
property: since&MZD’N/axg,le:O:O, the mass gap there is
almost independent of; [up n(8)=pup n(0)] and can be
considered a scalar field madsut not yet as a real mass of
scalar meson
So, in the centrab region one gets instead of E@) the
owing expression$14] for the scalar field masses:

wWi=N24L2,  ud=—\/48L2. (12)

Thus, the Neumann and Dirichlet BC’s differ drastically.
While the Neumann BC leads to the usual dynamical mass
generation of a scalar mesany= uy=\/24L?, the Dirich-
let BC leads to the imaginary mass of the scalar field. This,

ever, let us stress that in this way one reproduces only a paas is well known, is the signal that the spontaneous violation
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of the ground-state symmet{y)—(¢) ought to happen, so So, after realization of the standard Higgs mechanism,
that after the latter, the scalar meson acquires the real dyne leaves with only the massive scalar meson with a mass
namical massmp =2|uj|=N\/24L2. Itis of interest that the m’=2|uf|=N/18L% interacting with the massive vector
real meson masses, andmy happen to be equal to each field with a massm3=e?|u3|/\ =e?/36L2.
other. Let us nowinclude the temperature=£1/8 and consider
Let us show that the resth%<0 is valid also in the case first A ¢*/4! theory. Following the well known imaginary-
whereall three space dimensions are compactifieith the  time Matsubara approach, one easily gets, instead of(Egs.
Dirichlet BC satisfied by the scalar field. Consider the paral-and (6), the equationu? = (A2)D(x,x) + O(\?) with
lelepiped with the edgek,,L,,L3 centered around the co- ’
ordinate origin. The respective scalar field propagator sub-_ , ~ o~
mitted to the Dirichlet BC on the plate®(x,y)=0 onx,  Pon(6Y)=(472) 22 (F )M (x4—yat+ mB)2+ (x—y)?
==*L;/2, has a forn{15] m
+[x3— (= 1)"ya+nL]?} 2, (16)
— — 1)(ng+ny+ng) _y(N)
bxy) % =1 Dolx=y™). (12 wherex=(x;,x,) and the prime denotes that indexeand
min the sum do not equal zero simultaneously. Then, in the
whereN=(n;,n,,ng), y™=(~1)"y;+niL;, andDyisthe  case of Dirichlet BC's, near the central plang=0, one gets
free propagator in infinite space. Thus, for the culg (
=L,=Ls;=L) in the smalls region of the coordinate origin,

2 _ ' _

Egs.(6) and(7) give MD(LB)—(?\/SWZ)% (=D [Bm*+L%n?] "t (17)
A ,(—1)Mtnatng . a2 2 e _

15 cune= . @y (UsingZ,(~1)'n 7?6 and=,'n"*=2¢(2)= /3,

one can easily get the asymptote§(L,) and u3(,B)
corresponding to the zero-temperature and infinite-space
where the prime denotes that indexgsn,,n; in the sumdo  cases, respectively. In the first case, one arrives at the result

not equal zero simultaneously. Fortunately, the sum entering1 1) for M%; in the second case, one obtains the regi0j:
Eg. (13 is known from the crystal physics Madelung m2= ;2 (o g)=\T?/24.

2 2 2
4’7T2|_2 nq,np,n3 n1+n2+n3

constant and can be found in Table 4 of Re¢L6]: Let us now introduce two new evolution variables,
S'(—1)" 2t (nf4+n3+nd) " t=d(2s)s—; = —2.51935.
Thus, one again gets a negative result Agy, X1=B?IL2, x,=x;'=LT? (18)
2
] cune= —0.063 82 /L2, (14 calculating the sums}, (—1)"[x;m?>+n?]~! and =/ .

(—1)"[m?+ x,n?] "1, one obtains the respective evolution
pictures presented by Fig.(Bop and bottom pictures, respec-
tively). One can see the critical poit'=0.5698 at which
1, 1 N, ,u% changes the sign, i.e., there occurs the phase transition
- ZF,“,Jr E&”cpa&wa— Tk from the normal to the spontaneously broken phase. It is of
' importance that the phase transition can occur either because
1 of changing the temperature at fixéd(bottom picture or
—e€ap0" PappA, T 562<P2A2, because of the gap sitechanging at fixed temperatuf®p
picture. The asymptotes quZD asy1—0 (L—o while 8 is
where o?=p,0,, ¢*=(¢?)? a=1,2, and with the Dirich- fixed) and asy,—0 (B8—< while L is fixed) are presented
let BC ‘Pa|x3:tL/2:o satisfied by the scalar field on the gap by the Ie_ft edges of the t_op and bottom pictures, respectively,
boundaries. Here we will be interested in the dynamical ef&nd are in agreement with Eq40) and(11). The results for
fects caused by theninimal modification of the standard the Symmetric poinB=L, i.e, x1=x,=1, arein agreemgnt
(infinite spacg QFT. Thus, within the present paper, we doWith the exactly calculated[18] sum = ,(—1)"[n
not impose[17] any BC's on the electromagnetic field, so M1 *=(-1/2)7In2. _ .
that again one has only the tadpole diagram for both fields Let us also stress thessential advantagef the just con-
@1 ande,, contributing to thel -dependent scalar field mass Sidered dynamical mechanism of the spontaneous symmetry
gap in the one-loop approximation. Operating just as beforedreaking (restoration. In our case, there are no problems

Returning now to the flat gap geometry, let us considass-
less scalar electrodynamiagith the Lagrangian density

one gets in the central regideee Fig. 1 with the perturbative calculation of the critical point as it
occurs at investigation of the spontaneously broken symme-
ws=—N\/36L2. (15  try restoration at critical temperatuf@&], since we do not

introduce into the Lagrangian the imaginary mass term by
Thus, instead of the scalar QED, one arrives at the Higgband from the very beginning, that ledd®] to the complex
model with the “wrong” sign at the mass term, and this value for the critical point.
occurs only due to the dynamical corrections in the boundary It is obvious that in the case ¢ifie massless scalar elec-
presence. trodynamicswith the Dirichlet BC on the gap plates, the
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~n F Thus one can say that the boundary with the respective
BC (Dirichlet herg and the temperature compete with each
other: while the temperature always aspires to restore the
= broken symmetry, the boundary tends to violate it. This com-
X1 =0.5698 petition gives rise to a new type of phase transition: the de-
creasing in the characteristic size of the quantization region
(the gap size hejeand the increasing in the temperature tend
to transport the system into the spontaneously broken or into
the normal phase. The system evolves with a combined pa-
rameter reflecting the change in the temperature and in the
T T e size simultaneously. As a result, at the critical value of this
0 02040608 1 121.4 parameter there occurs the phase transition _from the normal
. 2/L2 to the spontaneously broken phase. In particular, the usual
X1‘B massless scalar electrodynamics transforms to the Higgs
model. The latter, as is well known, is the key model sup-
porting the foundations of the main directions in modern
physics based on spontaneous symmetry breaking and the
Higgs mechanism. In particular, this is superconductivity
Xcr=1 7549 theo_ry [20]_, which is just the nonrelativistic variant of the
2 Abelian-Higgs modelsee, for exampld,21] and references
therein in condensed matter physics, and the Weinberg-
Salam theory of electroweak interactions in high-energy
physics. So, one can hope that the dynamical phenomena
presented here caused by the boundary influence can lead to
some new physical predictions in these important branches
of modern physics.
T Y t 'IT con;:lusion, ]Icetthusf_strt'ests tha_t t?r? p_resertl_t pzt;l_per i?,ﬂt]:er-
ainly, only one of the first steps in the investigation of the
0 0.5 1 1.5 2_1 2252 boundary-induced dynamical phenomena. To be sure that the
Xo=X1 =L /B mere possibility of the dynamical Higgs mechanism and of
the respective phase transition discussed herein are indeed
FIG. 2. (872/\) ud versusy, (top) and (8m2/\)u2 versusy, realizable in reality, one should answer the still-open ques-
=1 ' (bottom). The natural systei=c=k=1 is used. For each tions. These include such problems as the calculation of the
curve on the top pictures is fixed whileL evolves; for the bottom mass term with the softened BC and the subsequent investi-
picture the reverse is true. gation of the mass term behavior away from the central do-
ain, where one ought to study the nontrivial momentum
ependence of the mass term and to perform higher-order
analysis of the vertex functions; investigation of the respec-
o 2 tive dynamical phenomena within the strong-coupling limit
's fixed and ug, tends to the zero-temperature re<df) as (lattice calculations research on the influence of the non-

o e e e 59 S il ' (uch s th Casii nerposed on e guge
g P i ' field; etc. This is, certainly, only a sketch of the main prob-

the following phase transition: the massless scalar electrody- ; . ; L T
namics with the Dirichlet BC satisfied by the scalar fields on ems which will require detailed investigation in the future.

the gap boundaries transforms to the Higgs model with the We are grateful to the specialists from the Scientific Cen-
spontaneous symmetry violation. As a resultyat x5, af-  ter for Applied Research at JINR, G. Emelyanenko and O.
ter the realization of the standard Higgs mechanism, ondévanov, for help in performing the numerical calculations.
leaves with the only massive scalar meson interacting wittWe are also grateful to N. Kochelev, E. Kuraev, S. Nedelko,
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evolution pictures are analogous to those presented in Fig.
with the same critical point. The only difference is in the
asymptotes. Namely 3 —\T?%/18 asy;—0 (L—o while T

the massive vector boson. and G. Piragino for fruitful discussions.
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