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Possibility of a dynamical Higgs mechanism and of the respective phase transition
induced by a boundary
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~Received 11 August 2003; revised manuscript received 16 December 2003; published 18 March 2004!

The dynamical quantum effects arising due to the boundary presence with two types of boundary conditions
~BC’s! satisfied by scalar fields are studied. It is shown that while the Neumann BC’s lead to the usual scalar
field mass generation, the Dirichlet BC’s give rise to the dynamical mechanism of spontaneous symmetry
breaking. Because of the latter, there arises the possibility of the respective phase transition from the normal
phase to the spontaneously broken one. In particular, at the critical value of the combined evolution parameter
the usual massless scalar QED transforms to the Higgs model.
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The investigation of quantum field theory~QFT! systems
with respect to their response to different external influenc
such as different external fields, nonzero temperature,
density of the medium, etc., allows one to discover so
new properties of these systems. For example, it is of inte
to study the phase transitions in QFT systems with spo
neous symmetry breaking~such as the Higgs model@1#! at
nonzero temperature@2,3#. It is of importance that the tem
perature~just as well as the finite medium density! always
restores the initially broken symmetry and the phase tra
tion from the broken to the normal~unbroken! phase occurs
with a temperature increase@2,3#.

On the other hand, it is possible to arrive at the ve
interesting class of external influences if one considers
QFT system quantized not in infinite space, as usual, bu
space restricted by some boundary surfaces with the res
tive boundary condition~BC! satisfied by the fields. Suc
situations arise in physics very often. These are, for exam
potential barriers for scalar mesons modeled by the Diric
and ~or! Neumann BC in nuclear physics, the Casimir B
satisfied by the electromagnetic field on metal surfaces
QED, and the nucleon surface impenetrable for quarks
gluons modeled by the bag BC in QCD. It is well known th
the Casimir effect occurs in all these cases~see@4# for an
excellent review!. However, the Casimir effect is the effe
of zero order in the coupling constant and deals with f
fields @5#. So, it is of interest to consider the possibilities
some purely dynamical phenomena, caused by interactio
the boundary presence. In particular, we will be especi
interested in the possibility of dynamical~and depending on
the characteristic region size! particle mass generation in th
initially massless theories. Namely such a situation occur
QFT at finite temperature, for example in scalar field the
@3#, where the initially massless particle becomes mass
due to the temperature inclusion while the nontrivial part
dynamical mass depending on the temperature disappea
the zero temperature limit.

Let us consider themassless scalar field theorywith Lint
5lw4/4! quantized in the flat gap pictured in Fig. 1. We w
consider two possible types of BC’s satisfied by the fieldw
on the plates. These are the Dirichlet BC’s,

wDux356L/250, ~1!
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and the Neumann BC’s,

]wN /]x3ux356L/250. ~2!

To study the dynamical effects arising in the translationa
noninvariant case we deal with, it is convenient to start w
the unrenormalized Schwinger-Dyson equation written in
coordinate representation for the full propagatorG(x,y)
[T^f(x)f(y)&,

2]x
2G~x,y!5

l

3!
T^w3~x!w~y!&1 id~x2y!,

which in the leading order inl, by virtue of the Wick theo-
rem, is rewritten as

2]x
2GD,N5

l

2
DD,N~x,x!GD,N~x,y!1 id~x2y!, ~3!

where DD,N(x,y) are the propagators satisfying the fre
equation 2]x

2DD,N(x,y)5 id(x2y) and the Dirichlet
DDux356L/250 or Neumann]DN /]x3ux356L/250 BC’s, re-
spectively. These propagators are found by the method
mirror images, and in the nontrivial region inside the gap
which we are interested, the result reads@7#

FIG. 1. The flat gap with the shadowed centrald region.
©2004 The American Physical Society01-1
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DD,N~x,y!52~4p2!21(
n

~71!n$~ x̂2 ŷ!22@x32~21!ny32nL#2%21 ~4!

52~4p2!21(
n

~@~ x̂2 ŷ!22~x32y322nL!2#217$~ x̂2 ŷ!22@x31y32~2n21!L#2%21!, ~5!
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wherex̂2[x0
22x1

22x2
2. Introducing the quantity

mD,N
2 ~xW !5

l

2
lim
x→y

D̃~x,y!1O~l2!, ~6!

where

D̃~x,y![D~x,y!2D0~x2y!, ~7!

and D0(x)[2(4p2)21@x0
22xW2#21, one gets from Eq.~3!

the equation

@2]x
22mD,N

2 ~x3!#GD,N~x,y!5 id~x2y!, ~8!

where now all quantities are renormalized@8# in leading or-
der @9#.

From Eq.~8! one can see that thex-dependent quantitym
can be considered an external ‘‘mass field’’ which acqui

the sense of mass in its traditional~so thatE5ApW 21m2)
understanding only when it weakly~adiabatically! depends
on the coordinate. So, we will call this quantity the ‘‘ma
gap’’ in analogy with condensed matter physics@10#.

We first consider thezero-temperaturecase. Using Eqs
~5!–~7!, the formulas(1

`n225z(2)5p2/6, and

(
2`

`

~n1a!2252pdcot~pa!/da5p2/sin2~pa!,

one easily gets

m2
D,N5

l

32L2 H 1

3
7csc2FpL S x31

L

2D G J . ~9!

Let us analyze Eq.~9!. First of all, one can see that there a
two contributions to m2—translationally invariant and
x3-dependent, respectively. The translationally invariant c
tribution l/96L2 is the same for Dirichlet and Neuman
BC’s and comes from the translationally invariant part of t
propagatorsDD,N—the first term in Eq.~5!. Notice that this
contribution can also be obtained from the well known res
of QFT at finite temperature@3#,

mT
25lT2/24 ~10!

with the substitutionT→1/2L if one, similarly to the case o
a periodic BC@11#, uses the analogy@12# of the eigenfre-
quency spectrumwn5pn/L for the Dirichlet and Neumann
BC with the finite-temperature spectrumwn52pnT. How-
ever, let us stress that in this way one reproduces only a
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@13# of the full m2 value, losing thex-dependent contribu-
tions. Moreover, it is seen from Eq.~9! that these contribu-
tions always dominate, i.e., they are the biggest at anyx3
values. The latter point leads to the crucial difference
tween Dirichlet and Neumann BC’s, and this is of great i
portance for what follows: while in the case of a Neuma
BC the mass gap square is always positive,mN

2 .0, in the
case of a Dirichlet BC the mass gap square is always ne
tive, mD

2 ,0, and we will discuss this possibility later.
Looking at Eq.~9!, one can notice that the expressions f

mD,N
2 are divergent on the gap boundaries6L/2. These di-

vergences are not surprising since, in addition to the us
ultraviolet singularity (x2y)22ux→y subtracted by Eq.~7!,
the propagator~4! also contains contributions correspondin
to n561 in the sum that are divergent asx→y on the
boundaries. Such so-called ‘‘surface divergences’’ are w
known@4# from the calculation of the Casimir energy dens
with boundary conditions like Eqs.~1! and ~2!. It is known
that these singularities arise because boundary condit
like Eqs.~1! and ~2! are too idealized approximations to th
real ones, and to avoid surface divergences one should
with more realistic smooth boundary conditions. Howev
the transition from idealized sharp boundary conditions
total impenetrability to the realistic smooth ones causes e
mous complications in all calculations. Fortunately, there i
possibility of getting reliable results even with the sha
boundary conditions like Eqs.~1! and ~2!. Indeed, the expe-
rience of the Casimir energy density calculations shows
the application of the smooth boundary conditions instead
the sharp ones does not influence the result in the reg
maximally distanced from the boundaries. So, we will a
cribe to result~9! a physical sense only in such a region—
a strip with a small (d/L!1) width d surrounding the cen-
tral planex350 ~see Fig. 1!.

On the other hand, this central region has a remarka
property: since]mD,N

2 /]x3ux35050, the mass gap there i

almost independent ofx3 @mD,N(d).mD,N(0)# and can be
considered a scalar field mass~but not yet as a real mass o
scalar meson!.

So, in the centrald region one gets instead of Eq.~9! the
following expressions@14# for the scalar field masses:

mN
2 5l/24L2, mD

2 52l/48L2. ~11!

Thus, the Neumann and Dirichlet BC’s differ drastical
While the Neumann BC leads to the usual dynamical m
generation of a scalar meson,mN5mN5l/24L2, the Dirich-
let BC leads to the imaginary mass of the scalar field. Th
as is well known, is the signal that the spontaneous violat
1-2
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of the ground-state symmetry^w&→^w& ought to happen, so
that after the latter, the scalar meson acquires the real
namical mass:mD

2 52umD
2 u5l/24L2. It is of interest that the

real meson massesmD and mN happen to be equal to eac
other.

Let us show that the resultmD
2 ,0 is valid also in the case

whereall three space dimensions are compactifiedwith the
Dirichlet BC satisfied by the scalar field. Consider the par
lelepiped with the edgesL1 ,L2 ,L3 centered around the co
ordinate origin. The respective scalar field propagator s
mitted to the Dirichlet BC on the plates,D(x,y)50 on xi
56Li /2, has a form@15#

D~x,y!5(
N

~21!(n11n21n3)D0~x2y(N)!, ~12!

whereN5(n1 ,n2 ,n3), yi
(N)5(21)niyi1niLi , andD0 is the

free propagator in infinite space. Thus, for the cube (L1
5L25L3[L) in the smalld region of the coordinate origin
Eqs.~6! and ~7! give

mD
2 ucube5

l

4p2L2 (
n1 ,n2 ,n3

8
~21!n11n21n3

n1
21n2

21n3
2

, ~13!

where the prime denotes that indexesn1 ,n2 ,n3 in the sum do
not equal zero simultaneously. Fortunately, the sum ente
Eq. ~13! is known from the crystal physics Madelun
constant and can be found in Table 4 of Ref.@16#:
(8(21)n11n21n3(n1

21n2
21n3

2)21 5 d(2s)s51 5 22.519 35.
Thus, one again gets a negative result formD

2 ,

mD
2 ucube520.063 82l/L2. ~14!

Returning now to the flat gap geometry, let us considermass-
less scalar electrodynamicswith the Lagrangian density

2
1

4
Fmn

2 1
1

2
]mwa]mwa2

l

4!
w4

2eeab]
mwawbAm1

1

2
e2w2A2,

wherew2[wawa , w4[(w2)2, a51,2, and with the Dirich-
let BC waux356L/250 satisfied by the scalar field on the ga
boundaries. Here we will be interested in the dynamical
fects caused by theminimal modification of the standard
~infinite space! QFT. Thus, within the present paper, we d
not impose@17# any BC’s on the electromagnetic field, s
that again one has only the tadpole diagram for both fie
w1 andw2, contributing to theL-dependent scalar field mas
gap in the one-loop approximation. Operating just as bef
one gets in the central region~see Fig. 1!

mD
2 52l/36L2. ~15!

Thus, instead of the scalar QED, one arrives at the Hi
model with the ‘‘wrong’’ sign at the mass term, and th
occurs only due to the dynamical corrections in the bound
presence.
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So, after realization of the standard Higgs mechanis
one leaves with only the massive scalar meson with a m
mw

252umD
2 u5l/18L2 interacting with the massive vecto

field with a massmA
25e2umD

2 u/l5e2/36L2.
Let us nowinclude the temperature T[1/b and consider

first lw4/4! theory. Following the well known imaginary
time Matsubara approach, one easily gets, instead of Eqs~4!

and ~6!, the equationmD,N
2 5(l/2)D̃(x,x)1O(l2) with

D̃D,N~x,y!5~4p2!22(
n,m

8~71!n$~x42y41mb!21~ x̃2 ỹ!2

1@x32~21!ny31nL#2%21, ~16!

wherex̃[(x1 ,x2) and the prime denotes that indexesn and
m in the sum do not equal zero simultaneously. Then, in
case of Dirichlet BC’s, near the central planex350, one gets

mD
2 ~L,b!5~l/8p2!(

n,m

8~21!n@b2m21L2n2#21. ~17!

Using (n8(21)nn2252p2/6 and (n8n
2252z(2)5p2/3,

one can easily get the asymptotesmD
2 (L,`) and mD

2 (`,b)
corresponding to the zero-temperature and infinite-sp
cases, respectively. In the first case, one arrives at the re
~11! for mD

2 ; in the second case, one obtains the result~10!:
mT

25mD
2 (`,b)5lT2/24.

Let us now introduce two new evolution variables,

x1[b2/L2, x2[x1
215L2T2. ~18!

Calculating the sums(n,m8 (21)n@x1m21n2#21 and (n,m8
(21)n@m21x2n2#21, one obtains the respective evolutio
pictures presented by Fig. 2~top and bottom pictures, respec
tively!. One can see the critical pointx1

cr50.5698 at which
mD

2 changes the sign, i.e., there occurs the phase trans
from the normal to the spontaneously broken phase. It is
importance that the phase transition can occur either bec
of changing the temperature at fixedL ~bottom picture! or
because of the gap sizeL changing at fixed temperature~top
picture!. The asymptotes ofmD

2 asx1→0 (L→` while b is
fixed! and asx2→0 (b→` while L is fixed! are presented
by the left edges of the top and bottom pictures, respectiv
and are in agreement with Eqs.~10! and~11!. The results for
the symmetric pointb5L, i.e.,x15x251, are in agreemen
with the exactly calculated@18# sum (n,m8 (21)n@n2

1m2#215(21/2)p ln 2.
Let us also stress theessential advantageof the just con-

sidered dynamical mechanism of the spontaneous symm
breaking ~restoration!. In our case, there are no problem
with the perturbative calculation of the critical point as
occurs at investigation of the spontaneously broken sym
try restoration at critical temperature@3#, since we do not
introduce into the Lagrangian the imaginary mass term
hand from the very beginning, that leads@19# to the complex
value for the critical point.

It is obvious that in the case ofthe massless scalar elec
trodynamicswith the Dirichlet BC on the gap plates, th
1-3
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evolution pictures are analogous to those presented in F
with the same critical point. The only difference is in th
asymptotes. Namely,mD

2 →lT2/18 asx1→0 (L→` while T
is fixed! andmD

2 tends to the zero-temperature result~15! as
x2→0 (b→` while L is fixed!. So, because of the gap siz
decreasing at fixed temperature atx1

cr50.5698, there occurs
the following phase transition: the massless scalar electro
namics with the Dirichlet BC satisfied by the scalar fields
the gap boundaries transforms to the Higgs model with
spontaneous symmetry violation. As a result, atx1.x1

cr , af-
ter the realization of the standard Higgs mechanism,
leaves with the only massive scalar meson interacting w
the massive vector boson.

FIG. 2. (8p2/l)mD
2 versusx1 ~top! and (8p2/l)mD

2 versusx2

[x1
21 ~bottom!. The natural system\5c5k51 is used. For each

curve on the top picture,b is fixed whileL evolves; for the bottom
picture the reverse is true.
06170
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Thus one can say that the boundary with the respec
BC ~Dirichlet here! and the temperature compete with ea
other: while the temperature always aspires to restore
broken symmetry, the boundary tends to violate it. This co
petition gives rise to a new type of phase transition: the
creasing in the characteristic size of the quantization reg
~the gap size here! and the increasing in the temperature te
to transport the system into the spontaneously broken or
the normal phase. The system evolves with a combined
rameter reflecting the change in the temperature and in
size simultaneously. As a result, at the critical value of t
parameter there occurs the phase transition from the no
to the spontaneously broken phase. In particular, the u
massless scalar electrodynamics transforms to the H
model. The latter, as is well known, is the key model su
porting the foundations of the main directions in mode
physics based on spontaneous symmetry breaking and
Higgs mechanism. In particular, this is superconductiv
theory @20#, which is just the nonrelativistic variant of th
Abelian-Higgs model~see, for example,@21# and references
therein! in condensed matter physics, and the Weinbe
Salam theory of electroweak interactions in high-ene
physics. So, one can hope that the dynamical phenom
presented here caused by the boundary influence can le
some new physical predictions in these important branc
of modern physics.

In conclusion, let us stress that the present paper is,
tainly, only one of the first steps in the investigation of t
boundary-induced dynamical phenomena. To be sure tha
merepossibility of the dynamical Higgs mechanism and
the respective phase transition discussed herein are in
realizable in reality, one should answer the still-open qu
tions. These include such problems as the calculation of
mass term with the softened BC and the subsequent inv
gation of the mass term behavior away from the central
main, where one ought to study the nontrivial momentu
dependence of the mass term and to perform higher-o
analysis of the vertex functions; investigation of the resp
tive dynamical phenomena within the strong-coupling lim
~lattice calculations!; research on the influence of the no
trivial BC’s ~such as the Casimir ones! imposed on the gauge
field; etc. This is, certainly, only a sketch of the main pro
lems which will require detailed investigation in the future

We are grateful to the specialists from the Scientific Ce
ter for Applied Research at JINR, G. Emelyanenko and
Ivanov, for help in performing the numerical calculation
We are also grateful to N. Kochelev, E. Kuraev, S. Nedel
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