Joint Institute for Nuclear Research

VERY HIGH MULTIPLICITY PHYSICS

Dubna, June 3—-5, 2002

Proceedings of the Third International Workshop

Dubna 2003
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We investigate the phase space integral. Such type integrals
arrive when the topological cross-section is calculated.
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We will consider the simplest case when the module square of
amplitude f,, has the form: |
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P = (E,0,0,0); ky; = \/k?, + k7, is the transverse momentum;
1o is the cutting parameter - phenomenological constant.

Therefore, the aim of my talk is to formulate the effective
method of calculation of the longitudinal phase space integral
for the case when the number n is high enough.

The theory of calculation of integrals of this type have a long
history. Note, that all these methods can’t work for big (> 100)
values of n. Considering the very high multiplicity, it is important
to have an universal method of calculation of the phase space
integrals. It can be useful in a wide range of multiplicity.
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We neglect the momenta conservation low and leave only en-
ergy conservation low:
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After introducing spherical coordinates

kiz = ki cos(¢;)
k’i,y = kt,i sm(qbz)

and integration on ¢; we receive:
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We may include to the previous the integral equality:

/d&-(S (Si — z": \/kf,z + kii + m2> =1
1=1

and after some transformations receive:
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where 1., = E/m, F(x) - is a Dawson’s integral:

F(z) = 6"3’2/ e’ dt
0
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Using Fourier representation of Dirac delta-function we receive
final equation:
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Ps = = /1 dy sin(ay) F (TOm\/(nma:v — n)y((Nmaz — MY + 2))
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On the Figures 1,2 behavior of ¢.(, E) and ¢s(c, E) are
demonstrated.
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Calculations are realized by the package ”Mathematica” 4.1
with range of precision ~ 40. We meet with the serious difficulty
when we execute numerical calculations. Integrand in (11) is a
fast oscillatory function, see Figure 3 for normalized function.

For its precision computing we find roots of integrand and rep-
resent integral as a sum of small integrals between neighboring
roots. We received unexpected result on this way - the sum of
positive small integrals are equal sum of the negative small in-
tegrals with 34 number of mantissa digits. On the numerical
analysis such result have the name ”Roundoff Error”.
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To find a way out of the impasse we use another method. After
substitutions to the primordial integral Fourier representation of
Dirac delta-function and replacement of variable we receive:
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For last integral we use foregoing formalizm and receive:
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where

Umaz = TOm\/(nmax — n)(nmaz —n+ 2)
We estimate value of our integral by the method of pass:

M. V.Fedoryuk, Metod perevala.” Nauka”,1977, Moscow
Let B is a root of equation:

0

%L(ﬁ) =0
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Then we expand the range of exponent near point 3y and write
Znp aS:
) +100 " "
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27 J_;

If restrict oneself by the third part in exponent we receive:

L(Bo) (6k — 1)!!
Zn = R%
" 27TL" (Bo) 4 Z 12%(2k)!

where
= [L"(Bo)*/*/ L (60)

Since series (19) is a Borel type, we may write condition of its
semiconvergence:
R«1

On the Figures 4,5 the behavior of R for 7y = 0.2 and 7y = 1.0
for various n are demonstrated.

0.8 -

o B=0.2| 08} %=1.0
g.g : 06}

02} . 02}

0.1 O R At SO

0 5000 10000 15000 20000 25000 O 5000 10000 15000 20000
Figure 4: Figure 5:

41

25000



On the figure 6 behavior of Z, as function of n are demon-
strated:
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