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Abstract

Indnii - Wigner contractions from the rotation group O(n + 1) to the Euclidean group E(n)
are ysed to obtain the asymptotic relations for matrix elements between the eigenfunctions of
the Laplace-Beltrami operator corresponding to separation of variables in the subgroup-type
coordinates on the n-dimensional sphere for arbitrary n.

1 Introduction

In the present paper, we continue the series of works (1, 2, 3, 4] devoted to the Inoni-
Wigner contactions [5] from rotation groups O(r+1) and O(r, 1) to Euclidean groups E(n)
and their relation to separation of variables of the Laplace-Beltrami operator equation on
S, ~ O(n + 1)/O(n) and E, ~ E(n)/O(n). In particular, it was shown in (1, 2] that two
separable coordinate systems on the sphere §; ~ O(3)/0(2) (polar and elliptic) and nine
systems on the hyperboloid H; ~ 0(2,1)/0(2) as R = oo, where R is the radius of the
sphere, can be contracted to four separable systems on the plane E;. In the paper [3],
the case of contraction from the two-dimensional hyperboloid H, to the pseudo-Euclidean
plane £, ~ E(1,1)/0(2) was also investigated.

The contractions on S, ~ O(n + 1}/O(n) for the case of arbitrary dimensions have
been described in the article [4], where we considered different type of hyperspherical co-
ordinates, namely, subgroup-type coordinates. It was shown that the contractions related
the graphical formalism of "trees” (introduced by Vilenkin, Kuznetsov and Smorodinsky
in [6]) on spheres S, to tie "clusters” on the Euclidean space E,, introduced in the same
article [4].

The topologically different sets of bases corresponding to different trees, are related by
unitary transformations. The matrix elements of transformations between different bases
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(or overlap functions) of represantation for the group O(n+1), i.e., between different types
of hyperspherical functions are called "T-coefficients” and have been calculated explicitly
in [7].

IL the present work, we study the contractions in the limit R — oo for T coefficients
and interbases expansions between eigenfunctions of the Laplace-Beltrami operators cor-
responding to different trees on the S, sphere. Note that the case of n = 2, 3-spheres has
already been considered in the paper {8].

2 Method of trees and overlap functions

2.1 Method of trees

Let us consider the Laplace-Beltrami (or Helmholtz) equation on the n-dimensional
sphere S,

1 8 a
AcslU = ~EV¥, App=-—ae/Gg"* —, g=deig 1
8 LB ,/56{.-‘/59 g5, 9= detga (1)

where gix is a metric tensor written in the curvlinear coordinates ¢,.
The separated eigenfunction of Ay g can be characterized as common eigenfunctions
of a complete set of commuting operatots Yy, a=1,2,..,n

Y =-d¥,  [V%]=0, =[] W(6 M de e da) (2)
=]
The set of aperators {Y;,a = 1,2,..,n} includes the Laplace-Beltrami operator and con-
sists of second order operators in the enveloping algebra of o(n + 1). The simplest types of
coordinates are obtained if all operators Y, in the set are Casimir operators of subalgebras
of o(n + 1). The corresponding coordinates are called subgroup-type coordinates.

Smorodinsky, Vilenkin and Kuznetsov introduced graphical methods, the "methods
of trees”, for characterizing different types of subgronp coordinates, or hyperspherical
coordinates on S.. These methods are best presented in the original article (6] and in the
books (10] and [9]).

Let us briefly describe the method of trees [6]. Each end point u,,2 = 0,1,2,...,n
on the tree corresponds to a Cartesian coordinate in the ambient space £,,;. At cach
branching point, we introduce an angle 6;. We move along the tree from the ground
upwards to a specific coordinate u;. At each branching point, we write cos 6,, if we go to
the left, and sin §;, if we go to the right. In this case, the covrdinate u, rmiay be represented
as a product of all the lines coming toward itself. For example, to the tree on Fig.l there
torrespond the following polyspherical coordinates:

Ug = Reos 8§, cos by, iy = Hcost) sin @, cos 04,
u; = Rcos 8, 5in 0, sin6;, u3 = Hsinf; cosd, cos b5,
Uy = Rsinﬂl €O0s 0‘ sin05 Us = Rsin0, .'1‘1.[)04‘
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Fig. 1.

To each branching paint on the tree diagram there also correspond nou-negative
quantum numbers /,. It will determine the eigenvalue A; of the Laplace-Beltramioperators
according to the formula

Y, = R*Arp ¥ = =A%, A, =t + & —2), (3)
where & is the dimension of the ambient space above the corresponding vertex on the tree.
Only for k = 2 we have {, = 0, £1,42,..... To specify the sepatated wave function

¥ o= N7,¥;(8;) (4)

on S,, we (ollow Refs, |6, 10, 9] and introduce four types of vertices, or "cells” on a tree,
as illustrated in Fig.2(la, 1b, 11’, 1¢). Each vertex and each angle 6, provides a "building
block”™ ¥,(8,) for the wave function ¥(6,,...,6,). Specifically, we have

Cell of type 1a:

1
Vo(d,) = Ec‘”‘”“; m=0,£1,4£2,...; 0< 6, < 2n. {5)

Cell of type 1b:
W5 (6) = N5< (sin )" P& (cos ) (6)

S
n=1—lo,c=1,,+—2£. n=0,12..:0<6<n,

where P{**)(z) are the Jacobi polynomials.
Cell of type 1b":

YR (By) = N3* (cosfy)' P (sin by) (M

S
n=l—l, a=lo+;°~, n=0,1,2,...; =n/2 <8y < /2.
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Fig. 2. Elementary cells for S, (diagrams la,...,lc) and their contractions to £,
ones (diagrams 2a,.. ., %)

Cell of type 1c:

w:-;,_,.(ac) == a2 Nba (i 8:)'#(cas 8,)'> P (cog 20.), (8)
(=l =1, ;

Se s ,
) ,6—[9-{-?,0.-(,,-{-—-2—, 11—0‘1,2.....0S0551r/2.

Here, S, and S are the numbers of vertices above the vertex 1, and g, respecively, ‘The
normalization constants are

Nob = [(2n4a4bt Dl(n+a+ b4 )nt) "
"l 2 T (mf et )lnt b7 1)
We mention that the wave functions (6) and (7) can also he expressed in terms of the
Gegenbauer polynomials by using the formula {11):
Mz) = P(2A + )X +1/2) PO-1/22-112) 4
" PATA+n+1/2)" " '
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2.2 Relations between hyperspherical functions

A convenient way of calculating the T-coefficients corresponding to a transformation
from one tree to another, is to introduce a sequence of *elementary" trees, each differing
from the previous one by the transplantatian of exactly one branch from one side of a
branching point to the other. The general T-matrix will be factorized into a prodact
of "elementary T-matrices” carresponding to such elementary transformations. Each
slementary T matrix connects two tree-type diagrams, a cell with 3 ends, each of which
can be either apen ar closed. The "open end” means that the tree above has no branches,
on the contrary, the "closed end” means that the tree above has a number of branches,
according to the dimension n of the corresponding sphere S,,. All together 8 inequivalent
elementary diagrams of this type exist: one with 3 open ends, 3 with 2 open ends, 3 with
one open end and one with three closed ones {see Fig.3). The T-coefficients for ali 8 types
of elementary transformations were calculated by Kil'dyushov {7]. They were expressed
in terms of generalized hypergeometric functions of argument ¢ = 10 oFi(1), «F3(1),
Wigner D-functions, or Clebsch-Gordor. and Racah coefficients for positive discrete series
of representations of the group SU(1,1) [12]. We mention that a relation between the
T-cocffivients and polynomials of discrete variables has heen established {14], namely, the
Racah-Wilson, Hahn and Krawtchouk polynomials.

The T coeflicient, representing the general transformation, corresponds to the di-
agram with three closed ends on Fig.3(}) [7}:

Vil+ 285 4 1)(m 4 S0 4 y(domony pdoesfintdy o)
[‘(ﬂ+.2+1) [(FefotSetta 4 g

o8
TJI»? -

2
r('ni e-z,2+s., + ”F(j-ﬂ-f;-rsz + l)ls( J+"H"7+20 +35+5; +2)

{ r(1+0+~+1s,+51 + l)r(fﬁ!——w& + 1)[‘( Jtatit Sa+S59+S, + 2) }m

. | L o a - o Y &Y LB 2 l/?
{‘(in*s + I}P(Jﬂu -:;S +53 +J2)( (m+a+€;s +5, + l)[‘( -;D+S! + l)
(2=l gy (P (it 4 )

== 2 S, - S,

. _m - p’ myat ;-Sa+p +1, 1+B+ 8 41, 1 )

X qfa | . (9
ﬂ+ _ZA + l, J—wto+:+5ot-$! +9. J—o-ﬂ+1+$

Here, for brevity we replace the numbers ({4, {3, {,) by (a, 3,7) and Sa, (aj = ,8,7) is
the number of knots above the knot «,.

It was pointed out in Refs. {14, 13] that the numbers S, = -1, a, = 0,1 determine
the appropriate open erd. In this case, ane obtains values of the T-matrix for transitions
in cells with one open end. Thc transition matrices, practically for all 8 types of T-"cells”
in Fig.3 (up to a phase factor!), can be obtained in this manner and presented in the
appendix.
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Fig. 3. Diagrams representing elementary”transformations” between trees
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3 Contractions of the basis functions

Let us consider the n-dimensional sphere S,: u? + ¥, ul = I, 01> 0, where u,
are Cartesian coordinates in the Euclidean ambient space E.yi. The isumetry group is
O(n +1). We chouse a standard basis L, for the Lie algebra o{n+1)

Lo = (0,00 — 1) (1m)

‘[Iuh l«mq’ = ’ikm"m + ‘sm"km - 5¢m Ln — 5kn['-'m~ 0 < 1.k, m,n <n ( ”-)

The Laplace-Beltrami operator on 8§, is
App = 3 1 (12

We shall use B=" as a contraction parameter. To realize the contraction explicitly, ot
us introduce Beltraini coordinates on the sphiere S, putting

n =12
1 , .
=R = (1~ =5 2 . i=1,23.... .n 13
Y R2 k
k=1

y;

Then, the O(n + 1) generators can be cxpressed as

[’Uv Y "

— = w, = — . i)
[{ P + Rz g(ykpk) ( J
L‘k = y\Pk-‘.UkP- = Y — Yemy zlk= 1121-”1"! (”’))

where p, = f8y,. The commutation relations now are

U""* L'""J = 6"'" "'"t + 6"! ,'lun ~ 5',," Lkn - 6kn lifm) “6)
L
Iwn Lk;] = J:L'ﬂ'j - 6;)’”“ [”n ’rk) = "'2":‘, (17)

50 that as -+ 20 the o(n + 1) algebra contracts to the Euclidean e(n) one. The Beltraui
coordinales ¥, (13) contract 1o the Cartesian coordinates on £y, and we have

17

YT, om o, =0—I-:. (18%

so Lhat Lhe rotation generators Lo, Lura into the Lranslations . The o(n + 1) Laplace-

Beltrami aperator {12) coutracts to the ¢(n) one
n 2 n sz 2 2
ALB=Z“.+Zm-’A=P;+P-¢+"'+P§- (19)

i1 wk=1



Recently, in [4] we have introduced the graphical methods of connecting the subgronp-
type coordinates systemns on S, (characterized by tree diagrams) and E, (characterized
by cluster diagrams) and gave the rules relating the coniraction limit R =& oo of the
coordinates, invariant operators, eigenvalues and basis functions.

Graphically, the contraction R - oo corresponds to the cut line off the ground along
the wo branch by the dashed line, as represented for the general §, tree diagram in Fig.4(a).
The dashed line then becomes the ground for the corresponding cluster £, diagram of
Fig.4(b), and the ambient space coordiantes (ug, uy,...,un) for S, are transformed to the
Cartesian coordinates (21, Z3z, ..., Tn). The angles 8,, 0, ..., 4, and the angular momentum
quanturs numbers {;, &y, ..., {; leading to the branches, cut off by the dotted line, satisfy
8, — 0 and [; = oo in the contraction and are replaced by the radial coordinates =, or
Cartesian coordinates z,, (if the survived branca leads directly to a single coordinate on
S, and E,) and some constants &;. We have

9_, ~ }é, l,' ~ k,‘R, R - 00, (2

When we cut off the branches of a tree as in Fig.4(a}, the cutting line intersects at
elementary ceil at the branch (see [ig.2) and each elementary cel) in Fig.2(2a) then goes
into an elementary trunk. as indicated on Fig.2{2b). The limiting procedure for cells is
always the same as in eq. (20).

Let us now run the contraction of basis functions through the individual cells in Fig.2.
Cell 1a to 2a:

In the contractiop limit R = o0, m ~ kR, 6, ~ 2/ R we have

1 l
® =h m = lim ——e™ = '*', 2

’,(Z) ';LH:O\P (90) ’;Lnl) me \/'Zr_e i { l)

Cell 1b to 2b:
In the contraction limit { ~ kR, 6, ~r/R we bave
,I‘+£’- 33 .)'!,
. i~ !

O = Jim 0] = i e vt 2 P oy

k
Ve TWAC! (22
Cell 1b’ 1o 2b"-

In the limit R — 20 and 0y ~ z,/R, { ~ kR, |, ~ pR we have

- N S04
balen) = Jim (=155 () = fim (~1) T N2 F (o gy e
—
(la+ 52 12438}, ) 3’1 { cos(k,zn) (t=1lg) ~even, .,
P Bindd = oo cisin(hara) (1= l) —odd, ‘2

where k? = k¥ + p*.
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Fig. 4. Contractions of tree diagrams into cluster ones for S,

Cell 1c to 2c:
Inthe limit R > co ! ~ kR, I, ~ k,R and 0, ~ r/R, we have

, vt (8 Ol +1a +(Sat55)/3 42 S, s
Blrrn(r) = Jim %(‘)- I \/G—E‘T-—-—N‘”{“”f(sinec)"’

s RN, {i=la—tg)
+ P lot %
x (cosd )" }if:‘f' i +‘H(c0329¢) = J;T;J;“f;(kﬁr)» (24)

where k* = k2 + k} and the parameters a,b, and c are determined by formulae (6), (7),
and (8).



Thus, using shese contractions for basis functions of the elementary cells we go from
tla, ..., lc) to ihe (2a, ..., 2¢) (see Fig.2} and determine the general contractions for
hyperspherical functions corresponding to any tres on the spheres 5, (see Fig.4).

4 Contractions of the interbases expansions

Having the explicit form of the 7 coefficients for all eight types of "elementary” trees
trangitions we shall now consider the contraction limit R — oo for the interbasis expan-
sions in Fig.5.

1. Contraction of Racah coefficients

The tree on the lefi-hand side of Fig.5(a) corresponds to the subgroup chains O(n +
. 1) 2 0(ne + 15) ® O(ny) whilc the tree on the right-hand side of Fig.5(a} corresponds to

the chain O(n + 1} D O(na) & O(ny + ng), where n+ 1 = 1, — Ny < 1.

The interbasis expansion coresponding to the transformatinns beiween trees on Fig.5(a)

has the form

J=0
adyear -~ 6dy qofiv LY
Uy (83,05) = > T e5(0,,8), (251
t=04y 84742,
where
coséy = cos 0 cos 6 cot 8, = cot 0} 5in 0.

The T coefficients are given by formula (9). and the wave functions ¥ can he obtained
with the help of the rules of section 2 [eq. ( B)}.
Cansider now the contraction limit R — oc in the interbasis expansion (25). For lurge
R ve pu:
.

J~kR.  m~pR,  a~gR, o~ . o;~’,'—;. a,~’%. (20)

where rey = \fr} + 12, k} = p? — g, k3 =k* —p? and ki, = k2 + k? and we have

. adyinr - B — 2\/5 B4
AL = )= R e e,

" 4 Ul + Sy + S, + )
A 95000 = 65 (r5,.00) = 20+ 8555 2

Tt Xe e Juton + .(krh "h)
(TL'T))'- ‘ ‘

Sy 4, &,
Foe oy )y

. F(Lﬂf;!_'f_"l+l){"-%:1+l)!(i 0:)(cos 8,)" 0
E] p s . — - 08 : '
r(,-3+;+s - 1)[\(‘_"2:23:_-?;4_ 5 nh)(cos 8,)” P, =2 (cos 20;) (28)
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k3 + k2

Fig. 5. Contractions of the general case Fig. 3(1)

Using now the asymptotic formulae for the (Fy functions and T functions {11} in eq.
{9), we obtain

( —E"Y)]r(l ﬂ+1‘+5: + 1)[[‘(3+ + l)l,

a#w 18y —
hm Jim Wkkn,k,&, —\l

anﬂw—% " 1-8-q l+{i+7+.5‘,,+s‘,+l ﬁ+ 4 _ ko
kg+-,+ PSS L T 2 2 K2tk
.

- (e 20021 + S, + 55 + (== yp(EtxE5erSs D
- k’ F( +ﬂ'1+5'! + 1)1"( -B+7+$] + 1)



(cosé)a""!e’(sm ¢)""!1 P(H’_" a+1e’(cos 24}, (29)
Taking now the contraction limit R — oo in {25), we get (#; = 0)

o0
O, (rar)= Y Winn i, @ (7s0,6) (30)
[=044.847+3, .

Using the orthogonality condition for the Jacobi polynomials

k
1'Bye )
_/ W::f:, koky Wikgrhgi, ——k—’_k; dkg = dip,

we get the inverse expansion

- dky (31)

k k
ig At Bye By B
‘pkt:, (rov0) = /o Wik keh @kkpk,(rﬂl Ty) et
Y

Putting vow the functions (27) - (28) and interbasis coeflicients (29) into the expansiens
(30) and (31), we obtain

Iy 3p5 050 c089) J_, g (= sinfsin 8] = (sia 9sin 6)" ¥ (cospeos §)2+F

&= 1).;;;1(2f+sa+s,+z) [(H5A5tBey g )([=fox o))
(- z r(l—ﬂi';#.gz + l)r(‘_+ﬂ-;+5£ + l)

X
l=f4y.04942,...

P,‘_:;: a+-ﬁ)(cos2¢) ng u+-{:>(cos‘20).l“3L;ﬁ+l(z) (32)
and
(- l)z J, LI (2) (sm0)’+7‘ (cos ) P ,(_;';;}M'fj( cos 20) =/:(sin¢)'”"?'*§

s S s
><J6+¥ (2 cos 0 cos @) J_"%,_(: sin 6 sin ¢)(cos d:)”"’“z‘e*} /’f_f:r_zl'u"a)(z'os 2¢) do.  (33)
where 2 = kg.rg, and
T3 = Ty COs 8, ry=rg,sind,
kg = kgycos ¢, ky = ka,sing,

The last two expansions are equivalent to the well-known forinulae in the theory of Bessel
functions [11], namely, expansions of two Besscl functions through the Bessel function and
two Jacobi polynomials, and vice versa.
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The entire procedure of contraction is illustraded in Fig.5. The vertical arrows cor-
respond to the contraction (26) from the S, trees to the E, clusters. The first tree in
Fig.5{a) contracts to the bihyperspherical coordinates; the second, to hyperspherical ones.
The contraction of the coefficients T or overlap functions is given by eq. (29): the as-
ymptotic formula for the Racah coefficients where the three momenta J,m,a — 0o. The
interbasis expansion (30) and its inverse integral expansion (31) between two E, cluster
diagrams (sce Fig.5(b)) are obtained from the interbasis expansions (23) of the S, trees
diagrams, i.e., hetween the bihyperspherical and hyperspherical bases for the Helmbholtz
equalion oa £,

_ The: contraction limit R — oo of the interbasis expansion corresponding to Fig.3(2)
[with the open @ end) can be obtained from eqs.(30) and (31) with the substitutions
(/) = 0, LI and k= kg.,.

4.2 Further contraction of Racah coefficients

The two trecs in I'ig.6 correspond to two subgroup reductions: O(n + 1) 3 O(ng +
1} & O(n,) on the left side and O(n+1) > O(na) ® O(n, + 1) on the right. Since the
overlap functions are again expressed in terms of the Racah coefficients (see eq. (4)). The
correspanding interbasis expansion is

J-a
Im(0],65) = > T U576, 82), (34)

=y, 41

where Lhe T cocflicients are given by (4) and the hyperspherical functions ¥ in both the
sides of eq. (34) can be written with the kelp of the formulae of section 2. Since the
quantum numbers J —m ~ v and J —~ ! - o are even, !l — v 4+ m ~ g are also even, and
in the expansion (34) we have | = 1Y+ 2,..J - a for the m — a even parameter and
l=y+4L,7y+3....0-aforthem — o odd parameter.

As in the previous case, the contraction will involve three quantum numbers: J,m,

and a. In the contraction limit R — 00,
/rZ + 12
01 ~ —LR;—-—, (35)

Ty

T
4~ kR, m ~ plt, a~gR, a4, ~ 7 & ~ B
where &3 = k? — p? k2 = p? = 2, k7, = k% + k2, we obtain
. mea o ) [k 2k - k2)t
,}}ﬂ("')T ‘[’J:ln(ov f) = ‘bzhk.,("m-f) = ;‘,'E "‘*T"’
Ty

cosk.z, (m - a)— even,

* gl { k5 (m-a)-odd, (36

il

@

s , ’k'(zus + 1)1 = 7)! T(7 + St
lim & 2(61,00) = 0L} (\/73 +22,8,) = 2
Al BT 050(61,00) = @ (/12 + 12, 8,) TS+ (1 BT
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Fig. 6. Contractions of the case Fig. 3(3)

For the contractions of the intecbasis coefficients T', we get

o esa ey '2(2l+sq+1 L (B \E
Rh-?;(_l) 3 [len= t'k,.,k,lt-.= Wknkr )(I‘J—k-z)‘ (E:')

AR (-"T". Bathitl L "7), (1 = v) - even,

x (38)
=2 AT () o (S S L ) (- y) - odd,
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where r (l+-v+25~+x) r (g_;%g)

= RTEES Z :
P2 + )N + 1)
(Jsing now the connection hetween hypergeometrical functions 2y and the Gegenbauer
polynomials {11], we get

" _ (_1)'-?-z~+i’:—'r( +:91+1) @2+ Sy + 1)l =)
kkurheky = _——(kz "k 7 5 Py R

x (sin cb)’*h:_,c,"_iﬁ’ﬂ(cos é), cos ¢ = ke

= (39)

Multiplying the interbasis expansion (34) by the factor 2~ 2 and taking the contraction
limit B — oo, we obtain (6; = 0)

d’lg,k_,(r-n z) = 2 Wu..,k,k.,‘pkk,,( r2 + 23, 8). (40)
[EL AT 2]
We use the orthogonality condition for the Gegenbauer polynomials [11]
l‘yc krdkz

/ H‘.x'r"lk'yl Jeie gy kgky 2 2
JE k2

ta get the inverse expansion

kr? P k;dkz
TR TN P @

ks keke kkskv(r"‘z)\/m'
2

= 48y (41)

I'hus. the interbasis expansion (34) transforms into the expansion between the hyper-
cylindrical and Liyperspherical bases for Helmholtz equation.
Substituting formulac {36), (37) and (39} into expansions (42) and (42) and putting

ke = kg co8 @, k, = k., sin ¢,

x = /rl4 ricosby, o = \/rz + 22sin 6,

we have (2 = k,,,\/;g +z?%)

P cos(:cos¢coso)} 237481 o S Sy+1 ot
lﬂ;-.;_(zwnrp.\mO) {sin(zsin¢s'm9) T My + )(smésma) F

SR ) Uk L SO L T

=7+l (+v+ S l+32;’-'-(z)‘ (43)
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and

141 .
S (2) (8 F O (cost) = [ [7 dp(simay

cos{z cos ¢ cos d) }

"C?-tr g (cos @) J,, (zsm¢sm %) { sin(z sin ¢sinf)

The contraction limit B — oo of the interbasis expansion corresponding to Fig.3(5)
can be presented by formulae (41) and (42) with the substitutions ¢* = ( and therefore
r*=r24+z2and k¥ = k2~ kX

4.3 Contraction of interbasis expansions in Fig. 7

In this case, the left tree corresponds to the subgroup chains Ofn + 1) D O(n, + ng)
and the right one to O(r+1) D O(n,) ® O(ng + 1). The overlap functions (60) are again
expressed in terms of the Racah coefficients. The expansion correspending to Fig.7 has
the form

m(glhal Z T"‘mqy (01,92}. (44)
1=0,6+1

where the T coefficient is given by eq. (60) and the wave functions ¥ may be coastructed

by using the rules given in section 2. As in the previous case the quantum number { runs

{=8,0+2,....J-aorl=8+1,8+3,...,J — o depending on J — m being even or odd.
In the contraction limit R — o0

,/7’3-{».3.’2
J~kR, m~pR, a~qR, o;~%, a;~%’, 8, ~ ”R

we obtain

. d=m oo ¢
Vhkglzirs) = lim (1) U50(0;,09)
\/k_ cosksz, (J ~m) - even,

("e) _}J 14(’%'0) { (45)
—isink,z, (J —-m)-odd,

]

5 5
) 25+ (g + 32y | k(20 + S5 + ) — p)!
2 = als = 3 ! {] 1 .
kk-a{vrﬁ +z 97) f%'_'r& WJI (91,91> SaHi T+ + S

rh+2)%
x (*_E#(k‘u\/rﬁ + z’) (COS 0'1 - %—(Slﬂ 82), (40)

where k3 = p* — ¢*, k2 =k’ - p? and k?; = k2 + k}.
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Fig. 7. Contractions of the case Fig. 3(4)

For the T' coefficients we get

8 af _
kkyphokg = hm Tym =

9+ 4

S

3
k; kg kg \7 i-p
* ("zn) (k,) ' (E) A (-—2-

1 '(21+sp+-1)(t+ﬂ+sﬁ)!\[p—
N @-PMrB+F 1R Rk

1-8-1_ S K
’—_2—_"‘“2'H k’)

_ 28 r(p 4 B {p(21+ s+ )-8

(t+84+ Sa)!

\/TI‘}C, k,g

where cos ¢ = ky/k.p.

) } {cos ¢)ﬁ+"'Ca++(sxn é),
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k3 + &3
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Sa¢t
Muitiplying the expansion (44) by the factor R~%" and taking the contraction limit
R — 0o, we go into the flat space expansion (§; = 8)

oo
!
®s (2 75) = MZ;“W{‘L‘ w8, (/5 +22,6), (47)
Using the orthogonality condition for the Gegenbauer polynomials [11], we have
ko dk,

kl‘ 18 "ﬂ‘ _ .
/_k“ Wik ptaks Wikoghsks m =44 (48)
and the inverse expansion hay the following form:
. kodk,
(\/"a +22,8) =~ / Wlf,,k k,q’fk,k,(rﬁvz)_;c_:'—";z" (49)
— %3

Putting
k‘ = k,g sin ¢, k., = k,g cOs 4),

z= \/f‘}+:’sin03, rg = \/r§+a:’c0503,

we finally obtain the expansion of the product of Bessel and cos or sin functions over the
two Gegenbauer polynomials and Bessel function

210+3y [\2(6 + j,g'_"_‘)

cos{zsin @ sin ¢) } 3

p+3p
sin(z sin 0sin ¢) (cos 8 cos )P+ T

\/;Jm-f,i(z cos f cos @) {

b

P S DI B) et S
g l=§+x (I +8+ Sp) Cip* (sind) Cl- (°"’laz) g, -u(z) (50)

where (z = kzs,/r} + 22) and the top line on the left-hand side corresponds to a sum-
mation over { = 3,8+ 2,...,J — a and the bottom one to a summation over { =
B8+1,8+3,...,J—a. The expansion (50) is related to (43) by the substitutions § — /21,
¢—+n/2—dandy— 3,85, =5 5.

Note that the contraction limit 8 —+ oo in the interbasis expansion, corresponding
to Fig.3(6), can be obtained from the expansion (50) by the substitutions ¢° = D and
k* =k%jand r? =r} + 22,

4.4 The contractions of interbasis expansion in Fig. 8
The tree on the left side of Fig.8 corresponds to the subgroup chains Q(n + 1) >
O(no +1) D O(n,) and the tight one to O(n+ 1) D O(n,) ® O(2). The overlap lunctions
(63) are expressed in terms of the Clebsh-Gordan coefficients of the SU(2) group and the
interbasis expansion is
1J-a)
(00 = X (i) O L V360, (51)

l.,..n +dp. 4 +3a 0=ty 3
I=-(J-o) + e alle b de o
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where the wave functions ¥ can be written out by using the formulae in section 2, and {
has the same parity as (J — a).
In the contraction limit R — oo

J"’kRn mNPR! a~qR. 91‘\’%' 0;~%’ 0;~%.
where k? = p? — ¢*, kI = k? — p?, k? = k? + k2, we obtain (§ = ;)
1 k ito
fim, = U501,82) = 0 r,0) = /= Julhr)e (52)

J—a > ] 1] 4pk
hm (-7 im(0,0;) = ‘l’kkxka(zhl't) = \/m

cos(kyzy) cos(kzza), (J — m)—even, {m —a) - even,
—tcos(kyz;) sin(kyzs), (J—m)—odd, (m —a)-—even,

~isin(kiz) cos(kezz), (J —m)~ even, (m— a)— odd, (53)
- sin(kyzy)sin(kzz3), (J—m)—o0dd, (m—~a)-odd,
-o . m+58 a4 38
gﬂ(-l)ﬁ%—ﬁ(—z)m-a*“( ) CJ:_F _}:_:E‘g !i+£1“ g’_*.&. = Wkklbl
2F]( X 1_2) (J-m)—cven,
= (1)'(-1)*F rkk{ okt k,
R —up R (B Y -E) (V-m) - odd,
=t | 4pk, { - -
= gy B Pk, cos |lle, (J —m) — even,
=0T Vs [—-isinllld), (J -m)—odd, cosd=kifk,. Y

Multiplying the expansion (51) by the factor (-1)"‘32 and taking the contraction limit
R - oo, we obtain

—thyz, [ cos(kzz3) } o (Y1)t cos Ji|¢ "
¢ {sin(kz:tz) Zm(')( 1) \/—{ sin ﬂ|¢} J(ker) ™, (55)
where r = \/z? + z2 and tan 8 = £2. The inverse expansion is
(@)=

on

For & = 0 the last formula is equivalent to the well-known formula in the theory of Bessel
functions [11].

Note that the contraction limit R — oo for the interbasis expansion between the trees
with open ends (see Fig.3(8)) can be obtained from (55) by the substitution ¢ = 0.

2
Jy(k,r) e = /o gii-rkrrconlf-o} gy (56)
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Fig. 8. Contractions of the case Fig. 3(7)
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Appendix

Here, we consider all particular cases of the overlap functions T. The substitution
Sa, = =1 @, = 0,1 in the general formula (9), where a; = o, 8, v, gives us two variauts
of the T coefficients. Using several times the formula for the hypergeometric function , /4
[15]
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—n, ¢, 4d, b -n, b e—c e~d;
,FJ{ ‘1) _ L—M,Fa{ p} o
e, f'g (f)u(g)" c,l+b._n_f. 1+b_n-g

~ntb+ctd=~l+e+f+yp,

one can show that these two variants can be united info one formula. We mention here
that some formulae for the T'-coefficients [7, 10] must be prepared for contractions by
using formula (57).

Let us list seven formulae for the T-cocfficients prepared to contractions.

I. Open end « (see Fig.3(2)). Putting S, = —1 and a = 0,1 in formula (9) and using
the transformation (57), we obtain

767 = ll + (-U"'*“'”J 247 T8, +5,+2)(@m + S5 + 1)(J =)
Jim 2 TG+ %g +1) P(J+m+v+_:,+s,+3)F(J+m_-;+_s,+3)

(B5=1)m + B + §p) [(Rmbrts 4 ) Bsntsars: | yp(iapozesy 1))
PSS (L) (m - B) (T4 + 55 £ 5, + 2)!

l'\( -"l’"'#l-ﬂ*l-Sg'f 31+3)
X 2
(=SR2 4 1)

2

~mel _mofel MSy _i-po,
) " ¥ 1 2 v
o3 ( | ) (58)

1
g+ %g +1, _J+l+m-ﬂ;-5p+5-,+l‘ J_l.;,i.g + ll

Il. Open end # (sce Fig.3(3)). Choosing the parameters S$p=-land 8 =0,! in farmula
(9), we arrive at the following form of the coefficients T

Y _ “ + (_l)‘_ﬂ.m_a]
Jim = 4‘,[7;

(-1 em+ Sa + 1)U+ S, + 1)

5 [\(J-r;-:l +])r(.l+o+f_+.;igts=+a)r(l+a-z&s. +])F(Jim-%is!ia) /2
[\(J-m';"n'-sz +1)F( !_;,_(+])F(J-a+12+31+3)17(7+m+1+2$=+$1+3)

—mzo miedSofl gyl | l47+S,
2 1 N 2 2 4
Al ( ! l) ) (m — o) —even,
FE

Xl 1 S, ¢ Y45y ~1 (59)
mo-o=- myo - Y¥Iy 1,
~-22=l ..ii_n..*.l’ _2.'!+1' ——TL—',
Il y (m—=a)—-odd,

Jta=y45a¥3 _ J-atviS,
k] ' 2

2

Jta-y+8a J-a+v45,~1
-__;l-h + 2. e B



(_1*1"’.5_1 + 1) [v(l+'r+2$:+l )F( t-zzil )1 ("‘:t"tzsni’ )F(m-gﬂ) 12
T (e | IS DI + DN L rEe

_ (g {[‘(“_'fzt-iz. + P52 + )r(meatsa 4 |)r(mse 4 1)}"’
r (J+°'zltsﬁ + 2) r\( f+‘v+2§1+1)1-\( f-ﬁz X)F(miaizsgil )F(m-:;tl )

HI. Open end 7 (see Fig.3(4)). In this case, the coefficient T differs from the
coefficient T_,,,,‘ in (58) by the substitutions: m <= {, 4 - @, S, - 5, and by the phase

factor (~ 1) B ann

14 (=1)I=m+-8 Jimietpa IM=BE R4 J+t+m—a+s.+se+3
A P s
I8+ 3 24 1)[‘(——‘3‘-f2 +1)

r(m+ﬁ+a+5a+se + l)r(m+d—n+b‘£ +)(J - m)'(l:—‘:-a-)'(l+ a+sﬂ);r(_}iﬂ_s._ + l)
l-.( J+l~a+$g+3)r(m—g+a+32 + l)(m Gwn)'(l (J +m+ 5 -+ Sp + 2)1

(m+i°$-'1+l)(l+ fe.;_‘) _t_;gl _f-—t;-l, __m-ﬂ-;o-ng, _m-;—ﬁ;
[~(1+f+o+s‘.+sg+a) oF3 ]1 {60)
2

ﬂ-l— %2 + l. _J+l+m—ﬂ;5,+s.+x’ """1’"+£+1
IV. Ends o and f are open (see Fig.3(5)). The corresponding 77, coefficient has
the following form |7]:

. izl=y ot _1 5
T.‘;’m = (‘)’ Y (‘l) ( ;‘ _1-’+ 5r. 2 —m b-v
+3 =24, 2+

- (i r(iﬂ:ﬂ+§=+1)(f_umy(1+ v+ SR+ S+ )Y
PSR 1 S (2 O+ T+ S, + il — v)
M(J+3+1) (—’—'M.—t-fzuiwn-
F, 2 27 2 ’
STEYDR ") (61)

where (,n a0 2re the Clebsch-Gordan coefficients for the SU(1,1) group, if S, is odd. and
SU(2) group for even S.,.
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V. Ends o and y are open (see Fig.3(6)}. Putting §;, = ~1 and v =0, ! in formula
(60), we obtain two values for the coefficieut T, depending on pasity of (m — B). Using
several times the transformation (57), we get

o Lt (D74 0Y i /(24 Sa + 1)2m + 55 +1)
TJlm [ 9 ( 1) 2 I\(J—l-’m+g+1)

(A 225 4 ) { (1 + 8+ Sp){J = ONJ — m)l(m + B + Sp)! }"’
TB+2+1) Um=A(~-BHJ+1+Sa+ )V +m+Sp+1)
—m=g _meg-r =g 1-fa1.
2! [ 2 2
Xcra( ,1)

S8 1 JH4m~045s  Joi—m4fd (62)
ﬂ+ 2 + y - 7 3 ] +l

V1. Ends § and 7 are open (see Fig.3(7)). The cortesponding T%,, coeflicient has
the form
” m—a =t m a3
Thim = (=i ) O R et (63)
Expression, of the Clebsch-Gordan coefficients in terms of the 3 #; function is not conve-
nient for taking the contraction limit. Instead, we use the following integral representation
116];

J+ 1'&0!_(}' ~my)ly - mg)!}tlz .

J M aJ-M 1—m
Cimiaime = (D) {(J =G T G F )]

VS +1)(25 — N2 +J + 1)
g 27 (37 + 3/2)

and the formulae [11]

\/_/ (sin )’ M ,‘,J_*, 8 (cos g)eitma-ms 44

15 (-3, 2 4 a4+ 1;5in’ ),  n -~ even,
I‘y'io.a)(c°s¢) - F(D +n< l) {

—_—-—-x
]
T{a +1)at s Fi (-2, 2 4o+ a4 1;sin’¢), n-odd

After integrating over ¢, we obtain a representation of the Clebsch-Gordan coefficients in
terms of the hypergeometric function 4 £

,‘m{-—gf n'r:"" m- hd m + a+
CYvam stemng sm aptan, = O () T2t im — affm 4 a4 S

(J + 1 + Sq + 1)ty Lzl 4 &)
(J - mNE$E el 4 &)



1

2? 2 A

1,
L |1 | + 2ta- M+S¢ J

rg__.,rf_!.g[r(iiuiu_)]—' P
r“+m a—=[14 ,r(l+n-c-{k’ 443

(Jﬂ UL Jamida 4y _dem,

2
(64)

—a-
B=) _ W2 Jem4$a43 _ Jowme),
7 v ~ 1 ’

1) ,

—r{ 25 1 Yoy mtSad2 -1 T ' ? :
T(teeSa={F m=n-lii4 ‘Fg
(" b } 3 meo-Ul43 mia-)ij+3
T

b

where the top line corresponds to an even (J — m) and the bottom one to an odd (J —-m).
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