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Abstract

A search for events with one jet and at most one isolated lepton used data taken at LEP-2 by the DELPHI detector. These
data were accumulated at a center-of-mass energy of 183 GeV and correspond to an integrated luminosity of 47.7 pby1.
Production of single scalar and vector leptoquarks was searched for. Limits at 95% confidence level were derived on the

Ž 2 2 .masses ranging from 134 GeVrc to 171 GeVrc for electromagnetic type couplings and couplings of the leptoquark
q yŽ .states. A search for top-charm flavour changing neutral currents e e ™ tc or charge conjugate used the semileptonic

Ž .decay channel. A limit on the flavour changing cross-section via neutral currents was set at 0.55pb 95% confidence level .
q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

In eqey colliders such as LEP searches for new
physics can be made with high sensitivity in places

Ž .where the expected Standard Model SM contribu-
tions are small. Events where all or most particles
are grouped in one direction in space, in a mono-jet

Žtype topology, with one isolated lepton charged or
.neutral , are a good example of such processes. SM

extensions related to leptoquark models or single top
production via Flavour Changing Neutral Currents
can have such a signature. In this paper we report on
a topological search for events in these two channels.

Leptoquarks are coloured spin 0 or spin 1 parti-
cles with both baryon and lepton quantum numbers.
These particles are predicted by a variety of exten-
sions of the SM, including Grand Unified Theories
w x w x w x1 , Technicolor 2 and composite models 3 . They
have electric charges of "5r3, "4r3, "2r3 and
"1r3, and decay into a charged or neutral lepton
and a quark, L ™ l "q or L ™n q. Two hypothesesq q

are considered in this paper, one where only the
Žcharged decay mode is possible charged branching

.ratio Bs1.0 , and one, for leptoquark charges be-
low 4r3, where both charged and neutral decay
modes are equally probable. If the leptoquark does

Ž .not couple to the charged decay mode Bs0 then
these leptoquarks can not be produced singly in
eqey collisions. Leptoquarks may be produced
singly or in pairs at eqey colliders. For single
production, leptoquark mass limits can be set up to
almost the kinematical limit. For this reason only

1 On leave of absence from IHEP Serpukhov.
2 Now at University of Florida.

single leptoquark production is considered in this
analysis. The largest contribution to the production
cross-section at LEP is predicted to come from pro-
cesses involving hadrons coming from resolved pho-

w xtons 4 , radiated from the incoming beams, which
are treated using the Weizacker-Williams approxima-
tion. The corresponding Feynman diagram is shown
in Fig. 1 a. Decays of singly produced high mass
leptoquarks to a charged lepton are characterised by
a high transverse momentum jet recoiling against a
lepton. In the decay to a neutrino only the jet is
detected. The initial electron which scatters off the
quasi real photon is assumed to escape detection
down the beam pipe. Below the TeV mass range and
for couplings of the order of the electromagnetic
coupling, the leptoquarks should not couple to di-
quarks in order to prevent proton decay. They should
also couple chirally to either left or right handed
quarks but not to both, and mainly diagonally. This
implies that they should couple to a single leptonic
generation and to a single quark generation and
hence this measurement searches only for decays to
e and n .

The properties of leptoquarks are indirectly con-
w xstrained by experiments at lower energy 5 , by

w xprecision measurements of the Z width 6 , and by
w xdirect searches at higher energies 7–10 . The mass

of scalar leptoquarks decaying to electron plus jet
was constrained to be above 225 GeVrc2 using

w xTevatron data 7 . Limits on leptoquark masses and
y w xcouplings were set at HERA using the e p data 8 ,

giving M )216–275 GeVrc2. An excess of eventsLq

was found in the eqp data. The H1 collaboration
measured a jet-lepton invariant mass of these events
ranging from 187.5 GeVrc2 up to 212.5 GeVrc2.
Rare processes, which are forbidden in the SM, also
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Ž .Fig. 1. a The resolved photon contribution for single leptoquark
Ž . q yproduction and b single top production via FCNC in e e

collisions.

w xprovide strong bounds on the lrm ratio 11 ,Lq

where l is the leptoquark-fermion Yukawa type
coupling and m is the leptoquark mass.Lq

In the SM, Flavour Changing Neutral Currents
Ž .FCNC are absent at tree level. Neutral currents

q y Ž .such as e e ™ tc tu can be present at the one loop
w xlevel, but the rates are severely supressed 12 .

Flavour changing vertices are present in many
w xextensions of the SM like supersymmetry 13 ,

w xmulti-Higgs doublet models 14 and anomalous t-
w xquark production 15 , which could enhance the pro-

duction of top quarks. For instance, in the SM the
t™cZ branching ratio is around 10y13 while in the
context of a two Higgs doublet model without natu-
ral flavour conservation the rates can be higher by

w xmore than six orders of magnitude 14 , depending
on the chosen parameters. At tree level, single top
production is possible via FCNC anomalous cou-

q yŽ . w xplings e e ™ tc 15 . The corresponding Feyn-
Ž .man diagram is shown in Fig. 1 b . The t™cZ and

t™cg vertices are described by two anomalous
coupling constants k and k respectively. PresentZ g

w x Žconstraints from LEP–2 data were set 15 at m st
2 .175 GeVrc :

k 2 -0.176 , k 2 -0.533g Z

Ž .In single top production at LEP, the tc tu , pair
should be produced almost at rest as the top mass is
close to the centre-of-mass energy. The top quark
decays subsequently to a b quark and a W. Only

leptonic decays of the W are searched for in this
letter. It is an almost background free signature
characterised by one energetic mono-jet and one
isolated charged lepton.

2. The DELPHI detector and data samples

A detailed description of the DELPHI detector, its
performance, the triggering conditions and the read-

w xout chain can be found in Ref. 16 . This analysis
relies on the charged particle detection provided by
the tracking system and energy reconstruction pro-
vided by the electromagnetic and hadronic calorime-
ters.

The main tracking detector of DELPHI is the
Time Projection Chamber, which covers the angular
range 208-u-1608, where u is the polar angle
defined with respect to the beam direction. Other
detectors contributing to the track reconstruction are

Ž .the Vertex Detector VD , the Inner and Outer De-
tectors and the Forward Chambers. The VD consists
of three cylindrical layers of silicon strip detectors,
each layer covering the full azimuthal angle.

Electromagnetic shower reconstruction is per-
formed in DELPHI using the barrel and the forward
electromagnetic calorimeters, including the STIC
Ž .Small angle TIle Calorimeter , the DELPHI lumi-
nosity monitor.

The energy resolutions of the barrel and forward
electromagnetic calorimeters are parameterized re-

'Ž .spectively as s E rE s 0.043 [ 0.32r E and
'Ž .s E rEs0.03[0.12r E [0.11rE, where E is

expressed in GeV and the symbol ‘[’ implies addi-
tion in quadrature.

The hadron calorimeter covers both the barrel and
forward regions. It has an energy resolution of

'Ž .s E rEs0.21[1.12r E in the barrel.
The effects of experimental resolution, both on

the signals and on backgrounds, were studied by
generating Monte Carlo events for the possible sig-
nals and for the SM processes, and passing them
through the full DELPHI simulation and reconstruc-
tion chain.

The leptoquark signal was generated for different
w xmass values using the PYTHIA generator 17 . The

leptoquark production cross-section was taken from
w x18 .
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Ž .The tc u signal was implemented in the PY-
w x Ž .THIA generator 17 by producing a top and c u

quark pair and allowing the top quark to decay into a
b quark and a W boson. A singlet colour string was

Ž .formed between the b and c u quarks.
Bhabha events were simulated with the Berends,

w xHollik and Kleiss generator 19 . PYTHIA was used
to simulate eqey™tqty, eqey™Zg , eqey™

WqWy, eqey™W "e .n , eqey™ZZ, and eqey

™Zeqey events. In all four fermion channels, stud-
w xies with the EXCALIBUR generator 20 were also

Ž .performed. The two-photon ‘‘gg ’’ physics events
w xwere simulated using the TWOGAM 21 generator

for quark channels and the Berends, Daverveldt and
w xKleiss generator 22 for the electron, muon and tau

channels.
Data corresponding to an integrated luminosity of

47.7 pby1 were collected at a centre-of-mass energy
's of 183 GeV.

3. Event selection

This analysis looks for events with one energetic
mono-jet. Leptoquark decays to a charged lepton and
tc decays also require an isolated charged lepton.

Ž .The recoil electron in Fig. 1 a is expected to pass
undetected down the beam pipe while the products

Ž . Ž .of the recoil X in Fig. 1 a and the c-quark in Fig.
Ž .1 b are of low energy and are absorbed into the

mono-jet or lepton.
Charged particles were considered only if they

had momentum greater than 0.1 GeVrc and impact
parameters in the transverse plane and in the beam
direction below 4 cm and 10 cm respectively. Neu-
tral clusters were defined as energy depositions in
the calorimeters unassociated with charged particle

Ž .tracks. All electromagnetic hadronic neutrals of
Ž .energy above 100 MeV 1 GeV were selected. In

the present analysis the minimum required charged
multiplicity was six.

Charged particles were considered isolated if, in a
double cone centred on their track with internal and
external half angles of 58 and 258, the total energy
associated to charged and neutral particles was be-
low 1 GeV and 2 GeV respectively. The energy of
the particle was redefined as the sum of the energies
of all the charged and neutral particles inside the

inner cone. This energy was required to be greater
than 4 GeV. No other charged particle was allowed
inside the inner cone.

Energy clusters in the electromagnetic calorime-
ters were considered to be from photons if there
were no tracks pointing to the cluster, there were no
hits inside a 28 cone in more than one layer of the
Vertex Detector and if at least 90% of any hadronic
energy was deposited in the first layer of the hadron
calorimeter. Photons were considered to be isolated
if, in a double cone centred on the cluster and having
internal and external half angles of 58 and 158, the
total energy deposited was less than 1 GeV. The
energy of the photon was redefined as the sum of the
energies of all the particles inside the inner cone and
no charged particles above 250 MeVrc were al-
lowed inside this cone.

ŽAll charged and neutral particles excluding any
.isolated charged lepton, if present were forced into

w xone jet using the Durham jet algorithm 23 . The jet
was classified as charged if it contained at least one
charged particle.

A detailed description of the basic selection crite-
w xria can be found in Ref. 24 . Isolated charged parti-

cles were identified as electrons if there were no
associated hits in the muon chambers, if the ratio of
the energy measured in the electromagnetic
calorimeters, E, to the momentum measured in the
tracking chambers, p, was larger than 0.2 and if the
energy deposited in the electromagnetic calorimeters
by the lepton candidate was at least 90% of the total
energy deposited in both electromagnetic and
hadronic calorimeters.

The following criteria were applied to the events
Ž .level 1 :
Ø the total visible energy was required to be larger

'than 0.2 s ;
Ø events with isolated photons were rejected;
Ø the momentum of the monojet was required to be

larger than 10 GeVrc;
Ø in channels with one isolated charged particle its

momentum had to be greater than 10 GeVrc; for
the leptoquark search exactly one isolated charged
particle was required in the event; for the FCNC
search at least one charged isolated particle was
required.
After this selection, more specific criteria were

Ž .applied level 2 :
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Ø Events were required to have only one jet with
Ž . w xthe Durham resolution variable y 23 in thecut

transition from one to two jets smaller than 0.09.
Ø The monojet polar angle had to be between 308

Ž . Ž .208 and 1508 1608 for the leptoquark search
Ž .for the FCNC search .

Ø The ratio between the monojet electromagnetic
energy and its total energy had to be smaller than
0.9. This removes most Bhabha events.

Ø The sum of the transverse momentum of the
Žcharged particles in the jet relative to the event

.thrust axis normalized to the total visible mo-

Ž . Ž . Ž .Fig. 2. Leptoquark search: a the y variable distribution for neutral decays level 1 , b the y variable distribution for charged decayscut cut
Ž . Ž .level 1 , c the ratio between the energy deposited in the electromagnetic calorimeters by the lepton candidate and the total energy

Ž . Ž . Ž . Ž .deposited in both electromagnetic and hadronic calorimeters level 2 , d the lepton polar angle level 2 and e the angle between the jet
Ž .and the lepton level 2 . The dots show the data and the shaded region shows the SM simulation. The dark region is the expected signal

behaviour for a leptoquark mass of 120 GeVrc2. The vertical arrows show the cut used to select events. The accepted or rejected region is
also shown.
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Table 1
Number of selected data events and expected SM contributions for
the charged and neutral decay modes at different levels of selec-
tion criteria

Leptoquark FCNC

charged decay neutral decay charged decay
Ž . Ž . Ž .data SM data SM data SM

Ž . Ž . Ž .level 1 537 501"12 3159 2917"28 572 542"12
Ž . Ž . Ž .level 2 76 64"4 4 2.6".7 101 96"5
Ž . Ž . Ž .level 3 1 1.1".5 1 1.0".4 0 1.1".4

mentum had to be lower then 0.17. This cut
reduces the contamination from semileptonic de-
cays of WW pairs.
In the case of the leptoquark neutral decays the

y criterion is the most effective for distinguishingcut

signal from background. This is illustrated in Fig. 2
Ž .a where the dots show the data, the shaded region
the SM simulation and the dark region the expected
signal behaviour. The same distributions are shown

Ž .in Fig. 2 b for the leptoquark charged decays.
Ž .Additional criteria level 3 were applied in order

to reduce the contamination from background events,
mostly qq and WW. These criteria were different for
the different channels:
- For the leptoquark charged decay mode it was

required that:
Ž .i the lepton was identified as an electron and its

polar angle had to be between 308 and 1508;
Ž .ii the angle between the electron and the mono-

jet had to be larger than 908.
- For the leptoquark neutral decay mode, where the

contamination of qq is higher, all particles were

Ž . Ž . Ž . Ž . Ž .Fig. 3. FCNC search: a the lepton polar angle, b the jet-lepton angle, c the b-tag variable see text and d the missing momentum
polar angle. The dots show the data and the shaded region shows the SM simulation. The dark region is the expected signal behaviour. The
vertical arrows show the cut used to select events. The accepted or rejected region is also shown.
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also forced into two jets, and the following addi-
tional criteria were applied:
Ž .i the angle between the two jets had to be

smaller than 1558;
Ž .ii the momentum of the second jet had to be

smaller than 10 GeVrc, whenever the angle
between the two jets was larger than 608.

- For the single top production:
Ž .i the polar angle of the most energetic lepton

had to be between 208 and 1608, and the
angle between the lepton and the monojet
had to be between 158 and 1658;

Ž .ii events with a B hadron decay were selected
w xby requiring the b-tag variable 25 to be

below 0.06;
Ž .iii the polar angle of the missing momentum

had to be between 208 and 1608.
In Table 1 the number of events which survived

the different levels of selection is shown, together
with the expected SM background. The WW and qq
events are the main source of background. At level 3
the expected background contribution from WW and
qq events is: for the leptoquark neutral decay mode,
0.12"0.12 and 0.46"0.33 respectively; for the
leptoquark charged decay mode 0.12"0.12 and
0.69"0.4 respectively; for the FCNC 0.49"0.25

Ž . Žand 0.23"0.23 respectively. Fig. 2 c shows at
.level 2 , for the leptoquark search, the ratio between

the energy deposited in the electromagnetic
calorimeters by the lepton candidate and the total
energy deposited in both electromagnetic and

Ž .hadronic calorimeters, d the lepton polar angle and
Ž .e the angle between the jet and the lepton. The dots
show the data and the shaded region shows the SM
simulation. The dark region is the expected signal
behaviour for a 120GeVrc2 leptoquark mass. No
upper bound was imposed in the jet lepton angle to

Žallow good signal efficiency up to threshold where
.the jet and the lepton are essentially back to back .

Ž .However the selection on Fig. 2 c removes almost
Ž .all the SM background on Fig. 2 e .

Ž . Ž .Fig. 3 shows at level 2 , for the FCNC search, a
Ž . Ž .the lepton polar angle, b the jet-lepton angle, c

w x Ž .the b-tag variable 25 and d the missing momen-
tum polar angle. The dots show the data and the
shaded region shows the SM simulation. The dark
region is the expected signal behaviour. A good
agreement is observed.

4. Results for leptoquarks

Only first-generation leptoquarks were searched
Ž " .for in this analysis L ™e q, L ™n q . As dis-q q e

cussed previously, the highest contribution to the
production cross-section relevant for this search
comes from the resolved photon contribution. The

w xGluck-Reya-Vogt parameterization 26 of the parton¨
distribution was used. Since the photon has different
u-quark and d-quark contents and the production

Ž .2 Žcross-section is proportional to 1qq where q is
.the leptoquark charge , leptoquarks of charge qs

Žy1r3 and qsy5r3 as well as leptoquarks of
.charge qsy2r3 and qsy4r3 have similar pro-

w xduction cross-sections 18 . The cross-sections used
here were calculated within the assumption above.

4.1. Charged decay mode

In this channel one event was found in the data at
's s183 GeV and the expected SM background was
1.1"0.5.

The leptoquark invariant mass estimated from the
energies and directions of the jet and lepton is 89.9
GeVrc2. The mass resolution ranges from 15
GeVrc2 to 25 GeVrc2 for leptoquark masses from
100 GeVrc2 up to the kinematical limit.

Within the low statistics there is good agreement
between data and SM predictions.

The efficiency was found to be between 22% and
30% for leptoquark masses in the range from 100
GeVrc2 up to the kinematic limit.

4.2. Neutral decay mode

In this channel one event was found and the
expected SM background was 1.0"0.4.

The leptoquark invariant mass estimated from the
monojet transverse momentum is 72.1 GeVrc2. The
mass resolution ranges from 20 GeVrc2 to 34
GeVrc2 for leptoquark masses from 100 GeVrc2

up to the kinematical limit. Within the low statistics
there is good agreement between data and SM pre-
dictions.

The efficiency was found to be between 20% and
41% for leptoquark masses in the range from 100
GeVrc2 up to the kinematic limit.
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4.3. Leptoquark mass and coupling limits

Limits were set on the leptoquark coupling pa-
w xrameter l 4 . These limits, which depend on the

leptoquark mass, are shown in Fig. 4 for both scalar
and vector leptoquarks of different types and for
charged decay branching ratios Bs1 and Bs0.5.
For Bs1 the invariant mass plot for the charged
decay mode was used to set the limits. For Bs0.5
the invariant mass plots of the charged and the
neutral decay modes were combined to set the limits.
Different values of the charged decay branching ratio
B, although theoretically not motivated, would imply
similar limits.

The lower limits at 95% confidence level on the
mass of a first generation leptoquark for a coupling
parameter ls 4pa are given in Table 2, where( em

different leptoquark types and branching ratios are
w xconsidered 27 . These limits are expected to change

at the level of some percent depending on the differ-

Fig. 4. 95% confidence level upper limits on the coupling l as a
Ž . Ž .function of the leptoquark mass for a scalar and b vector

Žleptoquarks B is the branching ratio of the leptoquark to charged
.leptons and q is the leptoquark charge .

Table 2
Ž 2 .Lower limits in GeVrc at 95% confidence level on the the

mass of a first generation leptoquark for a coupling parameter of
ls 4pa' em

Bs0.5 Bs1.0

qs1r3 qs2r3 qs1r3,5r3 qs2r3,4r3

scalar 161 – 161 134
vector – 149 171 150

ent theoretical predictions for the total production
w xcross section 28 .

5. Results for top-charm FCNC

In the present analysis no events were found
while the expected SM background is 1.1"0.4. The
detection efficiency, including the W leptonic

Ž .branching ratio, is 11.5"2.0 %.
With the present luminosity of 47.7 pby1, an

q yupper limit on the e e ™ tc Flavour Changing
Neutral Current total cross-section can be set at 0.55

Ž .pb 95% confidence level .
This value can be translated into a limit on the

anomalous coupling constants k and k , accordingg Z
w xto the parametrization described in Ref. 15 . It was

q y q yassumed that both channels e e ™ tc and e e ™

tu contributed to the total cross-section. With a
luminosity of 47.7 pby1 the 95% confidence level
upper limit on k is 2, for a k value of zero, andg Z

the corresponding upper limit on k is 1.5, for a kZ g

value of zero. The results are not yet competitive
w xwith other experimental results 29 .

6. Conclusions

A search for first generation leptoquarks was
performed using the data collected by the DELPHI

'detector at s s183 GeV. Both neutral and charged
decay modes of scalar and vector leptoquarks were
searched for. No evidence for a signal was found in
the data. Limits on leptoquark masses were set rang-
ing from 134 GeVrc2 to 171 GeVrc2 at 95% confi-
dence level, assuming electromagnetic type cou-
plings.
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A search for tc flavour changing neutral currents
was also performed. No signal was found in the data.
A limit on the FCNC cross-section was set at 0.55 pb
Ž .95% confidence level .
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