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MATHEMATICAL METHODS

VARiATIONAL APPROACH TO QCD AND ITS APPLICATIONS
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A nonperturbative expansion technique in quantum field theory, variational perturbation theory, and some its
applications are reviewed. Within this method a quantity under consideration is represented by the so-called
variational or “floating” series, the convergence properties of which can be controlled by special parameters. It
is shown that in the case of QCD a new small expansion parameter is appeared and obeyed an equation whose
solutions are always smaller than unity for any value of the initial coupling constant: The method is applied to

the inclusive semileptonic decay of the t-lepton.

-

1. INTRODUCTION

The perturbative expansion is a powerful tool for
performing calculations in quantum chromodynamics.
Perturbation theory with renormalization group im-
provement has been widely applied to the description
of various processes.As is well-known, perturbative se-
ries for many interesting models including realistic
models are not convergent. Nevertheless, at small val-
ues of the coupling constant these series provide a use-
ful information. However, even in the theories with a
small coupling constant there exist problems which
cannot be solved by perturbative methods. Also, many
problems of quantum chromodynamics require nonper-
turbative approaches.

A lot of approaches have been devoted to the devel-
opment of nonperturbative methods. There have been
approaches that are not directly based on the perturba-
tive series. Many of nonperturbative approaches make
use of a variational procedure for finding the leading
contribution. However, in this case there is no always
an algorithm of calculating corrections to the value
found by a variational procedure, and this makes diffi-
cult to answer the question how adequate is the so-
called main contribution to the object under investiga-
tion and what is the range of applicability of the ob-
tained estimations.

Therefore, useful approaches to the study of the
nonperturbative structure of quantum field theory are
the methods that combine an expansion of a given
quantity in a series that defines the algorithm of calcu-
lating the correction with an optimizing procedure. The
nonperturbation Gaussian effective potential for a
quantum system has been constructed by an approach
of that sort in [1-4]. There exist the various optimizing
_ procedures. In [5, 6], for example, the principle of min-

imal sensitivity has been applied to the third-order cal-

culation of R . .. Different ways of constructing the
variational procedures for scalar models of quantum

field theories are discussed in [7-9]. However, even if

- the algorithm of calculating corrections, i.e. terms of a

certain approximating series, exists, it is not still suffi-
cient. Here of fundamental importance are the proper-
ties of convergence of a series. Indeed, unlike the case
when even a divergent perturbative series in the weak
coupling constant approximates a given object as an as-
ymptotic series, the approximating series in the ab-
sence of a small parameter should obey more strict re-
quirements. Reliable information in this case may be
obtained Aonly on the basis of convergent series.

We shall consider the method of a series construc-
tion with the aid of a variational procedure of the har-

* monic type. It has been observed empirically in [10]

that the results seem to converge if the variational pa-
rameter is chosen, in each order, according to the prin-
ciple of minimal sensitivity. This “induced conver-
gence phenomenon” is discussed in detail in [11]. In
[12] the proof of convergence of an optimized 5-expan-
sion is given in the cases of zero and one dimensions.
The proof of convergence of variational series in the
case of anharmonic procedure is given in [8]. Here, we
discuss a method which allows one to systematically
determine the low-energy structure in quantum chro-
modynamics. We shall construct the expansion which
is based on a new small parameter and apply this meth-
od to the nonperturbative renormalization group analy-
sis in quantum chromodynamics. Applications to the
definition of the QCD running coupling in the time-like
domain and to the semileptonic decay- of the 1-lepton
will be considered. The main results concerning the
method of variational perturbation theory (VPT) and
some its applications can be found in the papers [1, 6—
9] and [13-18] (see also references therein).
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2. VARIATIONAL PERTURBATION THEORY
IN QCD
Let us write down the QCD action functional in the
form
S(A, g, 9) = S,(A) +S5,(q) +S,(9) +

+8S53(A, 4, 9) +8'S(A4),
where S,(4), S,(q), S»(@) are free action functionals of
the gluon, quark, and ghost fields, respectively; the
term S,(A) also contains a term fixing the covariant ¢.;-
gauge. The term S5(A, ¢, ¢) describes the Yukawa in-
teraction of gluons, gluons with quarks, and gluons
with ghosts

S3(A, g, 0) = 53(A) +855(A,9)+55(A, 9).  (2)

The terms S3(A), S3(A, g) and Ss(A, @) generate, respec-
tively, three-line vertices, (AAA), (§Aq) and (QA®);
whereas the term S (A) in (1), four-gluon vertices
(AAAA). We will transform the latter term by introduc-
ing auxiliary fields X, [14]. Upon the }-transforma-
tion, the diagrams of the Green functions will consist
only of diagrams of the Yukawa type. In addition to the
usual three-line vertices of QCD vertices of the type
AXA will appear. Thus, a certain Green function of
QCD can be represented in the following functional in-
tegral forin

G(...) = _[DxDQCD(_...)exp{i[S(A,x),+

+52(q) + 55(9) + Sx(X) + 853(A, ¢, 9) 1},

where ‘ o .

1 a -1, jab b ~

S(A, 1) = 5[dxdyA; (DD (x, YO IWAVD) @)
with the gluon propagator D(x, ylx) in the x-field

(D7 (6 YT = [(- 8, +3,9,08% +

+gJ2f" "‘x;v + gauge terms |3(x - y)

and the term (...) is a set of v gluon, quark and ghost
fields. Integration measure Doy, in (3) defines standard
integrations over gluon, quark, and ghost fields.

Following the ideas of the VPT method, we intro-
duce auxiliary parameters { and & and rewrite the ac-
tion in (3) in the form

S(A 4,9, %) = So(A, 4,9, %) +5,(A, 4,9, %), (6)
where

So(4, 9, ®x) = CIS(A, %) + Sx(9) + Sx(@)1 +
+ES,00;
S:(A 9 0,%) = gS;(A q, <P) - ~-l)><
x [S(A, X)"‘Sz(‘I)"‘Sz(‘P)] (€ - DS,Q).

(1)

3

-

@
(8)
- N 11
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The exact value of the quantity under consideration,
for instance, the Green function does not depend on the
parameters { and €. However, the approximation of that
quantity with a finite number of terms of the VPT se-
ries, that results from the expansion in powers of the ac-

tion S, (A, g, @, ), does depend on those parameters.

We can employ the freedom in the choice of the param-
eters { and § for our aim, construction of a new small
parameter of the expansion.

It is more convenient to rewrite S, (4, g, ¢, %) in (7)
by replacing {' by [1 + k(- 1)]and &' to [1 + k(™ -
- 1)] and putting x = 1 at the end of calculations. In this
case, any power of the expression ({! — 1)[S(4, %) +
+ 8x(q) + Sy (@)] + (€' - 1)S5()) appearing in the factor
of the exponential upon expanding the Green function
in powers of (8), can be obtained by differentiating with
respect to the parameter x as many times as required.
Then, the integrand in the factor of the exponential will
contain only the powers of the action gS;(4, g, ¢) that
generate the QCD Yukawa diagrams with modified
propagators defined by appropriate quadratic forms in
the new “free” action S, . The VPT series for the Green

function is given by

a nklk
G(-) = 3, Z (n- k)'( ax) k>

a k=3D0

XJDXDQCD(---)[853(A,q,(p] X 9

with the above replacement in Sy (4, g, ¢, %). Further,

it is convenient to rescale the fields

' (A,q,tp)

(4,9,9)= ,
SN} R )
. X

As a result, the propagators acquire the standard form
and only the diagram vertices get modified. Integrating
then over the field y we obtain for the Green function

G(...) = 2 Z « (n- k)'( aax)n' klld

x——1 V,JDQC.,( DgsSx(4, 4, 91"

[1L+x(@E-1)]
x exp{ilSo(A, ¢, @) + g2S(A)]}.

Here SO(A g, 9) no longer contains the term describing
the field x and represents a usual functional of the QCD

(10)
. x=

k (ll)
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" free action, whereas g; and g, in the Yukawa and four-
gluon vertices are defined as. follows:
I R
[+ - DI
g

84 = _ .

[1+xE -11"
~ Analysis of the structure of the VPT series shows

\  &3
a2

expansion parameter if we put & = £ and if the param-
eter { is connected with the coupling constant by the
equation '

_ & _1_d

S ¢ny? Ca-a)
where C is a positive constant. As follows froihn (13), at
any values of the coupling constant g, the new expan-
sion parameter a obeys the inequality 0 <a < 1.

We present the result of the VPT expansion for the
Green functions with an accuracy of O(a’) that allows

us to carry out calculations at the two-loop level in this
approach. Writing the Green functions in the form

G(...) = [Doco(--)V(A, 4, 9)exp(iSy)
and using equations (1 1)—-(13),Vwe obtain

V = I+aA3+qz[%A§+A4+%A3]+

, a = l—C’ (13)

(14)

+ a’[éA;‘ + %Ai +A3A, 434+ %5,43] +

1 ,4 1,2 1,2
+ a“[izA3 +5A0+3ATA+

3 9,
ZA;' + EA’A" +

+ 3A§ +6A,+ %%A,] +

s 1,5 1.3 1 2 1 .4 2 .
+a [mA3 +2AA 4 AL+ TAT 4 3ATA,+ (15)

+34%4 :;%A; + %A A +5A2+ 104, + %55;"‘3] +

o[1 .6 1 4, 1.,2,2 1,3 1,5
+a [TzT)A3 42 AT+ ZASAL+ AL+ AT
21 ,2 143 .3

7A4 +‘3—2'A3+

+

+%A§A4+ -14§A3Af + %A: + %I-Agm +

429 15,2 693 ;
$T2A A+ AT+ 154+ 2—53A3] +0(d"),

where A; = 4T(iS;)/ J/C , Ay = (AT)XiS,C.
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Following [15] consider-a connection between the
perturbative and nonperturbative regimes of the run-
ning coupling constant . (©@?). To fix the parameter C
we will use nonperturbative information from meson
spectroscopy and derive a,,(Q?) in the perturbative re-
gion at large Q2. In other words, we will find the con-
nection between the universal tension ¢ in the linear
part of the quark—antiquark static potential Vy,(r) = or,
which can be determined from meson spectroscopy,

D _ and the description of high energy physics. If, as usual,
[14, 15] that we will succeed in constructing the small -

we assume that the quark potential in momentum space
can be written as V(¢?) = 1610 (¢*)/3¢% where (g%
describes both large and small momentum, and that
0,(¢?) has the singular infrared asymptotics o.,(¢%) ~ g2, -
we obtain, by taking the three-dimensional Fourier
transform, the large-distance linear potential in coordi-
nate space. The corresponding singular infrared behav-
ior of A = q,/(4%) conforms to the asymptotics of the
B-function: f(A) —= —A for a large coupling constant.
In the framework of this approach consider the
functions §@, ™, @, and B® that are obtained if we
take into consideration the terms O(a?), O(a®), O(a*),
and O(a®) in the corresponding rénormalization con-
stant Z,. As has been shown [15], the values of

- —B®(A)/A as functions of the coupling constant for pa-

rameters C,=0.977,C;=4.1, C;, =104, and C5=21.5
go to 1 at sufficiently large A. The increase of C; with
the order of the expansion is explained by the necessity
to compensate the high-order contribution. A similar
situation takes place also in zero- and one-dimensional
models. The behavior of the functions —B®P(A)/A gives
evidence for the convergence of the results, in accor-
dance with the phenomenon of induced convergence.
At large cou})ling, —B®(A)/A = 1, which corresponds to
0,(0%) ~ 07 at small Q2.

The value of the coefficient o in the linear part of
the quark—-antiquark static potential Vy;,(r) = oris ¢ =
= 0.15-0.20 GeV2. At a small value of Q? the corre-
sponding behavior of a,(Q?) is (0% = 36/2Q%. Here
we will use this equation at a certain normalization
point O, and the value 6 = 0.1768 GeV2 which has been
obtained in [19]. The renormalization group method
gives the following equation for the Q%-evolution of the

-expansion parameter a.

Q* = Qjexpld(a, N;) -~ 0(ag, NJ)] (16)
with '
p dA
oa Np) = [35. a7

In an appropriate region of the momentum, the val-
ue of o(Q?) is almost independent of the choice of O,
and lies in the interval 0.15-0.20 GeV2 This result
agrees with the phenomenology of meson spectrosco-
py. Thus, we have found all the parameters and can
now consider the behavior of the effective coupling
constant at large Q%. For example, we find o g(m;) =
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= 0.126. It should be stressed that we have obtained this
result by evolution of the effective coupling starting

from a very low-energy scale. Taking into account this’

fact the value of a(m;) obtained in such a way seems
to be quite reasonable.

3. INCLUSIVE DECAY OF THE t LEPTON

In this section we will concentrate on a description
of the inclusive decay of the T lepton taking into ac-
count renormalon contributions (for details, see [20]).
Consider the Adler D-function D(Q?) = —Q?dI1/dQ?
corresponding to the vector hadronic correlator in the
massless case. The two-loop perturbative approxima-
tion is given by D(z, A) = 1 + 4A(?), where ¢t = Q*/p2.
Standard renormalization group improvement leads to

the substitution Au?) —= A(r, A), which implies a
summation of the leading logarithmic contributions.
However, due to the ghost pole of the running coupling

atQ?= Aan this substitution breaks the analytic prop-

erties of the D-function in the complex ¢? = -Q? plane,
namely that the D-function should only have a cut on
the positive real ¢* axis. We may correct this feature by
noting that the above solution of the renormalization
group equation is not unique. The general solution is a
function of the running coupling with the asymptotic
~ behavior 1 + 4A, for small A. To maintain the analytic
properties!) of the D-function. we can write it as the
dispersion integral of R(s) = (1/®)ImIl(s + i€), and use
RG improvement on the integrand rather than D itself.
This method leads to D(z, ) = 1 + 4A (¢, A). The Borel
representation of A g(z, A) has the form

A, M) = | dbe ™V B(b), (18)

with B(b) = T(1 + bBo)T(1 - bBy). Here By = 11 — 23N,
is the first coefficient of the B-function, and N is the
number of active flavors. Thus, in the Borel plane there
are singularities at b, =-1,-2, ... and bfy =1, 2, .

corresponding to ultraviolet and mfrared (IR) renorma-
lons, respectively.

The first IR singularity at b = 1 is probably absent
since there is no corresponding operator in the operator
product expansion. Although this issue is not currently
settled, it seems reasonable to assume that the first IR
renormalon occurs at b = 2/f,, and we would like to use
this property of the operator product expansion as an
additional constraint on the choice of solutionto ‘the
renormalization group equation.' This can be simply
achieVed (by jlidicious_integration by parts), and as a

H Reeent.ly in'[21, 22] it has been shown that tequmng the correct
analytic pmpertm for the nunning coupling leads.to the nonper-

turbative power corrections of the form exp(—l/(l (Qz)ﬂo))
SIHEPHASI ®U3UKA oM 61
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result we obtain the following expression for Aeir:
At M) = [dro@—EEN )
5 1+ A(kt,A)ByInt

in which the factor k reflects the renormalization
scheme ambiguity and the function w(t) = 2t/(1 + 1)
describes the distribution of virtuality usually associat-
ed with renormalon chains. The function B(b) in the
Borel transform of (19) has the form

B(b) = T(1 +bBo)T(2 - bBy)- (20)

Thus in this representation for A the positions of all
ultraviolet singularities remain unchanged but the first
IR renormalon singularity at b 1/B, is absent.

In order to render equation (19) integrable we must
combine this method with the nonperturbative a-ex-
pansion in which from the beginning the running cou-
pling has no ghost pole. Separating the QCD contribu-

tion to R.-ratio as A, and writting R, = Rf 1+ A),

where R? is the well-known electroweak factor, we ob-
tain the expression [20]

, M \
o -4

in which the factor k again parametnzes the renormal-

sz
- A—l—z-)l(ks), 1)

ization scheme and A= a*(1 + 3a)/C. In what follows

we shall use the MS scheme, in which k = exp(-5/3).

Note that the renorimalon representation obtained for
the coupling modifies the polynomial in the integral so

. . . . 3 2
that the maximum now occurs near s = (2/3)M .

exp _

Takmg as mput the experimental value of R,
=3.56+0.03 [23], three acuve quark flavours and the

variational parameter C=4.1, wefind a,(M )=0339%+

'+0.015 whlch differs significantly from that obtained

(0(M?) = 0.40 in leading order [18]) without the
renormalon-inspired representation for the coupling.
The method, applying the matching procedure in the
physical s-channel and using standard heavy quark
masses, leads to R, = 20.90 + 0.03, which agrees well
with experimentzil"data [23].

‘ 4 CONCLUSION

We have considered an approach to quantum ﬁeld
theory — the method of variational perturbation theory.
The original action functional is rewritten using some
variational addition and an expansion in the effective
interaction is made: Therefore, in contrast to many non-
perturbative approaches, in the VPT the quantity under -
consideration from the very beginning is written in the
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form of a series which makes it possible to calculate the
needed corrections. The VPT method thereby allows
for the possibility of determining the degree to which
the principal contribution found variationally using
some variational principle adequately reflects the prob-
lem in question and determining the region of applica-
bility of the results obtained.

The pos31b111ty of performing calculaﬁons usmg this
approach is based on the fact that the VPT; like stan-
dard perturbation theory, uses only Gaussian functional

quadratures. Here, of course, the VPT series possesses |

a different structure and, in addition, some of the Fey-
nman rules are modified at the level of the propagators

and vertices. The form of diagrams themselves does not
change, which is very important technically. The dia-.

grams contributing to the Nth order of the VPT expan-
sion are of the same form as those contnbutmg to the
Nth order of ordinary petturbatlon theory

The variational parameters arising in the VPT meth-
od allow the convergence properties of the VPT series
to be controlled. In {4, 8] has been shown that in the
case of the anharmonic variational procedure for the
scalar ¢* model there is a finite region of parameter val-
ues in which the VPT series converges for all positive
values of the coupling constant. For the harmonic vari-
ational procedure there are indications that VPT series
can also converge in the sense of the so-called induced
convergence, by fine-tuning the variational parameters
from order to order. Note also, that a possibility of con-
structing Leibnitz series in field models is interesting,
because, in this case, the first few terms of the series
can be used to obtain two-sided estimates of the sum of
the series, and existence of variational parameters
makes it possible to narrow these estimates from the
maximum amount in a given order of VPT (see [24]).

Here, we have mainly concentmted upon the appli-
cation of the method to quantum chromodynamics (see
also [25]), where the VPT idea leads to an expansion.
with a new small expansion parameter. This parameter
obeys an equation whose solution is always smaller
than unity for any value of the coupling constant.
Therefore, while remaining within the limits of appli-
cability of this expansion it is possible to deal with con-
siderably lower energies than in the case of perturba-
tion theory. An important feature of this approach is the
fact that for sufficiently small value of the running cou-
pling constant @, it reproduces perturbative predic-

tions. Therefore, all the high-energy physics is pre-
served in the VPT method. In going to lower energies,
where standard perturbation theory ceases to be valid,

= 1, the VPT running expansion parameter a re-
mams small and we do not find ourselves outside the
region of applicability of the method.
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