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In this report, in the framework of an analytical approach and with help of the generalized version of the Hur-
witz transformation the five-dimensional SU(2)-monopole model is constructed from the eight-dimensional
quantum oscillator. The Clebsh-Gordan expansion stimulated by the space gauge coupling, the hyperangle and
the radial parts of the total wave function, the energy spectrum of the charge-monopole bound system and the

corresponding degeneracy are calculated.

1. INTRODUCTION

This paper deals with the problem of monopole gen-
eration from oscillator-like systems, i.e. systems with a
potential chosen as “oscillator + anything”. In turn, the
mentioned problem is connected with the search for the
electromagnetic duality (ED) in the structure of Quan-
tum Mechanics (QM). The existence of QM-duality
seems important for two reasons. First, QM is a mathe-
matically more simple theory than the gauge theories,
so we have an excellent polygon for experience in ED.
Second, there appears a wide range of applications be-
cause of ED pretentions to realize accurate calculations
outside perturbation theory: according to ED, strongly
coupled gauge theories can be formulated in the form
of weakly coupled magnetic monopoles [1].

During the last years, the following machinery has

been developed for a monopole generation: Hurwitz-
like transformations applied to 2D, 4D and 8D quantum
oscillators transfer them into the charge-monopole
bound systems in R?, R3 and R, respectively [2—4]. In
two space dimensions the oscillator model was also
constructed which can be transformed into a charge-
monopole bound system with fractional statistics, inter-
polating the bosonic and fermionic limits [5). Thus, the
important extension of ED to the world of anyons is
achleved

‘Recently, the algebraic approach has been devel-
oped to clarify the relation between the 8D quantum os-
cillator and the charge-dyon bound system with the
SU(2)-monopole [6] . This approach is exhaustive, but

“rather abstract. We make here an attempt to fulfill this
gapz) by presenting the analytical approach that is more
explicit and hence more acceptable for understanding.
Special attention is given to the space-gauge coupling

and to the spectroscopy of the charge-dyon bound sys-
tem.

R 'l‘hfﬁamcular version of the problem was prewously considered
in .

D See also {2} where the analytical approach to the same problem
was presented more concisely.
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2. SU(2)-MONOPOLE

Let us recall the way used for passage from the 8D
oscillator to the 5D SU(2)-monopole. The initial sys-
tem is governed by the equation
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du, h
where u, € Ré, nu=0,1,.., 7, =uu,.

With the help of the special transformation’
u,

2 2 2 2 2 2 2
Xg = uo+u|+u2+u3—u4—u5—u6—

Xy = 2(ugly + U lUs — Uyl — Uslq),
Uug), (2)

X = 2lpltg + Uyly + Uslly + Uslts),

Xy = 2(uou5—u1u4+u2u7—-

Xy = 2(“0“7 — UyUg— Uglis + U3u4),
(uo + lul)(uz ’u3) i
Or = 2 (g —iuy)(uy + in;) € [0,2m),
2+ 2\12
BT = than( u;] € [os 15], (3)
uo + Uy '
_ i (uo+iu|)(u2+iu3)
Y= 2 ot )= ay) © )

we present R® as a direct product R’ ® S of the new
configuration space R® with the Cartesian coordinates
X; € (—oo, o0) and the intrinsic space §3 wnth the coordi--
nates a7, Br and ¥r. In the new coordinates, equation
(1) can be led to the form

(- zﬁa% -ﬁA; )

3) Formulae (2) are known as the Hurwitz transfonnauon (8]; 3 is
copied from [9].

=ey.(4
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Here r=(xx)"?andj=0,1,...,4 - P |

€ = -mo/8, ¢ =E/4 . )

The operators T, are the generators of the SU(2) group . -

and have the form

, Jd - . d cosOr 9
Tl = l(COSQTCOt BTE + sma,-m— .S—l-nE-a‘—Y;)’
7 =il si - d d sinar 9 ©)
2—t(smarcotﬁra - cosQL 3R, S‘“BraYr)
d
T= “5ay

The 5D vectors A° havé the form
1

Al = r(r+x )( ) 14, x‘th’xl.)’ *
1 .

A = O ),

A — (0, x5, —xy, X4, —X3).

r(r+x)

Every term of the triplet A commdes w1th the vector

potential of 5D Dirac monopol ) with a unit topological
charge and the line of singularity along the nonpositive

part of the x,-axis. The vectors A are orthogonal to
each other,

ab - 1(r-x)
AjAj = 2(r +xp) ¢
and also to the vector x = (xg, Xy, X;, X3, Xy).
We see that equation (4) describes the charge-dyon
system with the SU(2)-monopole.

By using the orthogonality condition for vectors A
we can transform equation (4) into
2
T )\y +

. am O 2
(As-zzA,T,,E TN

\ ™
e —
+-;)\|1 = 0.

3. LT-COUPLING
Let us note that

aa 2

Aj ax Tor(raxg) @

4)'I'ht?' SU(2)-monopole theory in R was constructed by Yang
10}).
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where
Li = (Dy(x) + Dy(x)],
’ i-z = %[DIS(x)+D42(x)]'
L = §[Du(x) + Dy(x)]
and

d ')
x,-s;; + xja—xi. -

Using these formulae we can transform equation (7) in-

_2 Tz)\v+

Dij(x) = -

®)

We see that equation (8) contains the LT-coupling term
demonstrating that we have no way to separate the
wave function dependence on R’ and $3.

Let us introduce in R’ the hypershperical coordi-
nates r € [0, ), 0 € [0,n], a € [0,2%),B e [0, 7], ye
€ [0, 4x) according to

xy = rcos@,

a+y
2

e

X, +ix, = rsinBcoste

21

. . - 2
Xy+ix, = rsmesmge

In these coordinates

_19d(4d 1 d(.3,0 4 .2
As—;za ( ar)+_r28in39%(810 656)——-—-2 — L,

r'sin"@
where
d d cosad
L= (cosoncotﬁa + sm(xaB mBa—Y)’
(. d d sinad
L, = 1(smacotl3§a— cosaﬁ—mé-i),
_ .0
LB = -lsa
and
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Let us introduce J, = L.+ .. Since I = L+ Ta+

+2L, T., equation (8) can be rewritten as

. zz ‘72
Ag—- - : v+
("’ r*sin*(6/2) r2c0s2(9/2)]

®

Ag = lai(g’_) + r_zsiln_aea%(sin’eé%). |
Emphasize that
(Lo, L} = ieg Lo, [T 1) = i€gs, T,
Qe ) = ey, d..
Introduce the separation ansatz
VY = ©(r, 8)G(a, B, ¥; oy, Br, Y1),

where G are the eigenfunctions of L*, 7° and J* with
the eigenvalues L(L + 1), T(T + 1) and J(J + 1). If this

is substituted into equation (9), the differential equation

for the function ®(r, 0) immediately follows
L(L+1) J(J+1)
-(Are"z.z T 2 )‘D
rsin"(6/2) r‘cos'.(0/2)

dm( €.
'l-—2 €+—|d = 0.
ﬁ r

Because of an LT-ihteractio-n;:We look for the function
G in the form o ‘

G=_ Y (JM|L, m; T, 0Dk (o, B, V)DL (ctr, By Y1),

M=m+:

where (JM|L, m; T, ¢t) are the Clebsh-Gordan coeffi-
cients and D,f’,,,,- and. D,T, are the Wigner functions.

4. HYPERMOMENTUM
Pick up the function &(r, 8) of the form
@(r,0) = R(r)Z(6).
Then, equation (10) is separated into
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1 d(.3.dZ\ 2L(L+1)
- a ele | )
3 de(s“‘ de) 1—cos® :
sin" @ ' (11)
2J(J +1) _
- g Z+MA+3Z = 0

and a purely radial equation

1d(dR)_MA+3) uf ej) }
,4dr('d) PR+ SR =0 (2)

r
with the separation constant A(A + 3) equal to the non-
negative eigenvalues of the hypermomentum operator.

It is convenient to make in equation (11) a change of
variables, y = (1 — cos0)/2 and write

Z(y) = y'(1-yY' W().
Substituting this into equation (11), we obtain the hy-
pergeometric equation
2
y(1 —y)g—r+ [c—(a+b+ l)y]iv—v—abW =0

dy dy

witha=-A+L+J,b=A+L+J+3,c=2L+2.
Thus, we find that

Z(8) = (1-cos0)“(1 + cos8)’ x

xsz(—7»+J+L,7»+J+L+3; 2L +2; 1-cosB -;089).
This solution is well behaved at 8 = =t if the series ,F,
terminates, i.e.

-A+J+L = -n,,

where ng=0,-1, 2, ...

5. ENERGY LEVELS
Let us now tumn to the radial equation and introduce
the function
() = “r*R).

Itis easy to verify thai the equation for f{r) has the form
of the confluent hypergeometric equation

2

d d,
z;i-;—{+(c—z)j£—af = Q,

where z=2kr, K = Y-2me/h°, c=2A + 4, a= A +2—
= 1/xrq and ro = #2/me?. For the bound state solutions
(e<0) ‘

) }v+2— I/Kro = —‘n, = 0, —'l,—2, cee

and therefore
: 4
T me

Ey = ~ ’
285 (N/2 +2)°
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where

N = 2(n,+ 1) = 2(n, +ng+J +L).

6. DEGENERACY

For fixed T, the energy levels e,f, do not depend on
L, J and A, i.e. are degenerate. The total degeneracy is

gy = QT+1)Y. Y L+ 1Y (2J+1).
' A L J :

Since X=n9+.l+'L‘and N=2(n,47~), it follows that
(forfixed Nand HDA=T,T+ 1, ..., N2 Then, Ly,, =
= A — Jopin (Lonax 1 fixed) and therefore L, = A — (Lipax —
-DorL,,, =+ T2 Thus,
| A-T
N2 T2
gy = (2T+1)2 Y (2L+1)2(2J+1)

A=T L=0,12
Now, comparmg IL—TISJSL+TandJ$l—Lwe
conclude that

J=I|L-1N,IL-T1+1,...,L+T, for
1 .7» T
L—OZ 2
J=|L-T,|IL-TI+1,..,A-L, for
L= A-T+1 A+T
a— 2 9 vy 2

and rewrite the formula for g; in a more explicit form

A-T
N2 2 L+T

gv=Q2T+DY1 Y, QL+1) Y, (2J+ D)+

A=T|L=0,122 J=|L-T
AeT
2 A-L

+ Y@L+ Y (2J+D)
A-T+1 J=L-T

Finally, after some tedious calculations we obtain the
following result:

r _ 1 o(N N
gN = 12(2T+l) (5 T+l)(2 T+2)x

x{(g—T+2)(§—T+3)+2T(N+5)}.

For T=0and N = 2n (even) the r.h.s. of the last formula
is equal to (n + 1)(n + 2)*(n + 3)/12, i.e. to the degener-
acy of pure Coulomb levels. Further, T=0, 1, ..., Nf2
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and T=1/2,3/2, ..., N/2 for even and odd N, respective-
ly. Therefore,
- 7 (N+7)
T !
8N = z En = W—-
T=0,17

i.e. we obtain the degeneracy of the energy levels for
the 8D isotropic quantum oscillator.

7. CONCLUSIONS -

Formulae (2) and (3) together with the ansatz (5)
form the duality transrormation mapping of the 8D
quantum oscillator into the charge-dyon system with
the SU(2)-monopole. Let us stress the meaning we use
for the term duality. Both equations (1) and (4) contain
two quantities, ® and E. For equation (1) ® is the fixed
parameter (coupling constant) and E is the quantity to
be quantized (energy of the 8D oscillator). On the con-
trary, as it is easy to see from (3), for equation (4) E is
a fixed parameter (Coulomb coupling constant) and ®
is the quantity to be quantized (@? is the energy of the
final system). Thus, the 8D quantum oscillator and the
charge-dyon bound system with the SU(2)-monopole
are not identical, but dual to each other.

This type duality is valid not only for the 8D, 4D and
2D oscillators, but also for oscillator-like systems with
the potentials

V(') = co+ ey’ + W),

where W(u?) has a polynomial form
Wty = 2 cu.

For such modified potentials, the ansatz (5) can be re-
written as

€ =——, € =

Thus, the value of the function V(i?) at % = 0 contrib-

utes to the Coulomb coupling constant 2. It is also easy
to verify that the Lh.s. of equation (4) acquires the ad-
ditional term (- W(r)/4r).

Appendix

Consider the normalization of the wave function
y(x, 07, Br, Y- A standard calculation shows that the
radial wave function R(r) normalized by the condition

Jr‘[R,,’,'(r)]zdr =1
0
has the form
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4 1

RII,A( r) = 5712

x (2xr)*e ™ F(-n,; 2\ + 4; 2xr).
The full wave function
¥ = CirR, 2 (1) Z3(8) Gy (0 B, Y 0z, B, V)
is normalized by the condition
[iwav = 1,
where
dv = r'sin’ 0drdedQdQ;
and

Q = é—sianBdady, dQ, = %sinﬁrdﬁrda,dy,.
Using the formula

2F,(—n,n+a+b+l;a+l;—1-—;—z)=
_ nil(@a+1) ;@b
" T(n+a+1) "

),

where P*® (y) are the Jacobi polynomials, and taking

into account that

1 “ b @h 2 2a+b+l
Ja-»"a+ " et oyay =

2n+a+b+1x
-1 :

C(n+a+ D(n+b+1)(pit
X T+a+b+1) [Drni (2, B.9) %
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2’

o
XDml,m;(aLBr Y)dQ = 2—]'1—_"__7 Jvia "'l"'zs’";""l

it is easy to obtain that

cr - QL+ 1)(2T+1)(2A +3)
ur = 22!+2L+5 4 x

nT(A+J-L+2)

(A=J-L)T(A+J+L+3)
F'A-J+L+2)
We are grateful to Ye. Hakobyan, A. Nersessian and

G. Pogosyan for many discussions on the subject of dy-
on-oscillator duality.
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