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Abstract

Basis function for representations of rotation groups, corresponding to dif-
ferent chains of subgroups, are realized by different hyperspherical functions.
They are related amongst each other by interbases expansion coefficients. The
asymptotic limits of these interbases expansions are obtained when the cor-
responding rotation groups O(3) and O(4) are contracted to the Euclidean
groups E(2) and E(3).

1 Introduction

A recent article [1] was devoted to the relation between the separation of variables
in the Laplace-Beltrami operator on an n-sphere S, and the Laplace operator on the
Euclidean space E,. The connection between the two spaces is studied using the
theory of Lie algebra and Lie group contractions [2]. The two groups related by the
contraction procedure are the isometry groups of the two spaces, i.e. the rotation
group O(n+1) and the Euclidean group E(n), respectively.

Let us consider the Laplace-Beltrami equation

App¥(uy,ug....,uy) = =AW (uy, 2, ..., tn) (1)

on some homogeneous space M. We denote the isometry group of M and its Lie
algebra G and L, respectively. Separated eigenfunction of App can be characterized
as the common eigenfunctions of a complete set of commuting operators Y, a =
1,2,.,n

Y, ¥ =-A,Y, [Ya, Y] =0, ¥ = fl("l)fﬁ(“ﬁ)-"'fn(“r-)- (2
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The set of operators {Y,,a = 1,2,..,n} iucludes the Laplace-Beltrami operator and
consists of second order operators in the cnveloping algebra of L. The simplest
types of coordinates are obtained if all operators Y, in the sct are Casimir operators
of subalgebras of L. Different types of coordinate systems and different types of
cigenfunctions ¥ correspond to different types of subalgebra chains L D Ly D L,.....
The corresponding coordinates are called subgroup type coordinates.

Sinorodinsky, Vilenkin and collaborators introduced a graphical ncthod, the
"mecthod of trees”, for characterizing different subgroup type coordinates. The
method is cxplained in the original articles [3. 1] and subsequent book [3]. The
relation between tree diagrams and subgroup (or subalgebra) diagrams is presented
in ref. [L].

The contractions considered in [1] were "analytical contractions™. The contrac-
tion parameter is the radius of the sphere K. It is introduced into the generators of
the Lie algebra L, hence also into the operators {¥;} and thus into eigenfunction ¥
and eigenvalues A,. The effect of taking the limit R — oc. when S, goes to E,. was
studied for coordinates, operators, cigenfunctions and cigenvalues.

In physical application onc makes use of concrete basis functions of representa-
tions and one needs other objects as well. Thus, in nuclear physics. or any many-
body theory more generally, it is often necessary to expand different bases in terms
of each other. The different bases are related by unitary transformations. The
matrix elements of transformations between different bases for the group O(n+1).
i.e. between different types of hyperspherical (or polyspherical) unctions. are called
"T-coefficients” and have been calculated explicitly [6)].

The purpose of this article is o study the contractions of the interbases expan-
sions and thus of the T - coeflicients, in the limit i — oc.

2 Contractions of interbases expansions for O(3)

In the case of the S; - sphere only two trees exist (Fig.1). They are topologically
equivalent and correspond to equivalent subgroup chains O(3)>0(2). However, in
the 3-body problem, one chain privileges particles (1,2), the other particles (2.3).
The spherical functions Yin, (8;,02) correspouding to these trees are connected by the
transformation

T
Yim, (5~ 00.05) = Z Dl ey (51510) Yiwa (01,02) @)
my=—
where DfM m (00 B,7) = e"'"""’df"2 |ml(ﬂ)e“"""' is the Wigner function [7] and the

angles in both sides of the expansions arc connected by the relations
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ug = Rcosb, = Rcos 0] cos @,
u; = Rsinbicosf, = Rcosf)sind,
u; = Rsinb,sind, = Rsind,

We use an integral representation for the function df,, .. (%/2)

T l_—%_n,_?_f (1 + ma)Y(I — my)!
Gnaim(3) = (=152 {(1+ T m:)!}

Ls
/ (sin &)™ (cos a)F™ e?™2% dq,
0

and the formulas [§]

cos(2na) = T,(cos 2}, sin(2na) = sin 2a - U, (cos 2a),
where Ti(z) and Ui(z) are- Tchebyshev polynomials of the first and second kind.
After integrating over o, we obtain a representation of the Wigner D functions in
terms of the hypergeometrical function 3F; (of argument 1):
T (- l) tmgem

0) = \/—J, V4 ma)Y(l = my)! (4)

!
szm;(z 2

r l+n;,+l r t—my 41 % ""mZamthﬂzlﬂ
e | o5

1) {I—m)—even
INES!

2i | r(mad2)plomii?, 5 P 1-my,my+1, i+ "-? +2
I+1) T(2TE2)R( —";pn) 3l'y \
\ 29 l + 2

Consider now the contraction limit R — oo in the expansion (3). For large R we
put

1) (I -m;)—odd

r

I~kR,  mi~hR o B~z O~

Y v Z
¥y o~
R PR
where k? = k? 4+ k2, and have

"'l291
Jim \/_y,,,.,(a,,o,) = (=1)™ VR (kr) et

ikyz k Y, (l - Imll) — even,
t=lmy | T o) k e cos &z
fim (1) 5 e, (5-008) = (25 { ¥

—isin kyy, (I — |my]) — odd,
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Using known asymptotic formulas for the 35 functions and I" - functions in eq. 4)
we obtain:

im ()-SR VEDL (BT = (T2
Jim (-1)" S VR DL, 0, (5,7.0) = (-)F /=

L
() oA (cmami 3 48) (=) - even,

1
—imy (B)* 2F1 (—ma+1,ma+ 1;  H8)  (I1-my) — odd.
sy 3 cosmyp, (I —m,)— even,
= (—1) 2 ;k— (5)
? | isinmgp, (I—my)—odd,
_i=lmy]

Multiplying the interbases expansion (3) by the factor (—1)" =z ~ and taking the
contraction limit R -+ oo we obtain (6 = 6, m = m,)

“{imi}= o { S e
or in exponential form
gkreos(f-v) — i (8)™ T (kr) ™9 (7
The inverse expansion is
In(kryeme = GO / " gimoikrectd=0) gy, | ®)

For 6 = 0 the two last formulas are equivalent to well known formulas in the theory
of Bessel functions [8], namely expansions of plane waves in terms of cylindrical ones
and vice versa.

3 Contractions on the interbases expansions for
0(4)

Let us consider now the interbases expansions for the hyperspherical functions on the
three-dimensional sphere S5. There are only three (see Fig.2.) elementary notrivial
transformations between trees for Ss.
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1. First we consider the expansion between trees on Fig.2(a) (6]

J
\Il_l,,m(ol,02,03) = Z ( )l |M|( 1) l.ll’j'gl_f_n'%‘]ﬂ;u \IIJ,m(a;,%,B;), (9)
I=|m|
where

uo = Rcosbcosd, = Rcosb,

4y = Rcosfsinb, = Rsin b} cos 6,

3 = Rsinb, cosf; = Rsin 8 sin 6 cos b,

u3 = Rsinfsinf; = Rsinf,sin6}sinb;,

C:a,, s - are the Clebsch-Gordan coefficients for the SU(2) group and the corre-
sponding hyperspherical functions have the form:

VT ¥3 (_"‘E]ﬂll)l(__l_]:lﬂl)l i ity
o\ (B Sy, ¢

‘I,Jnm (011 02‘, 03) =

x (sin 8, )™!(cos 8, )" Pﬂ':"i,"_‘"" (cos 26;), (10)

VETF )T T+ DT =)
24I1(J +3)

Y sim (6}, 65,63) =

x(sin 03) P9 (cos 87) i, (01, 05), (11)

where P (z) are Jacobi polynomials. In the contraction limit R — oo and
T p I

0;—’E 01_"'}?7 02'—’_’ J~kR1 nNklR’

where r = /23 + p? = \/al ¥ 2l +2%, k= /BB +p = VK + k2 + k2, we have
(1]

im&;
l;l—{go \/—WJnm(01102103) q’kkxm(zlapl 03) = fJIMI(pP)C‘kl:, _\/‘2'—‘;, (12)

and

1 k !
41_{120 E\I’Jlm(oiaaayoii) = lem(ry 0;703) = \/—;Jl+%(kr) Ylm(02;03)- (13)
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Taking the Clebsch-Gordan coeflicients in the form

. (ot () (2 + L)(L + |m])!
g,lmltn 4 fmion = () VT =00T + 1+ 0T = [m])!

(Ltlml=t y J=lmbslnly Lzl e,
X Tl ( L=l afs t‘ - (14)
( i ) —J, |m| + 1.

in the contraction limit R — oo, we get

Lolm=n ot |m ) 24 1) + |m|)
Iun \/_(—l) l,' ~'|-|;*|-|;§'lvnl;l'- = WLl-|m1(‘7°S é) = ‘/(__I(_l:(_lmll)—")

2
(sin ¢)im! T sne) R ( I+ |m|,{+|m]+1; |m|+1; ——Qﬁ) = \/% le'(msfﬁ)» (15)

il
Pt =\ )

where

are the orthonormalized Legendre polynomials and cos ¢ = p/k. Thus the interbases
expansion (9) transforms to the expansion between the cylindrical and spherical
bases for the Helmholtz equation

Qkklm(xh P 03) = Z WAM'(COS ¢) ¢Hm(rv 0;* 03)1 ( IG)
I=|m|

We use the formula
/0 " W08 8) Wik (cos 8) sin 6dé = 261 (17)
to obtain the inverse expansion
Piim(r, 63, 03) = % A ) Wi (605 8) P, m(21, p. 03) sin ¢ dp. (18)

Putting the exact form of the functions (12)-(13) and interbases coefficients (15)
into the expansions (16) and (18), we obt.aiu

1 ikt cos ¢ con 6] m
—= €T 1 (pp) = Z(t)’+

wor 1(kr) PV (cos ¢) P"\(cos 8) (19)

I=|m|
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(=)™

\/k_ V2r
The last two expansions coincide wnth well known formulas in the theory of the
Bessel functions [8].

J[+l (kr)P'ml(Coso ) etk condcosdy ll |(PI’ p| l((.()q ¢) sin ¢ do

2. The second expansion is:

J
Vonm(61,02,683) = 3 T3, ¥ im(6}, 65, 0). (20)
I=|m|
where
up = Rcosf cosb, = Rcos0;
w1 = Rcosf;sinb,cos; = Rsin 6] cos ) cos b
u = Rcosfsinb,sinb; = Rsin 6] cos 0 sin b,
us = Rsiné, = Rsin 6 sin 6,

[see Fig.2(b)]. The hyperspherical wavefunctions corresponding to these two trees
are

VRI+D){J +n+ 1)I{J —n)!
2T +2)

"I’Jnm(el ) 021 03) =

x(cos 0;)* PS5 (50 01) Yo (63, 83),

VETF )T+ I+ DT =1

‘I’Jlm(el,ol)oil) =
1272 2""1P(J + %)

x(sin 8})! P ED (o0 1) y,,,.(g - 6,,65).
The interbases coefficients T7,,, have the following form [6]

[1 +(—1)""+"’"] (1 pen 2 Dt
2 |m]! I«(J+n+21-|m; +1)

Tl

jnm =

21+ 1)(2n +1)(n + |m))!(I + |m|)/(J = DI(J = n)!
(n = Im)(I = [m)i(J +n+ 1)I(J +1+ 1)

__n=|m| __n-lml—l _=Im] _l—|m|—1
’ ’ 2 F
oF3 { : : 1}

Jintl=|m| J-n—I4|m
Iml + l, - 241 ) 2 I + 1
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In the contraction limit R — oo and

R’ 01 R, J kR, n pR,
where r = \/p? + 22 and k = \/p? + k2, we obtain [1]

lim = 1)——

eV (1, 02,0,
A VR Jnm(61,02,05)

QIq,wn(p» x3, 03)

i

I

VE Jn(pp) = -

imfs { cos kyzs, J —n —even

isin k3z3, J —n —odd

.1 /g ’ k 7r ’
’%Ex:o E‘I’Jlm(ohomoﬁi) = Qpim(r, 02’03) = \/;JI+§(kr) YI"'(E - 02703)'

For the contractions of interbases coefficients 7%, . we get

(1)_ 20+ 1)1 + [m|)!

. ~d=n

R—oo

I=|m| 1=|m|-1
2 " 2

= (-0 gt Mg, (21

where cos ¢ = p/k. The interbasis expansion in (20) transforms to the expansion
between the cylindrical and spherical bases for the Helmholtz equation

(cot )™} (sing)' 2y (— il +1; - ot?4)

cos kzx
J_'"(_@l o ( 1)_%—1 1 (kr)(co ™) (sin "" sin
vr {isin kszs} Zl: Vkr R et t¢) P En g ein ) (22)‘

where the top line on the left hand side corresponds to a summation over I =
|m|, |m|+2, |m|+4, ... and the bottom one to a summation over [ = |m|+1, |m|+3, ..
on the right hand side. The E(3) expansion (22) is related to the expansion (19)
by the substitution k; = kcos¢ — K3, =, = rcosb) — z3, ¢ — 7/2 — ¢ and
0, - x/2 -8,
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3. The third expansion is:

(J=ImD

Voim(01,02,05) = Y (=) L L e Womn(8,05,65)  (23)
n=—(J—|m]) 2' 7 22

where n has the same parity as J — |m/| and

w9 = Rcosb cosf;cosf; = Rcosbjcosby
u; = Rcosbcosf,sinf; = Rcos ) sinb,
u, = Rcosbsind, = Rsind] cos®,
u; = Rsiné, = Rsinf;sin 8,

[see Fig.2(c)]. The corresponding hyperspherical function is:

VERI+ DT + T+ )T =1y
‘IIJIm(ol, 027 03) = 2“.11‘(] + :_2’)

111
(cos 8,)' P34 (im0 v, (% ~0,,63),

and the wave function ¥ jm(6}, 64, 64) is given by (10) (with n replaced by m).

The contraction in this case (see Fig.2(c) and eq. (24) below) will involve 3
quanturn numbers J, [ and m. Eq. (14)expressinf Clebsch-Gordan coefficients in
terms of the 3 F; function is not convenient for taking this limit. Instead, we use the
following integral representation [6]

=jm|-n =|m{+n /
- ity gy 2ztmtn [ (14 ] (2Slmln yy dtmeny ) 12
C%vl'mz-n';%v m;n = (_z) (—1) ’

(FplmyZeldtnyg )y

A4+ DI -DJT+T+1) 1 I 141 .
l 2l+|n)t|(+21"( J) 1372)4_ ) T /0 (sin ¢)'Im! PJ('_J’,"H’(cos #)e™dg

and the formulas (8]

T(a+n+1)
T(a + 1)l

{ 2Fi(-3, % + o5a + 1;si0¢)  n — even,
x

P,f""’)(cos )=

cos$2Fi (=251, 2 + a+ L;a + 1;sin’ ¢) n—odd.
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Alter integrating over ¢, we obtain a representation of the Clebsch-Gordan coeffi-
cients in terms of the hypergeometrical function 44 (of argument 1):

4 m|

¥
('1 pml=n 2 {mitn
F A I A ]

= (i)Imi(-

\/(l—I"II)'(H-Im )

lsg J—lil !
r( 4]m |—u+ )l( |m|—u+ ) l( 413

[

1
—iny/(=lmDmD! _ T(5)
t l(r+|m|—u+a)r(um|-n+s)'r(ZZ!IZ 4 3

) |m|+2u \/ 21 +

([+[+|)l(__|_1:_’l)l(.i'.|ﬂ[_")l

92

J

o l-n j;il l I
2°7T 2

1 I=jm]=n42 l4|m|-u+2
- v 3

29

2

2-n

JHi43 I=d4l
- .

2 2

3 - |rd-—u+'§ I+[m|-n+!
2’ 2

(J - [)t(_lﬂlﬂ) (.ﬂ"'_lil)l

l) (J = 1) —even
) (J=1)—odd

(To our knowledge, this expression is new). In the contraction limit B — oo and

st I I
0, ~ Tz‘ 0, ~ 7?1 Oy ~ ‘El 0, ~ % J~ kR I~pR. m~kR(21)
we gel '
Wen hn
hm( l) w,,,,.(o,,o,,o,,) /“‘zlkn ¢ .
cos kyzy cos kyzy (J = |m]) — even, (I —}m]|) — even.
—tsin kyz2 cos kaza (J = |m}) —odd. ({— |m|)—even. (25)
—1icos kyzq sin k3zs (J = bnl) — even, (I — |m]) — odd. =
—~ sin kyx, sin kax, (J = |inl) — odd, (I = ]m]) —odd.
. il _2ziml 1,im| 8p T |
Jim (=)= 1) T VRC e =\ G g (2007
cos nd, (J ~|m|) — even, (I —|m})—even,
—isinng, (J = Im|) —odd, (I~ |m]) - cven, (26)
—isinng, (J — im]) — even, (I —|m|) - odd, ’
—cosng, ~{m|) —odd, ({— |m]) - odd,

where cos ¢ = (p* — k2)/(k* -

k2) and k% = p? + k3 = k¥ 4 &} + k2. Substituting the
1 VTR TRy g

formulas (12), (25) and (26) into the expansion (23) we have

cos kyx; cos kars
sin kyx3 cos k3,
cos kx4 sin kazy
sin kyz3 sin k3zs

cos n¢

cosng
sinn¢g in
2 sinng Il,.|(("’)( %
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where

2
e T3 2 2y g2 2 _ g2 g2 cost b = k3
tanaz_zz, q 2 + K3, P 2+ 23, 05" ¢ k§+k§
Thus the interbasis expansion (23) transforms to the expansion between Cartesian
and cylindrical bases for the Helmholtz equation on [,.

4 Conclusions

In this article we rectricted ourselves to subgroup type coordinates only and more-
over to the lowest dimensional spheres S, and S3. Two earlier articles were devoted
to contractions of separated basis functions that correspond to nonsubgroup type co-
ordinates, in particular elliptic coordinates on S, and on the hyperboloid H, [9, 10].
It would also be possible to obtain interbases expansions for other types of bases,
though so far this has not been done.

We mention that though the two different trees on S; are topologically equivalent,
the contraction to E, destroys the symmetry between them. Indeed, one system of
coordinates on Jy gees into polar coordinates on Eg, the other into Cartesian ones.

Correspondingly, contracted interbasis expansions give relations between plane and
cylindrical waves namely eq. (7) and (8). These expansion formulas are of course
well known.

Five types of trees exist for S3. Only two of them correspond to mutually non-
isomorphic subgroup chains. After the contraction, we obtain expansions between
functions separated in spherical, cylindrical and Cartesian coordinates, respectively.
We have presented only 3 of the 10 possible interbasis expansions and their con-
tractions. The others are either obtained by composing the 3 elementary ones, or
correspond to transitions within an O(3) subgroup. The transition between spheri-
cal and Cartesian basis in E(3) is obtained by composing the Cartesian to cylindrical
and cylindrical to spherical ones.

An article on constractions of interbases expansions on S, for n arbitrary, is in
progress.
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Figure 1.Interbasis expansions contracted from O(3) to E(2).
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Figure 2. Elementary interbasis expansions contracted from O(4) to E(3).
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Figure 2c.
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