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Abstract. The Wigner–Inonu contraction from the rotation group O(3) to the Euclidean group
E(2) is used to relate the separation of variables in the Laplace–Beltrami operators on two
corresponding homogeneous spaces. Different realizations of the contraction take the two
separable coordinate systems on the sphereS2 to the four on the planeE2.

Résuḿe. La contraction de Wigner–Inonu du groupe de rotation O(3) au groupe euclidien
E(2) est utiliśee pourétablir une relation entre la séparation des variables dans les opérateurs
de Laplace–Beltrami sur les espaces homogènes correspondants. Différentes ŕealisations de la
contraction transforment les deux systèmes de coordonnées sur la sph̀ere S2 en quatre sur le
planE2.

1. Introduction

It is well known that an intimate relationship exists between the theory of special functions
and Lie group theory [1–3]. Virtually all properties of large classes of special functions
can be obtained from the representation theory of Lie groups, making use of the fact
that the special functions occur as basis functions of irreducible representations, as matrix
elements of transformation matrices, as Clebsch–Gordon coefficients, or in some other guise.
Recently, the class of functions treatable by group theoretical and algebraic methods has
been extended to the so-calledq-special functions that have been related to quantum groups
[4–8].

One very fruitful application of Lie theory in this context is the algebraic approach
to the separation of variables in partial differential equations [9–15]. In this approach
separable coordinate systems (for Laplace–Beltrami, Hamilton–Jacobi and other invariant
partial differential equations) are characterized by complete sets of commuting second-order
operators. These lie in the enveloping algebra of the Lie algebra of the isometry group (or
in some cases conformal group) of the corresponding homogeneous space. We mention that
the operator approach to separation of variables has also been extended to quantum groups
and thus to the separation of variables in differential-difference equations [16].

A question that has so far received little attention in the literature is that of the
connections between the separation of variables in different spaces, e.g. in homogeneous
spaces of different Lie groups. In particular, it is of interest to study the behaviour
of separable coordinates, sets of commuting operators and the corresponding separating
eigenfunctions under deformations and contractions of the underlying Lie algebras.
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Two types of Lie algebra contractions exist in the literature. The first are standard
Wigner–Inonu contractions [17–19]. They can be interpreted as singular limits of
transformations of bases of Lie algebras. More recently, ‘graded contractions’ have been
introduced [20–22]. They are more general than the Wigner–Inonu ones and can be obtained
by introducing parameters that modify the structure constants of a Lie algebraL in a manner
respecting a certain grading and then taking limits when these parameters go to zero.

Our aim is to perform a study of the connection between the contractions of Lie algebras
and the separation of variables. In this first paper we restrict ourselves to the simplest case.
We shall consider Wigner–Inonu contractions of the rotation algebra o(3) to the Euclidean
algebra e(2). The two separable coordinate systems on the sphereS2 ∼ 0(3)/0(2) will be
related to the four separable systems on the planeE2 ∼ E(2)/0(2). The contractions will
be followed through on several levels: the Lie algebra, the commuting sets of operators,
the coordinate systems and the eigenfunctions of the Laplace–Beltrami operators.

Our motivation comes from several directions. Among them we mention the following.
In special function theory contractions provide the possibility of obtaining new asymptotic
formulas, new expansions, etc. In the theory of finite-dimensional integrable systems
contractions provide relations between such systems in curved and flat spaces. Contractions
play a significant role in the theory of quantum groups [23–25] and it is to be expected that
methods developed for Lie groups will be generalizable to the case of quantum groups.

In section 2 we first review the two separable systems on the sphereS2 and the four
on the planeE2. We then introduce geodesical coordinates onS2 that are well adapted for
the contraction limit. Using these coordinates we take the limitR → ∞, whereR is the
radius of the sphere. Spherical coordinates onS2 go into polar or Cartesian ones onE2.
Elliptic coordinates onS2 go into elliptic, parabolic or Cartesian ones onE2. Section 3 is
devoted to the contraction of basis functions. Thus, spherical harmonics go over into Bessel
functions or exponentials. Elliptic harmonics, expressed as products of Lamé polynomials,
go into exponentials, Mathieu functions, or parabolic cylinder functions.

2. Complete sets of commuting operators, separable coordinates, and their
contractions

2.1. Separable coordinates on the sphereS2

Let us first consider the sphereS2. Its isometry group is 0(3). We choose a standard basis
{L1, L2, L3} for the Lie algebra o(3):

Li = −εikjuk ∂
∂uj

[Li, Lk] = εikjLj i, k = 1, 2, 3 (2.1)

whereui are Cartesian coordinates in the ambient spaceE3.
On the sphereS2 we have

u2
1 + u2

2 + u2
3 = R2.

The Laplace–Beltrami operator and metric onS2 in curvilinear coordinates are

1LB = 1

R2
(L2

1 + L2
2 + L2

3) = 1√
g

∂

∂xµ
√
ggµν

∂

∂xν

ds2 = gµνdx
µdxν g = det(gµν) gαµg

µν = δνα.

(2.2)

Following the general method [9–15] (that has in particular been applied to the sphere
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S2) [26] we look for separated eigenfunctions of the Laplace–Beltrami operator satisfying

1LB9 = l(l + 1)

R2
9 X9 = k9 9lk(α, β) = 4lk(α)8lk(β) (2.3)

whereX is a second-order operator in the enveloping algebra of o(3):

X = aikLiLk aik = aki . (2.4)

Two operatorsX andX′ will be considered equivalentX ∼ X′, if they are related by a
rotation and a linear combination with the Laplacian

X ∼ X′ = (
gTag

)
ik
LiLk + µ1 gTg = I. (2.5)

The matrixaik can be diagonalized to give

X(a1, a2, a3) ≡ X = a1L
2
1 + a2L

2
2 + a3L

2
3. (2.6)

For a1 = a2 = a3 we haveX ∼ 0. If two eigenvalues ofaik are equal, e.g.a1 = a2 6= a3,
we can transformX into X(0, 0, 1) = L2

3 and the corresponding separable coordinates on
S2 are the usual spherical ones

u1 = R sinϑ cosϕ u2 = R sinϑ sinϕ u3 = R cosϑ. (2.7)

They correspond to the group reduction 0(3) ⊃ 0(2) andX = L2
3 is invariant under 0(2)

and under reflections in all coordinate planes.
When all three eigenvaluesai are different, then the separable coordinates in (2.3) are

elliptic ones [26–29]. These can be written in algebraic form, as

u2
1 = R2 (ρ1 − a1)(ρ2 − a1)

(a2 − a1)(a3 − a1)

u2
2 = R2 (ρ1 − a2)(ρ2 − a2)

(a3 − a2)(a1 − a2)

u2
3 = R2 (ρ1 − a3)(ρ2 − a3)

(a1 − a3)(a2 − a3)

(2.8)

with a1 6 ρ1 6 a2 6 ρ2 6 a3.
In trigonometric form we put

ρ1 = a1 + (a2 − a1) cos2 φ ρ2 = a3 − (a3 − a2) cos2 θ (2.9)

and obtain

u1 = R
√

1 − k′2 cos2 θ cosφ

u2 = R sinθ sinφ

u3 = R
√

1 − k2 cos2 φ cosθ

 0 6 φ < 2π 0 6 θ 6 π (2.10)

where

k2 = a2 − a1

a3 − a1
= sin2 f (k′)2 = a3 − a2

a3 − a1
= cos2 f. (2.11)

Finally, the Jacobi elliptic version of elliptic coordinates is obtained by putting

ρ1 = a1 + (a2 − a1) sn2(α, k) ρ2 = a2 + (a3 − a2) cn2(β, k′). (2.12)

We obtain

u1 = R sn(α, k)dn(β, k′)
u2 = R cn(α, k) cn(β, k′)
u3 = R dn(α, k) sn(β, k′).

 −K 6 α 6 K − 2K ′ 6 β 6 2K ′ (2.13)
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where sn(α, k), cn(α, k) and dn(β, k) are the Jacobi elliptic functions with modulusk andK
andK ′ are the complete elliptic integrals [30, 31]. The moduli are given in (2.11), we have
k2 + k′2 = 1 and 2fR is the interfocal distance for the ellipses on the upper hemisphere.

Elliptic coordinates corresponding to the reduction 0(3) ⊃ D2, whereD2 is the dihedral
group (rotations throughπ about all three axes and reflections in a coordinate plane). Indeed,
the operator (2.6) is invariant only underD2, rather then 0(2), for a1 6= a2 6= a3 6= a1.

2.2. Separable coordinates on the Euclidean planeE2

Let us consider the Lie algebra e(2) in the basis

L3 = u2∂u1 − u1∂u2 P1 = ∂u1 P2 = ∂u2. (2.14)

Separated eigenfunctions of the Laplace operator1 = P 2
1 + P 2

2 satisfy

18k,λ = k28k,λ X8k,λ = λ8k,λ 8k,λ(α, β) = 6k,λ(α)9k,λ(β) (2.15)

whereX is the second-order operator

X = aL2
3 + b(L3P1 + P1L3)+ c(L3P2 + P2L3)+ dP 2

1 + eP 2
2 + 2fP1P2 . (2.16)

By means of Euclidean transformations, and linear combination with1, we can takeX into
precisely one of the following operators

XS = L2
3 (a 6= 0,D = 0) (2.17)

XC = P 2
1 − P 2

2 (a = b = c = 0) (2.18)

XP = L3P1 + P1L3 (a = 0, b2 + c2 6= 0) (2.19)

XE = L2
3 + 1

2D
2(P 2

1 − P 2
2 ) (a 6= 0,D 6= 0) (2.20)

where

D2 = 1

2a2
{4b2c2 + [a(b − e)− b2 + c2}1/2 . (2.21)

Each of the operators (2.17)–(2.20) corresponds to a different separable coordinate
system in (2.15). ThusXC corresponds to Cartesian coordinates(x, y), XS to polar ones

x = ρ cosφ y = ρ sinφ (2.22)

XP to parabolic coordinates

x = 1
2(u

2 − v2) y = uv (2.23)

andXE to elliptic ones

x = D coshξ cosη y = D sinhξ sinη (2.24)

where 2D is the focal distance.
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2.3. The contractions

We shall useR−1 as the contraction parameter. To realize the contraction explicitly, let us
introduce geodesical coordinates on the sphere [32], putting

xµ = R
uµ

u3
= uµ√

1 − (u2
1 + u2

2)/R
2

µ = 1, 2 . (2.25)

The 0(3) generators can then be expressed as

−L1

R
≡ π2 = p2 + 1

R2
x2(x1p1 + x2p2) (2.26)

L2

R
≡ π1 = p1 + 1

R2
x1(x1p1 + x2p2) (2.27)

L3 = x2p1 − x1p2 = x2π1 − x1π2. (2.28)

The commutation relations are

[L3, π1] = π2 [L3, π2] = −π1 [π1, π2] = L3

R2
(2.29)

so that forR → ∞ the o(3) algebra contracts to the e(2) algebra. Moreover the momenta
πµ contract topµ = ∂/∂xµ (µ = 1, 2).

The o(3) Laplace–Beltrami operator (2.2) contracts to the e(2) operator:

1LB = π2
1 + π2

2 + L2
3

R2
→ 1 = (p2

1 + p2
2). (2.30)

Let us now consider the contractions of the operator (2.6) and of the corresponding
coordinates.

2.3.1. Spherical coordinates onS2 to polar coordinates onE2. We choosea1 = a2 in (2.6)
and put

tanθ = r

R
. (2.31)

In the limit R → ∞, θ → 0 we have

X = L2
3 → XS = L2

3 (2.32)

and

x1 = R
u1

u3
→ x = r cosφ

x2 = R
u2

u3
→ y = r sinφ .

(2.33)

2.3.2. Spherical coordinates onS2 to Cartesian onE2. We choosea2 = a3 ∼ 0 in (2.6) so
that the coordinates (2.7) permute into

u1 = R cosθ ′ u2 = R sinθ ′ cosφ′ u3 = R sinθ ′ sinφ′. (2.34)

Putting

cosθ ′ = x

R
cosφ′ = y

R
(2.35)
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and taking the limitR → ∞, θ ′ → π
2 , φ

′ → π
2 , we obtain

X
(

1
R2 , 0, 0

) = L2
1

R2
= π2

1 → X = P 2
1 ∼ XC (2.36)

and

x1 = R
cotθ ′

sinφ′ → x x2 = R cotφ′ → y. (2.37)

2.3.3. Elliptic coordinates onS2 to elliptic coordinates onE2. We takeX in its general
form, equivalent to

X = L2
3 −

(
a2 − a1

a3 − a2

)
L2

1. (2.38)

We put

R2

a3 − a1
= D2

a2 − a1
L1 = −Rπ2 (2.39)

and in the limitR2 ∼ a3 → ∞ obtain

X → L2
3 −D2P 2

2 ∼ XE. (2.40)

For the coordinates we put

ρ1 = a1 + (a2 − a1) cos2 η ρ2 = a1 + (a2 − a1) cosh2 ξ (2.41)

and for R2 ∼ a3 → ∞, using (2.39), we obtain (2.24), i.e. elliptic coordinates on the
planeE2.

2.3.4. Elliptic coordinates onS2 to Cartesian coordinates onE2. We start from the
coordinates (2.8) but change the ordering of the parametersai i.e. put

a1 6 ρ1 6 a3 6 ρ2 6 a2 (2.42)

and choosea3 − a1 = a2 − a3 ≡ a. We than have
1

aR2
X = (π2

1 − π2
2) → P 2

1 − P 2
2 . (2.43)

For the coordinates we put
a3 − ρ1

a
= ξ1

ρ2 − a3

a
= ξ2. (2.44)

Using equations (2.25) and (2.8) we have

x2
1 = R2 (1 − ξ1)(1 + ξ2)

2ξ1ξ2
x2

2 = R2 (1 + ξ1)(1 − ξ2)

2ξ1ξ2
. (2.45)

From equation (2.45) we obtain

ξ1,2 = R2

R2 + x2
1 + x2

2

{[
1 + x2

1 + x2
2

R2
+ (x2

1 − x2
2)

2

4R4

]1/2

∓ x2
1 − x2

2

2R2

}
. (2.46)

In the limit R → ∞ we have

ξ1 → 1 − x2

R2
ξ2 → 1 − y2

R2
(2.47)

and hencex1 andx2 of (2.45) go into Cartesian coordinates:

x1 → x x2 → y. (2.48)



Contractions of Lie algebras and separation of variables 5955

2.3.5. Elliptic coordinates onS2 to parabolic coordinates onE2. We take the operator
(2.6) witha1 6 ρ1 6 a2 6 ρ2 6 a3 and choosea3 −a2 = a2 −a1 ≡ a. We must first ‘undo’
the diagonalization (2.5) by a rotation throughπ/4. The operator (2.6) transforms into

1

aR
XS = − 1

aR
(L1L3 + L3L1) = L3π2 + π2L3 (2.49)

with the correct limit forR → ∞. The coordinates (2.13) onS2 are rotated into

u1 = R√
2
(snα dnβ + dnα snβ)

u2 = R cnα cnβ

u3 = R√
2
(dnα snβ − snα dnβ)

(2.50)

with modulusk = k′ = 1/
√

2 for all Jacobi elliptic functions.
From equation (2.50) we obtain

snα = 1√
2

[(
1 + u1

R

)1/2 (
1 − u3

R

)1/2
−

(
1 − u1

R

)1/2 (
1 + u3

R

)1/2
]

√
2 dnβ = 1√

2

[(
1 + u1

R

)1/2 (
1 − u3

R

)1/2
+

(
1 − u1

R

)1/2 (
1 + u3

R

)1/2
]
.

(2.51)

Equation (2.51) suggest the limiting procedure. Indeed we put

snα = −1 + u2

2R

√
2 dnβ = 1 + v2

2R
. (2.52)

In the limit R → ∞ we than obtain

x1 → x = u2 − v2

2
x2 → y = uv (2.53)

i.e. the parabolic coordinates (2.23).

3. Contraction of basis functions

Having established the contraction properties of separable coordinates and the corresponding
complete sets of commuting operators. We shall now consider the behaviour of
eigenfunctions.

3.1. Spherical basis onS2 to polar basis onE2

We start from the standard spherical functionsYlm(θ, φ) as basis functions of irreducible
representations of the group O(3) (see, e.g., [33])

9lm(θ, φ) = 1√
R
Ylm(θ, φ) = (−1)(m+|m|)/2

√
R

[
2l + 1

2

(l + |m|)!
(l − |m|)!

]1/2
(sinθ)|m|

2|m||m|!

×2F1
(−l + |m|, l + |m| + 1; |m| + 1; sin2( 1

2θ)
) eimφ

√
2π

. (3.1)

In the contraction limitR → ∞ we put

tanθ ∼ θ ∼ r

R
l ∼ kR. (3.2)
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Using the asymptotic formulae

lim
R→∞ 2F1

(
−kR, kR; |m| + 1; r2

4R2

)
= 0F1

(
|m| + 1; − k2r2

4

)
lim
z→∞

0(z + α)

0(z + β)
= zα−β

(3.3)

and the formula

Jν(z) =
( z

2

)ν 1

0(ν + 1)
0F1

(
ν + 1; − z2

4

)
(3.4)

we obtain

lim
R→∞
θ→0

1√
R
Ylm(θ, φ) = (−1)(m+|m|)/2√kJ|m|(kr)

eimφ

√
2π

. (3.5)

The result (3.5) is not new [33]. The point is that this asymptotic formula is obtained very
naturally in the context of group contractions applied to the separation of variables.

3.2. Spherical basis onS2 to Cartesian basis onE2

We start from the coordinates (2.34), but drop the primes, and write the corresponding
spherical functions as

Ylm(θ, φ) =
√

2l + 1

2π
eimφ(sinθ)|m|

×



(−1)(l+m)/2
[
0( l+m+1

2 )0( l−m+1
2 )

0( l+m+2
2 )0( l−m+2

2 )

] 1
2

F
(− l−m

2 , l+m+1
2 ; 1

2; cos2 θ
)

(−1)(l+m−1)/2

[
0( l+m+2

2 )0( l−m+2
2 )

0( l+m+1
2 )0( l−m+1

2 )

] 1
2

2 cosθ F
(− l−m−1

2 , l+m+2
2 ; 3

2; cos2 θ
) (3.6)

for l +m even and odd, respectively, we now put

l ∼ kR m ∼ k2R (3.7)

and

sinθ → 1 cosθ → x

R
φ → y

R
− π

2
. (3.8)

The F ≡ 2F1 hypergeometric functions simplify to0F1 ones, the0 functions also
simplify and we find

Ylm(θ, φ)
R→∞→ (−1)m/2

√
2kR

eik2y

2π


(−1)(l+m)/2

(
2

k1R

) 1
2

0F1

(
1
2; −k2

1x
2

4

)

(−1)(l+m−1)/2 2x

R

(
k1R

2

) 1
2

0F1

(
3
2; −k1

2x2

4

) (3.9)

with k1
2 + k2

2 = k2.
The 0F1 functions are in this case expressible in terms of the Bessel functionsJ±1/2

that are, essentialy, trigonometric functions. The final result is that under the contraction
we have

lim
R→∞

(−1)l/2Ylm(θ, φ) = eik2y

√
2π

{
cosk1x

−i sink1x
(3.10)



Contractions of Lie algebras and separation of variables 5957

for l + m even and odd, respectively, where the limit is taken as in (3.7). The parity
properties ofYlm under the exchangeθ → π − θ have led to the appearance of cosk1x and
sink1x in (3.9), instead of the usual Cartesian coordinate solution exp i(k1x + k2y).

3.3. Solutions of the Lam´e equation

Let us consider (2.3) on the sphereS2 and separate variables in the elliptic coordinates (2.8).
We obtain two ordinary differential equation of the form

d2ψ

dρ2
+ 1

2

{
1

ρ − a1
+ 1

ρ − a2
+ 1

ρ − a3

}
dψ

dρ
+ 1

4

{
λ− l(l + 1)ρ

(ρ − a1)(ρ − a2)(ρ − a3)

}
ψ = 0

(3.11)

or equivalently

4
√
P(ρ)

d

dρ

√
P(ρ)

dψ

dρ
− {l(l + 1)ρ − λ}ψ = 0 (3.12)

where

P(ρ) = (ρ − a1)(ρ − a2)(ρ − a3).

Equation (3.11) is the Laḿe equation in algebraic form. It is a Fuchsian type equation with
four regular singularities (ata1, a2, a3 and∞) [26–30, 34].

Its general solution can be represented by a series expansion about any one of the
singular pointsak as

ψ(ρ) = (ρ − a1)
α1/2(ρ − a2)

α2/2(ρ − a3)
α3/2

∞∑
t=0

b
(k)
t (ρ − ak)

t (3.13)

where we have

αj (αj − 1) = 0 j = 1, 2, 3

and can choosek equal to 1, 2, or 3.
Substituting in the Laḿe equation (3.11) we obtain a three-term recursion relation forbkt :

βkt b
k
t+1 + [γ kt + λ− l(l + 1)ak]b

k
t + (2t + α − l − 2)(2t + α + l − 1)bkt−1 = 0 (3.14)

with

α = α1 + α2 + α3 αik = αi − αk b−1 = 0

β
(k)
t = 4(ai − ak)(aj − ak)(t + 1)(t + αk + 1

2) (i, j, k cyclic)

γ
(k)
t = −(ai − ak)(2t + αk + αj )

2 − (aj − ak)(2t + αk + αi)
2 .

(3.15)

The expansion (3.13) represents a Lamé function. Since we are interested in representations
of SO(3), the sum inψ(ρ) must be a polynomial of orderN , i.e. we must have

bN 6= 0 bN+1 = bN+2 = · · · = 0

for someN . The condition for this is that we have

l = 2N + α (3.16)

and we obtain a secular equation for the eigenvaluesλ, i.e. the separation constant in elliptic
coordinates, by requiring that the determinant of the homogeneous linear system (3.14) for
{b0, b1, · · · , bN } should vanish. SinceN and l must be integers, equation (3.16) implies
thatα and l must have the same parity.
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Numerous further properties of the Lamé polynomials, in the context of representations
of the group O(3), in the O(3)⊃D2 basis, were established, e.g., in [26-29].

Here let us just represent the basis functions as

9
pq

lλ (ρ1, ρ2) = A
pq

lλ ψ
pq

lλ (ρ1)ψ
pq

lλ (ρ2) (3.17)

whereApqlλ is some normalization constant. The labelsp, q take values±1 and identify
representations of D2. For each value ofl the values ofp, q andλ label (2l + 1) different
states. Since a given representations(p, q) of D2 can figure more than once in the reduction
of a representation of O(3) corresponding to a givenl, we are faced with a ‘missing label
problem’, resolved by the quantum numberλ, i.e. the operatorX of (2.6).

The expansions that we shall use for the Lamé polynomials in (3.17) are as in (3.13),
but the summation overt is from t = 0 to t = N .

3.4. Elliptic basis onS2 to Cartesian basis onE2

We choose elliptic coordinates onS2 as in (2.8), but witha1 < a3 < a2, as in (2.42). We
write the basis functions as in (3.17) with

ψlλ(ρ1) = (ρ1 − a1)
α1/2(ρ1 − a2)

α2/2(ρ1 − a3)
α3/2

N∑
t=0

b
(1)
t (ρ1 − a1)

t

ψlλ(ρ2) = (ρ2 − a1)
α1/2(ρ2 − a2)

α2/2(ρ2 − a3)
α3/2

N∑
t=0

b
(2)
t (ρ2 − a2)

t

(3.18)

as in (3.13). The coefficientsbjt (j = 1, 2) satisfy the recursion relation (3.14) and
we haveN = (l − α)/2. We use the coordinatesξ1 and ξ2 introduced in (2.44) (for
a ≡ a3 − a1 = a2 − a3). Equation (3.18) reduces to

ψlλ(ξ1) = (−1)(α2+α3)/2aα/2(1 − ξ1)
α1/2(1 + ξ1)

α2/2ξ
α3/2
1

N∑
t=0

C1
t (1 − ξ1)

t

ψlλ(ξ2) = (−1)α2/2aα/2(1 − ξ2)
α2/2(1 + ξ2)

α1/2ξ
α3/2
2

N∑
t=0

C2
t (1 − ξ2)

t

(3.19)

with C(1)t = atbt , C
(2)
t = (−a)tbt .

The recursion relations (3.14) now imply

8(t + 1)(t + α1 + 1
2)C

(1)
t+1 + {µ(1) − 2(2t + α1 + α3)

2 − (2t + α1 + α2)
2}C(1)t

+(2t + α − l − 2)(2t + α + l − 1)C(1)t−1 = 0

−8(t + 1)(t + α2 + 1
2)C

(2)
t+1 + {µ(2) + 2(2t + α2 + α3)

2 + (2t + α1 + α2)
2}C(2)t

−(2t + α − l − 2)(2t + α + l − 1)C(2)t−1 = 0

(3.20)

where

µ(j) = 1

a
[λ− aj l(l + 1)] j = 1, 2 . (3.21)

The contraction limit is taken using equation (2.47) to relateξ1,2 to the Cartesian
coordinates onE2. Taking l ∼ kR we find

µ(1) → 2R2k2
1 µ(2) → −2R2k2

2 k =
√
k2

1 + k2
2. (3.22)
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For R → ∞ the recursion relations (3.20) simplify to two term ones that can be solved to
obtain

C
(j)
t = R2t

(αj + 1
2)t

(−k2
j

4

)t 1

t !
(3.23)

with (
αj + 1

2

)
t
= (

αj + 1
2

) (
αj + 3

2

) · · · (αj − 3
2 + t

)
t > 1

(
αj + 1

2

)
0 = 1.

Substituting (3.23) into (3.19) we obtain

ψlλ(ξ1) = (−1)(α2+α3)/2
aα/2

Rα1
xα1

0F1

(
α1 + 1

2; − k2
1x

2

4

)
ψlλ(ξ2) = (−1)α2/2

aα/2

Rα2
yα2

0F1

(
α2 + 1

2; − k2
2y

2

4

)
. (3.24)

Using equation (3.4) and the explicit expressions forJ±1/2, we find the contraction limit:

A
pq

lλ (R)ψlλ(ξ1, ξ2) → A
pq

lλ ψk1(x)ψk2(y)

= A
pq

lλ (−1)α3/2aα/2



cosk1x cosk2y α1 = 0, α2 = 0

− 1

k2R
cosk1x sink2y α1 = 0, α2 = 1

− 1

k1R
sink1x cosk2y α1 = 1, α2 = 0

− 1

k1k2R2
sink1x sink2y α1 = 1, α2 = 1.

(3.25)

Though these formulae are quite simple, to our knowledge they are new.

3.5. Elliptic basis onS2 to elliptic basis onE2

Let us start from the elliptic coordinates (2.8) witha1 6 ρ1 6 a2 6 ρ2 6 a3. We take the
limit R → ∞, a3 → ∞ with

√
a3/R, a1 and a2 finite. We introduce a constantD as in

(2.39). Elliptic coordinates on the planeE2 are introduced via (2.41), so that the Cartesian
coordinates(x, y) are expressed in terms of the elliptic ones(ξ, η) as in (2.24). Let us first
take the limit in the separated equations (3.12). Going over to the variables(ξ, η) from
(ρ1, ρ2), for R → ∞ we obtain:

d2ψ1

dη2
+

{
µ− k2D2

2

(
a2 + a1

a2 − a1

)
− k2D2

2
cos 2η

}
ψ1 = 0 (3.26)

d2ψ2

dξ2
+

{
µ− k2D2

2

(
a2 + a1

a2 − a1

)
− k2D2

2
cosh 2ξ

}
ψ2 = 0 (3.27)

with

µ = λ

a3
l ∼ kR.

In equation (3.26) we recognize the standard form of the Mathieu equation, whereas
equation (3.27) is a modified Mathieu equation [35]. Thus, in the contraction limit, Lamé
functions will go over into Mathieu ones. Moreover, periodic solutions of the Lamé equation
go over into periodic solutions of (3.26).
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The contraction limit can also be taken directly in the Lamé polynomials, using the
expansion (3.13) (cut off att = N ). The result that we obtain is

lim
R→∞

9lλ(ρ1)

Rα3
= (a2 − a1)

α/2 (−1)(α2+α3)/2

Dα3
(cosη)α1(sinη)α2

∞∑
t=0

Ct(cosη)2t (3.28)

lim
R→∞

9lλ(ρ2)

Rα3
= (a2 − a1)

α/2 (−1)α3/2

Dα3
(coshξ)α1(sinhξ)α2

∞∑
t=0

Ct(coshξ)2t (3.29)

where the expansion coefficientsCt satisfy recursion relations obtained from (3.14), namely

4(t + 1)(t + 1/2 + α1)Ct + {µ− (2t + α1 + α2)
2}Ct − k2D2Ct = 0. (3.30)

Depending on the values ofα1 andα2, defined in (3.18), (3.30) takes one of four different
forms.

3.6. Elliptic basis onS2 to parabolic basis onE2

Let us consider the contraction limit for the Lamé equations (3.12). To do this we use
equations (2.12) witha3 − a2 = a2 − a1 = a i.e. k = k′ = 1/

√
2, together with (2.52), to

obtain

ρ1 ∼ a1 + a

(
−1 + u2

2R

)
ρ2 ∼ a1 + a

(
1 + v2

R

)
. (3.31)

Equation (3.12) forρ = ρ1 and ρ = ρ2 in the limit R → ∞, with l2 ∼ k2R2 and
λ− a2l(l + 1) = µRa, yields the two equations

d2ψ1

du2
+ (k2u2 + µ)ψ1 = 0 (3.32)

d2ψ2

dv2
+ (k2v2 − µ)ψ2 = 0 (3.33)

respectively.
Thus the Laḿe equations in the contraction limit go over into equations (3.32), (3.33) for

parabolic cylinder functions [36]. The same is of course true for solutions. The expansion
(3.13) is not suitable for the contraction limit. In view of (2.52) we need expansions in
terms of the variables(1 + snα) and (1 − √

2 dnβ). This is not hard to do, following for
instance methods used in [37] to relate the wavefunctions of a two-dimensional hydrogen
atom, calculated in different coordinate systems. The formulae are cumbersome, so we shall
not present them here.

4. Conclusions

In this paper we have presented a new aspect of the theory of Lie group and Lie algebra
contractions: the relation between separable coordinate systems in curved and flat spaces,
related by the contraction of their isometry groups. So far we have considered the simplest
meaningful example, namely the original Wigner–Inonu contraction from aO(3) to E(2),
as applied to the sphereS2 and Euclidean planeE2.

We have followed through the contractionR → ∞ (whereR is the radius of the sphere
S2) at all levels: the Lie algebras as realized by vector fields, the Laplace–Beltrami operators
in the two spaces, the second-order operators in the enveloping algebras, characterizing
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separable systems, the separable coordinate systems themselves, the separated (ordinary)
differential equations and the separated eigenfunctions of the invariant operators.

In particular, we have shown how different limiting procedures lead from two separable
systems onS2, to four systems on the planeE2.

The contraction parameter in this paper was a geometrical one, namely the radiusR of
theS2 sphere. The results of this paper are also applicable in a completely different context,
namely that of high energy physics. Indeed, an elementary particle can be described by a
wavefunction, transforming according to an irreducible unitary representation of the Poincare
group [38, 39]. Its spin is associated with the Pauli–Lubanski vector

Wµ = 1
2εµνλρM

νλP ρ .

If the particle is massive, the linear momentum is timelikep2 = m2 > 0. In the rest frame
we havep0 = m, p = 0 and the space components ofWµ generate an o(3) algebra. If the
particle is massless, then its momentum is lightlike,p2 = 0 and no rest frame exists. We
can choose a frame withp = (ω, 0, 0, ω) and the three lineary independent components of
Wµ generate an e(2) algebra. Let us parametrize the linear momentum of a massive particle
in spherical coordinates on the mass shell

p0 = m cosha p1 = m sinha sinθ cosφ

p2 = m sinha sinθ sinφ p3 = m sinha cosθ .

At very high energiesp0 → ∞ we have

cosha ∼ sinha ∼ 1
2e
a

and the momentump approaches a lightlike one.
All results of this paper are applicable in this case with a reinterpretation of the

contraction parameter. This role is now played by the particle energyp0, or more precisely
by the ‘energy’ coordinatea. The physical relevance of such a contraction is obvious: in
the ultrarelativistic limit [40] massive particles start to behave like massless ones, for which
spin considerations, for example, reduce to helicity ones.

We mention that the realization (2.26)–(2.28) of o(3) in terms of vector fields in two
variables corresponds to the O(3) subgroup of the groupSL(3,R) figuring as the group of
projective transformations ofR2. Indeed, more generally,sl(n+ 1,R) can be realized as

Pµ = ∂

∂xµ
Lµν = xµ

∂

∂xν
Cµ = xµD

D ≡
n∑
α=1

xα
∂

∂xα
1 6 µ, ν 6 n.

(4.1)

This shows that the methods of this paper can easily be adapted to treat other
contraction problems. Forn = 2 we can construct theo(2, 1) ⊂ sl(3,R) subalgebra
and consider contractions of separable coordinates on one- or two-sheeted hyperboloids and
their contractions to coordinates on Euclidean or pseudo-Euclidean planes. Forn > 3 we
can again extract o(n), or o(p, q) subalgebras ofsl(n,R) and consider similar contraction
problems. This, however, lies beyond the scope of the present paper.
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