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Abstract. The Wigner—Inonu contraction from the rotation grou@to the Euclidean group

E(2) is used to relate the separation of variables in the Laplace—Beltrami operators on two
corresponding homogeneous spaces. Different realizations of the contraction take the two
separable coordinate systems on the spiSer® the four on the plan&s.

Résune. La contraction de Wigner—Inonu du groupe de rotatiof8)Cau groupe euclidien
E(2) est utilie pourétablir une relation entre laéparation des variables dans le€@ieurs
de Laplace—Beltrami sur les espaces hoameg correspondants. Ofentes ealisations de la
contraction transforment les deux sysies de coordomes sur la spire S, en quatre sur le
plan E».

1. Introduction

It is well known that an intimate relationship exists between the theory of special functions
and Lie group theory [1-3]. Virtually all properties of large classes of special functions
can be obtained from the representation theory of Lie groups, making use of the fact
that the special functions occur as basis functions of irreducible representations, as matrix
elements of transformation matrices, as Clebsch—Gordon coefficients, or in some other guise.
Recently, the class of functions treatable by group theoretical and algebraic methods has
been extended to the so-callgespecial functions that have been related to quantum groups
[4-8].

One very fruitful application of Lie theory in this context is the algebraic approach
to the separation of variables in partial differential equations [9-15]. In this approach
separable coordinate systems (for Laplace—Beltrami, Hamilton—Jacobi and other invariant
partial differential equations) are characterized by complete sets of commuting second-order
operators. These lie in the enveloping algebra of the Lie algebra of the isometry group (or
in some cases conformal group) of the corresponding homogeneous space. We mention that
the operator approach to separation of variables has also been extended to quantum groups
and thus to the separation of variables in differential-difference equations [16].

A question that has so far received little attention in the literature is that of the
connections between the separation of variables in different spaces, e.g. in homogeneous
spaces of different Lie groups. In particular, it is of interest to study the behaviour
of separable coordinates, sets of commuting operators and the corresponding separating
eigenfunctions under deformations and contractions of the underlying Lie algebras.
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Two types of Lie algebra contractions exist in the literature. The first are standard
Wigner—Inonu contractions [17-19]. They can be interpreted as singular limits of
transformations of bases of Lie algebras. More recently, ‘graded contractions’ have been
introduced [20—22]. They are more general than the Wigner—Inonu ones and can be obtained
by introducing parameters that modify the structure constants of a Lie al§ehbra manner
respecting a certain grading and then taking limits when these parameters go to zero.

Our aim is to perform a study of the connection between the contractions of Lie algebras
and the separation of variables. In this first paper we restrict ourselves to the simplest case.
We shall consider Wigner—Inonu contractions of the rotation algebra o(3) to the Euclidean
algebra e(2). The two separable coordinate systems on the sgher®(3)/0(2) will be
related to the four separable systems on the plane- E(2)/0(2). The contractions will
be followed through on several levels: the Lie algebra, the commuting sets of operators,
the coordinate systems and the eigenfunctions of the Laplace—Beltrami operators.

Our motivation comes from several directions. Among them we mention the following.

In special function theory contractions provide the possibility of obtaining new asymptotic
formulas, new expansions, etc. In the theory of finite-dimensional integrable systems
contractions provide relations between such systems in curved and flat spaces. Contractions
play a significant role in the theory of quantum groups [23—-25] and it is to be expected that
methods developed for Lie groups will be generalizable to the case of quantum groups.

In section 2 we first review the two separable systems on the sphesiad the four
on the planeE,. We then introduce geodesical coordinatesSerithat are well adapted for
the contraction limit. Using these coordinates we take the liRnit> oo, whereR is the
radius of the sphere. Spherical coordinatesSergo into polar or Cartesian ones @p.

Elliptic coordinates orS, go into elliptic, parabolic or Cartesian ones fa. Section 3 is
devoted to the contraction of basis functions. Thus, spherical harmonics go over into Bessel
functions or exponentials. Elliptic harmonics, expressed as products o paignomials,

go into exponentials, Mathieu functions, or parabolic cylinder functions.

2. Complete sets of commuting operators, separable coordinates, and their
contractions

2.1. Separable coordinates on the sph&se
Let us first consider the sphefg. Its isometry group is B). We choose a standard basis
{L1, Lo, L3} for the Lie algebra o(3):

a
Li = _Gikjukai [L,‘, Lk] = Gikij i, k= 1, 2, 3 (21)
uj

whereu; are Cartesian coordinates in the ambient spage
On the sphereS, we have

u%+u§+u§= R2.
The Laplace—Beltrami operator and metric &nin curvilinear coordinates are

19 3
- [
Jgoxn vV g

dS2 = g,uvdxﬂdxv 8= det(g;w) gauguv = 8;

1 2 2 2
Ag = ﬁ(L1+L2+L3) =
(2.2)

Following the general method [9-15] (that has in particular been applied to the sphere
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S2) [26] we look for separated eigenfunctions of the Laplace—Beltrami operator satisfying

IA+1 -
AgVY = T‘l’ XV = kW Vi (@, B) = B ()@ (B)  (2.3)
whereX is a second-order operator in the enveloping algebra of o(3):
X = Ll,‘kL,‘Lk Adil = Ag; . (24)

Two operatorsX and X’ will be considered equivalert ~ X', if they are related by a
rotation and a linear combination with the Laplacian

X~ X' =(g"ag), LiLc+pnA gg=1. (2.5)
The matrixa;; can be diagonalized to give
X(ay, az,a3) = X = alLf + ang + agLé. (2.6)

For a; = a, = a3 we haveX ~ 0. If two eigenvalues ofi;, are equal, e.0a; = ap # as,
we can transfornX into X(0,0,1) = L§ and the corresponding separable coordinates on
S, are the usual spherical ones

u; = Rsing cosp uy = Rsind sing u3 = R cosp. (2.7)

They correspond to the group reductio80> 0(2) and X = L3 is invariant under ()
and under reflections in all coordinate planes.

When all three eigenvalues are different, then the separable coordinates in (2.3) are
elliptic ones [26—29]. These can be written in algebraic form, as

2 _ p2 (01— a1)(p2 — a1)

ul _—
(az — a1)(az — a1)
(o1 — a2)(p2 — az)
ud = R>2 (2.8)
(az — az)(a1 — az)
(p1 —az)(p2 — as)
ug _ R2 1 3 2 3
(a1 — az)(az — as)
with a; < p1 < a2 < p2 < az.
In trigonometric form we put
p1=a1+ (az—a1)COS ¢ pp=az— (a3 — az)COS O (2.9)
and obtain
u1 = Rv/1— k'?co 6 cosp
up = Rsinf sing O0<¢p<2r 0<O<m (2.10)
uz = Ry/1—k?cog ¢ cosd
where
="M e W2 =BT2 oy (2.11)
az —ax as —dax

Finally, the Jacobi elliptic version of elliptic coordinates is obtained by putting
p1 = ay + (a2 — a1) sit(a, k) P2 = az + (az — az) crP(B, k). (2.12)

We obtain
u; = Rsn(a, k)dn(B, k)
up, = Rcn(a, k) cn(B, k') —K<a<K —-2K'<B<2K (2.13)

uz = Rdn(a, k) sn(B, k).
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where siia, k), cn(e, k) and dr(8, k) are the Jacobi elliptic functions with moduliagnd K

and K’ are the complete elliptic integrals [30, 31]. The moduli are given in (2.11), we have

k? + k> =1 and 2fR is the interfocal distance for the ellipses on the upper hemisphere.
Elliptic coordinates corresponding to the reductigB)0> D,, where D, is the dihedral

group (rotations through about all three axes and reflections in a coordinate plane). Indeed,

the operator (2.6) is invariant only undéy, rather then @), for a; # az # asz # a;.

2.2. Separable coordinates on the Euclidean pléaie

Let us consider the Lie algebra e(2) in the basis

L3 = u20,, — u10y, Py =09, Py = 0,. (2.14)
Separated eigenfunctions of the Laplace operates P2+ PZ? satisfy
Ady; = K2 Dy ; X&) = Adr Dy i (e, B) = g a () Wy 1 (B) (2.15)
where X is the second-order operator
X =al%+4b(L3Py+ PiL3) 4 c(L3Py + P2L3) +d P2+ eP? +2f P1P;. (2.16)

By means of Euclidean transformations, and linear combination avjtive can takeX into
precisely one of the following operators

Xs=L3 (@a#0,D=0) (2.17)

Xc = P? — P? (a=b=c=0) (2.18)

Xp= L3P, + PiL3 (a=0,b*>+c?+#0) (2.19)

Xe = L5+ 1D*(P? - P (a #0,D #0) (2.20)
where

D? = %{41)%2 +lab—e) — b* + P}2. (2.21)

Each of the operators (2.17)—(2.20) corresponds to a different separable coordinate
system in (2.15). ThuXc corresponds to Cartesian coordinatesy), Xs to polar ones

X = p COS¢ y = pSing (2.22)
Xp to parabolic coordinates

x = %(u2 —v?) y=uv (2.23)
and Xg to elliptic ones

x = D cosht cospy y = D sinh& siny (2.24)

where 2 is the focal distance.
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2.3. The contractions

We shall useR~* as the contraction parameter. To realize the contraction explicitly, let us
introduce geodesical coordinates on the sphere [32], putting

Uy

x,=R™ = n=12. (2.25)
U1 8+ ud)/R?
The ((3) generators can then be expressed as
L 1
— == pat xa(x1pr + x2p2) (2.26)
R R
L,
— =m1=p1+ sx1(x1p1 + x2p2) (2.27)
R R
L3 = Xpp1 — X1p2 = X211 — X172. (2.28)
The commutation relations are
L
[Laml=m [Lam]=-m  [mml= (2.29)

so that forR — oo the o(3) algebra contracts to the e(2) algebra. Moreover the momenta
7, contract top, = 9/9x, (n =1, 2).
The o(3) Laplace—Beltrami operator (2.2) contracts to the e(2) operator:

L2
Mg =7 + 75+ 25— A= (pf+p). (2.30)

Let us now consider the contractions of the operator (2.6) and of the corresponding
coordinates.

2.3.1. Spherical coordinates ¢ to polar coordinates ork,. We chooser; = ay in (2.6)
and put

,
tang = —. 2.31
an R ( )

In the limit R — oo, # — 0 we have
X=1L%—> Xs=L3 (2.32)

and
uy
X1 = R— — x =rC0S¢p
u

3 (2.33)

uz .
X2=R-—= —y=rsing.
us

2.3.2. Spherical coordinates df to Cartesian ont,. We choosei, = az ~ 0 in (2.6) so
that the coordinates (2.7) permute into

u1 = Rcosd’ us> = R sing’ cosg’ u3z = Rsing’sing’. (2.34)
Putting

! X / y
cosh’ = — cosp’ = = 2.35
R = (2.35)
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and taking the limitR — oo, 6’ — 7, ¢’ — 7, we obtain

L2
X (#:0,0)= 3 =7f > X =P ~ Xc (2.36)
and
cote’ ,
x1=R sing’ — X X2 = R cot¢’ — y. (2.37)

2.3.3. Elliptic coordinates or$, to elliptic coordinates onE,. We takeX in its general
form, equivalent to

X=12— <a2 - “1) L2 (2.38)
az — az
We put
R? D?
_ Ly =—Rm, (2.39)

a3 — daj ay — dy
and in the limitR? ~ a3 — oo obtain

X — L3 — D*P? ~ Xg. (2.40)
For the coordinates we put
p1 = a1+ (ax — ay) COS2 n p2 = a1+ (az — ay) COSHE (2.41)

and for R> ~ a3 — oo, using (2.39), we obtain (2.24), i.e. elliptic coordinates on the
plane Es.

2.3.4. Elliptic coordinates orf§, to Cartesian coordinates oif,. We start from the
coordinates (2.8) but change the ordering of the parametdrs. put

ar < p1<az < p2 < az (2.42)
and chooseiz — a; = a» — a3 = a. We than have

1
X = (n? — %) — P? — P2 (2.43)
For the coordinates we put
613—/01:él ,02—613252_ (2.44)
a a

Using equations (2.25) and (2.8) we have
oT808, LA+l -

2.45
2618 2618 (2.49)
From equation (2.45) we obtain
1/2
"ElzziRz P B ks :Fxf—xf (2.46)
’ R2 4 x? + x2 R? 4R 2R2 |7 YT
In the limit R — oo we have
x2 y2
> 1- > 1-, (2.47)

and hencer; andx; of (2.45) go into Cartesian coordinates:

X1 —> X X2 —> V. (248)
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2.3.5. Elliptic coordinates or$, to parabolic coordinates orE,. We take the operator
(2.6) witha; < p1 < az < p2 < az and choosez — ay = a, —a; = a. We must first ‘undo’
the diagonalization (2.5) by a rotation throughi4. The operator (2.6) transforms into
1 1
— Xg=——
aR aR
with the correct limit forR — oo. The coordinates (2.13) oy are rotated into

(L1L3+ L3L1) = L3amp + moL3 (249)

u [0% o
[2

up = Rcnacnp (2.50)

R
Uz = —z(dna snB — sna dnp)

7

with modulusk = k' = 1/+/2 for all Jacobi elliptic functions.
From equation (2.50) we obtain

SNa = \1[2 [(1+ %>1/2 (1_ %>1/2 B (1_ %>1/2 (1+ ,g)uz]

(2.51)
_ 1 Ui 1/2 us 1/2 Ui 1/2 us 1/2
Vadns = [ (14 ) (- ) T (- ) T (e )
Equation (2.51) suggest the limiting procedure. Indeed we put
= Jad v
She = -1+ — 2dng =1+ —. 2.52
* * 2R P=1%3% (2.52)
In the limit R — oo we than obtain
M2 — U2

X1 — X = 3 Xp = y = uv (2.53)

i.e. the parabolic coordinates (2.23).

3. Contraction of basis functions

Having established the contraction properties of separable coordinates and the corresponding
complete sets of commuting operators. We shall now consider the behaviour of
eigenfunctions.

3.1. Spherical basis 06, to polar basis ont,

We start from the standard spherical functidng (9, ¢) as basis functions of irreducible
representations of the group O(3) (see, e.g., [33])
1 (=1)m+mD/2 721 41 (1 + |m)! Y? (sing)!!
lI/lm(ev d)) = 7Ylm(9s ¢) = | | | m| |
vR vR 2 (I —|m)! 20 |m|!

. gnéd
xoFy (1 + [ml|, I + |m| + 1; |m| + 1; sir?(36)) Nd

(3.1)

In the contraction limitR — co we put

tand ~ 6 ~ % I ~ kR. 3.2)
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Using the asymptotic formulae

RIiLnOOZF1< kR, kR; |m| + 1; 4R2) _0F1(|m|+1 _ﬁ>
(3.3)
r
im Fz+a) =% P
oo I'(z + )
and the formula
ZAN 1 e
1@ =(5) roypor (-3 (3.4)
we obtain
e|m¢
im = Y3,,(0, ¢) = (=) """V 2k Sy (ki) —— (3.5)

s f Vor
The result (3.5) is not new [33]. The point is that this asymptotic formula is obtained very
naturally in the context of group contractions applied to the separation of variables.

3.2. Spherical basis oS, to Cartesian basis otk ,

We start from the coordinates (2.34), but drop the primes, and write the corresponding
spherical functions as

J2+1
27

Yin (0, ¢) = é"? (sing)!"!

1
F(l+m+l)r(lfm+l) 2
(+m)/2 2 2 l-m I4+m+1, 1,
(_l) |:F(l+m+2)r(l—m+2) F (_T7 » 2 C0§ 9)
2 2

x (3.6)
m+2 —m+2
(1ytm-72 [F(’*z* T (=5*2)
I+m+1 [—m+1
NG N )

for I +m even and odd, respectively, we now put
I ~kR m ~ koR 3.7)

2 2°

} 2cos) F (-1, k2, 3. cog 9)

and
. X y w
sing — 1 cos) - — =~ — . 3.8
— — R ¢ — R 2 (3.8)
The F = ,F; hypergeometric functions simplify teF; ones, thel’ functions also

simplify and we find

Yim (0, ¢) "= (—1)"/2/2kR (3.9

2

1
2% (k1iR\? 2.2
(~ptmbzes () oy (3 44)
with k12 + k22 = k2.
The oF; functions are in this case expressible in terms of the Bessel funciions
that are, essentialy, trigonometric functions. The final result is that under the contraction
we have

(3.10)

) gk2y | coskyx
lim (-1)"2Y,,,(0, ) = {
R—o0

Var

—isinkyx
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for I + m even and odd, respectively, where the limit is taken as in (3.7). The parity
properties ofY;,, under the exchange — = — 6 have led to the appearance of égs and
sinkyx in (3.9), instead of the usual Cartesian coordinate solution(@xp # ko).

3.3. Solutions of the Laenéquation

Let us consider (2.3) on the sphefgand separate variables in the elliptic coordinates (2.8).
We obtain two ordinary differential equation of the form

Ry 1 1 1 1 )dy 1{ A—11+Dp }
= bl A =0
dp? T2 {p—al * p—az * p—as} dp T2 (o —a1)(p — az)(p — as)
(3.11)
or equivalently
d d
4¢P(p>@w)<p)% — A+ 1)p -2y =0 (3.12)

where

P(p) = (p —a1)(p —az)(p — as).
Equation (3.11) is the La&nequation in algebraic form. It is a Fuchsian type equation with
four regular singularities (aty, a2, az andoo) [26—-30, 34].
Its general solution can be represented by a series expansion about any one of the
singular pointsz;, as

¥ (p) = (p — a))™*(p — az)**(p — az)** Y " b (p — @)’ (3.13)
=0
where we have
Olj(Olj—l)ZO j=1,2,3

and can choosg equal to 1, 2, or 3.
Substituting in the Lar@ equation (3.11) we obtain a three-term recursion relatiob/for

BEbE L+ )+ 210+ Dadbf + @2t +a—1 -2 (2 +a+1—-1b =0 (3.14)
with
o =01+ o+ o3 O = o — O b_1=0

O = 4(q; - a)(aj — ap)(t + Dt + oy + %) (i, j, k cyclic) (3.15)
¥ = —(ai — a) @t + o+ )? — (a5 — a) (2t + o + o).

The expansion (3.13) represents a léafunction. Since we are interested in representations
of SO(3), the sum iny(p) must be a polynomial of orde¥, i.e. we must have

by #0 byt1=by2=---=0
for someN. The condition for this is that we have
[ =2N +« (3.16)

and we obtain a secular equation for the eigenvalye®. the separation constant in elliptic
coordinates, by requiring that the determinant of the homogeneous linear system (3.14) for
{bg, b1, - - -, by} should vanish. Sinc&/ and!/ must be integers, equation (3.16) implies
thate and/ must have the same parity.
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Numerous further properties of the Larpolynomials, in the context of representations
of the group O(3), in the O(3)D, basis, were established, e.g., in [26-29].
Here let us just represent the basis functions as

Uil (p1, p2) = AL (e (02) (3.17)

where A/ is some normalization constant. The labpls; take valuestl and identify
representations of D For each value of the values ofp, ¢ andx label (2/ + 1) different
states. Since a given representatiopsg) of D, can figure more than once in the reduction
of a representation of O(3) corresponding to a givewe are faced with a ‘missing label
problem’, resolved by the quantum numberi.e. the operatoX of (2.6).

The expansions that we shall use for the leapolynomials in (3.17) are as in (3.13),
but the summation overis fromt =0tor = N.

3.4. Elliptic basis onS, to Cartesian basis oI,

We choose elliptic coordinates df as in (2.8), but withay < a3 < az, as in (2.42). We
write the basis functions as in (3.17) with

N
Vi (p1) = (p1 — a))™?(p1 — a2)™*(pr — a)*** Y " b" (p1 — @)’
=0 (3.18)

N
Vi (02) = (p2 — a))™/*(p2 — a2)™*(p2 — a)*** Y " b (p2 — a2)’
=0
as in (3.13). The coefficientb-,f (j = 1,2) satisfy the recursion relation (3.14) and
we haveN = (Il — «)/2. We use the coordinateg and &, introduced in (2.44) (for
a =as— a; = ay — az). Equation (3.18) reduces to

N
Y€1) = (—1)@ /22 2(1 — )21 4 &)/ %2 " A — &)
t=0

(3.19)
a3/2 N 2
Vi (62) = (~D)/%a2(1 — £ 2L+ 5252 Y 21— &)
t=0
with ¢P = a'b,, C? = (—a)'b,.
The recursion relations (3.14) now imply
8(t + Dt + a1 + HC 4+ (1P — 22 + a1 + @3)? — (2 + @y + a2)?}CY
+@2+a—-1-22+a+I-DCP =0 (3.20)
—8(t + D + o2+ HCF +{1? + 221 + @z + a9)* + (2 + o1 + @)’} '
—2ta—1-22+a+1-1)C? =0
where
L1
pn = Z[n —ajld + D] j=12. (3.21)
a

The contraction limit is taken using equation (2.47) to relafe to the Cartesian
coordinates ork,. Taking!/ ~ kR we find

pn® — 2R?2 n® — —2R?k2 k= \/k?+ k3. (3.22)



Contractions of Lie algebras and separation of variables 5959

For R — oo the recursion relations (3.20) simplify to two term ones that can be solved to

obtain
- R*  [(—k¥\'1
oo _ (,) 1 3.23
' (aj + %)t 4 1! ( )
with
(05 +3), = (@ +3)(@+3) (=5 +1) 121 (a+3),=1

Substituting (3.23) into (3.19) we obtain
aa/2 22
Vi 61) = (=D E o Ry (al + 3 —le)

a"‘/z 2.2
Yin(E2) = (~1 2Ty roFy (o + 5 =) . (3.24)

Using equation (3.4) and the explicit expressions.fof/,, we find the contraction limit:
AL (R (81, §2) — ALY, () Yk, ()

COsk1x coskyy a1 =0,a0=0
1 coskix Sink 0 1
R X a1 =0, a0 =
koR 1 2y 1 2
— A[I’)\‘I(_l)ot3/2a0!/2 1 (3.25)
_kTR Sinkyx coskyy o1=1a,=0
———— sinkyx sink =1l a,=1
kikaR2 1x 2y o1 a2

Though these formulae are quite simple, to our knowledge they are new.

3.5. Elliptic basis onS; to elliptic basis onE,

Let us start from the elliptic coordinates (2.8) with < p1 < a2 < p2 < az. We take the
limit R — oo, a3 — oo with ,/az/R, a; anda finite. We introduce a constam as in
(2.39). Elliptic coordinates on the plar® are introduced via (2.41), so that the Cartesian
coordinateqx, y) are expressed in terms of the elliptic on€sn) as in (2.24). Let us first
take the limit in the separated equations (3.12). Going over to the varighlg$ from
(p1, p2), for R — oo we obtain:

d?yy k?D? (a» + a1 k?D?
— — — cos =0 3.26
e { . <a2—a1> . Zq}wl (3.26)
dzlﬂz k2D? ar + ax k2D?
— — — h =0 3.27
de?2 +{“ 2 (az—a1> 2 % Z}‘”Z (3.27)
with

A
n=— I ~kR.

as

In equation (3.26) we recognize the standard form of the Mathieu equation, whereas
equation (3.27) is a modified Mathieu equation [35]. Thus, in the contraction limitéLam
functions will go over into Mathieu ones. Moreover, periodic solutions of the& aquation
go over into periodic solutions of (3.26).
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The contraction limit can also be taken directly in the léapolynomials, using the
expansion (3.13) (cut off at= N). The result that we obtain is

) N 1)(e2te3)/2
Jlim ’;ff: Y (4o al)“/z%(cosm“l(smn)“z ;Ct(cosmz’ (3.28)
lim (P2) = (az )“/2( ) (coshs)al(smhg)“z ZC,(coshs)z’ (3.29)

R—oo R%3
where the expansion coefficiends satisfy recursion relations obtained from (3.14), namely
A 4+ D) (t +1/24 a1)C, + {u — (21 + a1 + @2)?}C, — k?D?C, = 0. (3.30)

Depending on the values aof anday,, defined in (3.18), (3.30) takes one of four different
forms.

3.6. Elliptic basis onS, to parabolic basis orE;

Let us consider the contraction limit for the Lénequations (3.12). To do this we use
equations (2.12) witlus — ap = a» — a1 = a i.e. k = k' = 1/+/2, together with (2.52), to
obtain

u? v2
,01~a1+a< 1+2R) p2~a1+a(1+R>. (3.32)

Equation (3.12) forp = p; and p = p, in the limit R — oo, with > ~ k?R? and
A —azl(l + 1) = wRa, yields the two equations

dd Vi b 022 4 g = (3.32)
d?
d‘”j + (K20 — Wz = (3.33)

respectively.

Thus the Lard equations in the contraction limit go over into equations (3.32), (3.33) for
parabolic cylinder functions [36]. The same is of course true for solutions. The expansion
(3.13) is not suitable for the contraction limit. In view of (2.52) we need expansions in
terms of the variablesl + sn«) and (1 — +/2dng). This is not hard to do, following for
instance methods used in [37] to relate the wavefunctions of a two-dimensional hydrogen
atom, calculated in different coordinate systems. The formulae are cumbersome, so we shall
not present them here.

4. Conclusions

In this paper we have presented a new aspect of the theory of Lie group and Lie algebra
contractions: the relation between separable coordinate systems in curved and flat spaces,
related by the contraction of their isometry groups. So far we have considered the simplest
meaningful example, namely the original Wigner—Inonu contraction froth(3) to E(2),
as applied to the spher® and Euclidean plané,.

We have followed through the contractiéh— oo (whereR is the radius of the sphere
S,) at all levels: the Lie algebras as realized by vector fields, the Laplace—Beltrami operators
in the two spaces, the second-order operators in the enveloping algebras, characterizing
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separable systems, the separable coordinate systems themselves, the separated (ordinary)
differential equations and the separated eigenfunctions of the invariant operators.

In particular, we have shown how different limiting procedures lead from two separable
systems ors,, to four systems on the plang,.

The contraction parameter in this paper was a geometrical one, namely the Raolius
the S, sphere. The results of this paper are also applicable in a completely different context,
namely that of high energy physics. Indeed, an elementary particle can be described by a
wavefunction, transforming according to an irreducible unitary representation of the Poincare
group [38, 39]. Its spin is associated with the Pauli-Lubanski vector

_ 1 VA pp
W, = L€, M" PP .

If the particle is massive, the linear momentum is timelike= m? > 0. In the rest frame

we havepo = m, p = 0 and the space componentsWf, generate an (@) algebra. If the
particle is massless, then its momentum is lightliké,= 0 and no rest frame exists. We
can choose a frame with = (w, 0, 0, w) and the three lineary independent components of
W, generate an(@) algebra. Let us parametrize the linear momentum of a massive particle
in spherical coordinates on the mass shell

po = m cosha p1 = m Sinha siné cos¢
p2 = m Sinha sind sing p3 = m Sinha cosp .

At very high energiepy — oo we have

cosha ~ sinha ~ le°

and the momentunp approaches a lightlike one.

All results of this paper are applicable in this case with a reinterpretation of the
contraction parameter. This role is now played by the particle enggggr more precisely
by the ‘energy’ coordinate. The physical relevance of such a contraction is obvious: in
the ultrarelativistic limit [40] massive particles start to behave like massless ones, for which
spin considerations, for example, reduce to helicity ones.

We mention that the realization (2.26)—(2.28) @Bpin terms of vector fields in two
variables corresponds to thg &) subgroup of the grou§ L (3, R) figuring as the group of
projective transformations d2. Indeed, more generally/(n + 1, R) can be realized as

0

Pﬂza L,w:xuaxv C,=x,D
i 4.1
! 0

Dzzlxaaxa 1<u, v<n.

This shows that the methods of this paper can easily be adapted to treat other
contraction problems. Fot = 2 we can construct the(2,1) c si(3,R) subalgebra
and consider contractions of separable coordinates on one- or two-sheeted hyperboloids and
their contractions to coordinates on Euclidean or pseudo-Euclidean planes. >F8rwe
can again extract(@), or o(p, g) subalgebras of/(n, R) and consider similar contraction
problems. This, however, lies beyond the scope of the present paper.
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